Homework Set Six: Eigenvalues

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises separately at the beginning of lecture on Friday, November 9, 2007. The two problems sets will be graded by different persons.

Calculational Exercises

Do Problem 1 and 2(a),(b).

1. Let $T \in \mathcal{L}\left(\mathbb{F}^{2}, \mathbb{F}^{2}\right)$ be defined by

$$
T(u, v)=(v, u)
$$

for every $u, v \in \mathbb{F}$. Compute the eigenvalues and associated eigenvectors for T.
2. Find eigenvalues and associated eigenvectors for the linear operators on \mathbb{F}^{2} defined by each given 2×2 matrix.
(a) $\left[\begin{array}{rr}3 & 0 \\ 8 & -1\end{array}\right]$
(b) $\left[\begin{array}{rr}10 & -9 \\ 4 & -2\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 3 \\ 4 & 0\end{array}\right]$
(d) $\left[\begin{array}{rr}-2 & -7 \\ 1 & 2\end{array}\right]$
(e) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(f) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Hint: Use the fact that, given a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{F}^{2 \times 2}, \lambda \in \mathbb{F}$ is an eigenvalue for A if and only if $(a-\lambda)(d-\lambda)-b c=0$.

Proof-Writing Exercises

1. Let V be a finite-dimensional vector space over \mathbb{F} with $T \in \mathcal{L}(V, V)$, and let U_{1}, \ldots, U_{m} be subspaces of V that are invariant under T. Prove that $U_{1}+\cdots+U_{m}$ must then also be an invariant subspace of V under T.
2. Let V be a finite-dimensional vector space over \mathbb{F}, and suppose that the linear operator $P \in \mathcal{L}(V)$ has the property that $P^{2}=P$. Prove that $V=\operatorname{null}(P) \oplus \operatorname{range}(P)$.
