## Homework Set Eight: Inner Product Spaces

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises separately at the beginning of lecture on Wednesday, November 28, 2007. The two problems sets will be graded by different persons.

## Calculational Exercises

1. Let $\left(e_{1}, e_{2}, e_{3}\right)$ be the canonical basis of $\mathbb{R}^{3}$, and define

$$
\begin{aligned}
f_{1} & =e_{1}+e_{2}+e_{3} \\
f_{2} & =e_{2}+e_{3} \\
f_{3} & =e_{3} .
\end{aligned}
$$

(a) Apply the Gram-Schmidt process to the basis $\left(f_{1}, f_{2}, f_{3}\right)$.
(b) What do you obtain if you instead applied the Gram-Schmidt process to the basis $\left(f_{3}, f_{2}, f_{1}\right)$ ?
2. Let $\mathbb{R}_{2}[x]$ denote the inner product space of polynomials over $\mathbb{R}$ having degree at most two, with inner product given by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x, \text { for every } f, g \in \mathbb{R}_{2}[x]
$$

Apply the Gram-Schmidt procedure to the standard basis $\left\{1, x, x^{2}\right\}$ for $\mathbb{R}_{2}[x]$ in order to produce an orthonormal basis for $\mathbb{R}_{2}[x]$.

## Proof-Writing Exercises

1. Let $V$ be a finite-dimensional inner product space over $\mathbb{F}$, and let $U$ be a subspace of $V$. Prove that $U=V$ if and only if the orthogonal complement $U^{\perp}$ of $U$ with respect to the inner product $\langle\cdot, \cdot\rangle$ on $V$ satisfies $U^{\perp}=\{0\}$.
2. Let $V$ be a finite-dimensional inner product space over $\mathbb{F}$, and suppose that $P \in \mathcal{L}(V)$ is a linear operator on $V$ having the following two properties:
(a) Given any vector $v \in V, P(P(v))=P(v)$. I.e., $P^{2}=P$.
(b) Given any vector $u \in \operatorname{null}(P)$ and any vector $v \in \operatorname{range}(P),\langle u, v\rangle=0$.

Prove that $P$ is an orthogonal projection.

