Homework Set Five: Matrices and Linear Maps

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises **separately** at the **beginning** of lecture on **Friday**, **November 2**, **2007**. The two problems sets will be graded by different persons.

Calculational Exercises

- 1. Define the map $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x,y) = (x+y,x).
 - (a) Show that T is linear.
 - (b) Show that T is surjective.
 - (c) Find dim (null (T)).
 - (d) Find the matrix for T with respect to the canonical basis of \mathbb{R}^2 .
 - (e) Show that the map $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by F(x,y) = (x+y,x+1) is not linear.
- 2. Consider the complex vector spaces \mathbb{C}^2 and \mathbb{C}^3 with their canonical bases, and define $S \in \mathcal{L}(\mathbb{C}^3, \mathbb{C}^2)$ be the linear map defined by $S(v) = Av, \forall v \in \mathbb{C}^3$, where A is the matrix by the matrix

$$A = M(S) = \begin{pmatrix} i & 1 & 1 \\ 2i & -1 & -1 \end{pmatrix}.$$

Find a basis for null(S).

Proof-Writing Exercises

1. Let V be a finite-dimensional vector space over \mathbb{F} with $S, T \in \mathcal{L}(V, V)$. Prove that $T \circ S$ is invertible if and only if both S and T are invertible.