Homework Set Nine: Orthogonality and Diagonalization

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises separately at the beginning of lecture on Wednesday, December 5, 2007. The two problems sets will be graded by different persons.

Calculational Exercises

1. Consider \mathbb{R}^{3} with two orthonormal bases: the canonical basis $e=\left(e_{1}, e_{2}, e_{3}\right)$ and the basis $f=\left(f_{1}, f_{2}, f_{3}\right)$, where

$$
f_{1}=\frac{1}{\sqrt{3}}(1,1,1), f_{2}=\frac{1}{\sqrt{6}}(1,-2,1), f_{3}=\frac{1}{\sqrt{2}}(1,0,-1) .
$$

Find the matrix, S, of the change of basis transformation such that

$$
[v]_{f}=S[v]_{e}, \quad \text { for all } v \in \mathbb{R}^{3},
$$

where $[v]_{b}$ denotes the column vector of v with respect to the basis b.
2. Consider \mathbb{R}^{3} with two orthonormal bases: the canonical basis $e=\left(e_{1}, e_{2}, e_{3}\right)$ and the basis $f=\left(f_{1}, f_{2}, f_{3}\right)$, where

$$
f_{1}=\frac{1}{\sqrt{3}}(1,1,1), f_{2}=\frac{1}{\sqrt{6}}(1,-2,1), f_{3}=\frac{1}{\sqrt{2}}(1,0,-1) .
$$

Find the canonical matrix, A, of the linear map $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ with eigenvectors f_{1}, f_{2}, f_{3} and eigenvalues $1,1 / 2,-1 / 2$, respectively.
3. Let U be the subspace of \mathbb{R}^{3} that coincides with the plane through the origin that is perpendicular to the vector $n=(1,1,1) \in \mathbb{R}^{3}$.
(a) Find an orthonormal basis for U.
(b) Find the matrix (with respect to the canonical basis on \mathbb{R}^{3}) of the orthogonal projection $P \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ onto U, i.e., such that range $(P)=U$.

Proof-Writing Exercises

1. Let V be a finite-dimensional vector space over \mathbb{F}, and suppose that $T \in \mathcal{L}(V)$ satisfies $T^{2}=T$. Prove that T is an orthogonal projection if and only if T is self-adjoint.
2. Let V be a finite-dimensional inner product space over \mathbb{C}, and suppose that $T \in \mathcal{L}(V)$ has the property that $T^{*}=-T$. (We call T a skew Hermitian operator on V.)
(a) Prove that the operator $i T \in \mathcal{L}(V)$ defined by $(i T)(v)=i(T(v))$, for each $v \in V$, is Hermitian.
(b) Prove that the canonical matrix for T can be unitarily diagonalized.
(c) Prove that T has purely imaginary eigenvalues.
