Homework Set Nine: Orthogonality and Diagonalization

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises **separately** at the **beginning** of lecture on **Wednesday**, **December 5**, **2007**. The two problems sets will be graded by different persons.

Calculational Exercises

1. Consider \mathbb{R}^3 with two orthonormal bases: the canonical basis $e = (e_1, e_2, e_3)$ and the basis $f = (f_1, f_2, f_3)$, where

$$f_1 = \frac{1}{\sqrt{3}}(1, 1, 1), f_2 = \frac{1}{\sqrt{6}}(1, -2, 1), f_3 = \frac{1}{\sqrt{2}}(1, 0, -1).$$

Find the matrix, S, of the change of basis transformation such that

$$[v]_f = S[v]_e$$
, for all $v \in \mathbb{R}^3$,

where $[v]_b$ denotes the column vector of v with respect to the basis b.

2. Consider \mathbb{R}^3 with two orthonormal bases: the canonical basis $e = (e_1, e_2, e_3)$ and the basis $f = (f_1, f_2, f_3)$, where

$$f_1 = \frac{1}{\sqrt{3}}(1, 1, 1), \ f_2 = \frac{1}{\sqrt{6}}(1, -2, 1), \ f_3 = \frac{1}{\sqrt{2}}(1, 0, -1).$$

Find the canonical matrix, A, of the linear map $T \in \mathcal{L}(\mathbb{R}^3)$ with eigenvectors f_1, f_2, f_3 and eigenvalues 1, 1/2, -1/2, respectively.

- 3. Let U be the subspace of \mathbb{R}^3 that coincides with the plane through the origin that is perpendicular to the vector $n = (1, 1, 1) \in \mathbb{R}^3$.
 - (a) Find an orthonormal basis for U.
 - (b) Find the matrix (with respect to the canonical basis on \mathbb{R}^3) of the orthogonal projection $P \in \mathcal{L}(\mathbb{R}^3)$ onto U, i.e., such that range(P) = U.

Proof-Writing Exercises

- 1. Let V be a finite-dimensional vector space over \mathbb{F} , and suppose that $T \in \mathcal{L}(V)$ satisfies $T^2 = T$. Prove that T is an orthogonal projection if and only if T is self-adjoint.
- 2. Let V be a finite-dimensional inner product space over \mathbb{C} , and suppose that $T \in \mathcal{L}(V)$ has the property that $T^* = -T$. (We call T a **skew Hermitian** operator on V.)
 - (a) Prove that the operator $iT \in \mathcal{L}(V)$ defined by (iT)(v) = i(T(v)), for each $v \in V$, is Hermitian.
 - (b) Prove that the canonical matrix for T can be unitarily diagonalized.
 - (c) Prove that T has purely imaginary eigenvalues.