Homework Set Three: Linear Span and Bases

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises separately at the beginning of lecture on Friday, October 19, 2007. The two problems sets will be graded by different persons.

Calculational Exercises

1. Show that the vectors $v_{1}=(1,1,1), v_{2}=(1,2,3)$, and $v_{3}=(2,-1,1)$ are linearly independent in \mathbb{R}^{3}. Write $v=(1,-2,5)$ as a linear combination of v_{1}, v_{2}, and v_{3}.
2. Consider the complex vector space $V=\mathbb{C}^{3}$ and the list $\left(v_{1}, v_{2}, v_{3}\right)$ of vectors in V, where

$$
v_{1}=(i, 0,0), \quad v_{2}=(i, 1,0), \quad v_{3}=(i, i,-1) .
$$

(a) Prove that $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)=V$.
(b) Prove or disprove: $\left(v_{1}, v_{2}, v_{3}\right)$ is a basis for V.

Proof-Writing Exercises

1. Let V be a vector space over \mathbb{F}, and suppose that $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a linearly independent list of vectors in V. Given any $w \in V$ such that

$$
\left(v_{1}+w, v_{2}+w, \ldots, v_{n}+w\right)
$$

is a linearly dependent list of vectors in V, prove that $w \in \operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
2. Let V be a finite-dimensional vector space over \mathbb{F}, and suppose that U is a subspace of V for which $\operatorname{dim}(U)=\operatorname{dim}(V)$. Prove that $U=V$.

