Homework Set Eight: Inner Product Spaces

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises **separately** at the **beginning** of lecture on **Wednesday**, **November 28**, **2007**. The two problems sets will be graded by different persons.

Calculational Exercises

1. Let (e_1, e_2, e_3) be the canonical basis of \mathbb{R}^3 , and define

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = e_2 + e_3$
 $f_3 = e_3.$

- (a) Apply the Gram-Schmidt process to the basis (f_1, f_2, f_3) .
- (b) What do you obtain if you instead applied the Gram-Schmidt process to the basis (f_3, f_2, f_1) ?
- 2. Let $\mathbb{R}_2[x]$ denote the inner product space of polynomials over \mathbb{R} having degree at most two, with inner product given by

$$\langle f,g \rangle = \int_0^1 f(x)g(x)dx$$
, for every $f,g \in \mathbb{R}_2[x]$.

Apply the Gram-Schmidt procedure to the standard basis $\{1, x, x^2\}$ for $\mathbb{R}_2[x]$ in order to produce an orthonormal basis for $\mathbb{R}_2[x]$.

Proof-Writing Exercises

- 1. Let V be a finite-dimensional inner product space over \mathbb{F} , and let U be a subspace of V. Prove that U = V if and only if the orthogonal complement U^{\perp} of U with respect to the inner product $\langle \cdot, \cdot \rangle$ on V satisfies $U^{\perp} = \{0\}$.
- 2. Let V be a finite-dimensional inner product space over \mathbb{F} , and suppose that $P \in \mathcal{L}(V)$ is a linear operator on V having the following two properties:
 - (a) Given any vector $v \in V$, P(P(v)) = P(v). I.e., $P^2 = P$.

(b) Given any vector $u \in \text{null}(P)$ and any vector $v \in \text{range}(P)$, $\langle u, v \rangle = 0$. Prove that P is an orthogonal projection.