## Homework Set Five: Matrices and Linear Maps

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises separately at the beginning of lecture on Friday, November 2, 2007. The two problems sets will be graded by different persons.

## Calculational Exercises

1. Define the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(x+y, x)$.
(a) Show that $T$ is linear.
(b) Show that $T$ is surjective.
(c) Find $\operatorname{dim}(n u l l(T))$.
(d) Find the matrix for $T$ with respect to the canonical basis of $\mathbb{R}^{2}$.
(e) Show that the map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $F(x, y)=(x+y, x+1)$ is not linear.
2. Consider the complex vector spaces $\mathbb{C}^{2}$ and $\mathbb{C}^{3}$ with their canonical bases, and define $S \in \mathcal{L}\left(\mathbb{C}^{3}, \mathbb{C}^{2}\right)$ be the linear map defined by $S(v)=A v, \forall v \in \mathbb{C}^{3}$, where $A$ is the matrix by the matrix

$$
A=M(S)=\left(\begin{array}{ccc}
i & 1 & 1 \\
2 i & -1 & -1
\end{array}\right)
$$

Find a basis for $\operatorname{null}(S)$.

## Proof-Writing Exercises

1. Let $V$ be a finite-dimensional vector space over $\mathbb{F}$ with $S, T \in \mathcal{L}(V, V)$. Prove that $T \circ S$ is invertible if and only if both $S$ and $T$ are invertible.
