Homework Set Two: Fundamental Theorem of Algebra and Vector Spaces

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises separately at the beginning of lecture on Friday, October 12, 2007. The two problems sets will be graded by different persons.

Calculational Exercises

1. Given any complex number $\alpha \in \mathbb{C}$, show that the coefficients of the polynomial

$$
(z-\alpha)(z-\bar{\alpha})
$$

are real numbers.
2. Show that the space $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{F}^{3} \mid x_{1}+2 x_{2}+2 x_{3}=0\right\}$ forms a vector space.
3. Give an example of a nonempty subset $U \subset \mathbb{R}^{2}$ such that U is closed under scalar multiplication but is not a subspace of \mathbb{R}^{2}.

Proof-Writing Exercises

1. Let $p(z)$ be a polynomial with real coefficients, and let $\alpha \in \mathbb{C}$ be a complex number. Prove that $p(\alpha)=0$ if and only $p(\bar{\alpha})=0$.
2. Let V be a vector space over \mathbb{F}. Then, given $a \in \mathbb{F}$ and $v \in V$ such that $a v=0$, prove that either $a=0$ or $v=0$.
3. Let V be a vector space over \mathbb{F}, and suppose that W_{1} and W_{2} are subspaces of V. Prove that their intersection $W_{1} \cap W_{2}$ is also a subspace of V.
