Homework Set One: Complex Numbers

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises **separately** at the **beginning** of lecture on **Friday**, **October 5**, **2007**. The two problems sets will be graded by different persons.

Calculational Exercises

Submit solutions to Exercises 1(b), 2(a, b, c), 3(b), 4(a, b), and 5(a, b).

- 1. Solve the following systems of linear equations and characterize their solution set. (I.e., determine whether there is a unique solution, no solution, etc.) Also, write each system of linear equations as a single function $f: \mathbb{R}^n \to \mathbb{R}^m$ for appropriate choices of $m, n \in \mathbb{Z}_+$.
 - (a) System of 3 equations in the unknowns x, y, z, w:

(b) System of 4 equations in the unknowns x, y, z:

$$\begin{array}{rcl}
 x + 2y - 3z & = 4 \\
 x + 3y + z & = 11 \\
 2x + 5y - 4z & = 13 \\
 2x + 6y + 2z & = 22
 \end{array}$$

(c) System of 3 equations in the unknowns x, y, z:

$$\begin{cases} x + 2y - 3z &= -1 \\ 3x - y + 2z &= 7 \\ 5x + 3y - 4z &= 2 \end{cases}.$$

2. Express the following complex numbers in the form x+yi for $x,y\in\mathbb{R}$:

(a)
$$(2+3i)+(4+i)$$

(b)
$$(2+3i)^2(4+i)$$

(c)
$$\frac{2+3i}{4+i}$$

(d)
$$\frac{1}{i} + \frac{3}{1+i}$$

(e)
$$(-i)^{-1}$$

(f)
$$(-1+i\sqrt{3})^3$$

3. Compute the real and imaginary parts of the following expressions, where z is the complex number x + yi and $x, y \in \mathbb{R}$:

(a)
$$\frac{1}{z^2}$$

(b)
$$\frac{1}{3z+2}$$

(c)
$$\frac{z+1}{2z-5}$$

(d)
$$z^{3}$$

4. Solve the following equations for z a complex number:

(a)
$$z^5 - 2 = 0$$

(b)
$$z^4 + i = 0$$

(c)
$$z^6 + 8 = 0$$

(d)
$$z^3 - 4i = 0$$

- 5. Compute the real and imaginary parts:
 - (a) e^{2+i}
 - (b) $\sin(1+i)$
 - (c) e^{3-i}
 - (d) $\cos(2+3i)$

Proof-Writing Exercises

Submit solutions to Exercises 1 and 2.

1. Let a, b, c, and d be real numbers, and consider the system of equations given by

$$ax_1 + bx_2 = 0, (1)$$

$$cx_1 + dx_2 = 0. (2)$$

Note that $x_1 = x_2 = 0$ is a solution for any choice of a, b, c, and d. Prove that if $ad - bc \neq 0$, then $x_1 = x_2 = 0$ is the only solution.

- 2. Let $a \in \mathbb{R}$ and $z, w \in \mathbb{C}$. Prove that
 - (a) Re(az) = aRe(z) and Im(az) = aIm(z).
 - (b) $\operatorname{Re}(z+w) = \operatorname{Re}(z) + \operatorname{Re}(w)$ and $\operatorname{Im}(z+w) = \operatorname{Im}(z) + \operatorname{Im}(w)$.