Sample Final Exam

The real final exam will consist of 8 questions, one of which is a question where you will need to state definitions or theorems from class, and one of which is a true or false question. One of the problems below will appear on the final exam.

1. Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$ be given by $v_{1}=(1,2,1), v_{2}=(1,-2,1)$, and $v_{3}=(1,2,-1)$. Apply the Gram-Schmidt procedure to the basis $\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3}, and call the resulting orthonormal basis $\left(u_{1}, u_{2}, u_{3}\right)$.
2. Let $A \in \mathbb{C}^{3 \times 3}$ be given by

$$
A=\left[\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & -1
\end{array}\right]
$$

(a) Calculate $\operatorname{det}(A)$.
(b) Find $\operatorname{det}\left(A^{4}\right)$.
3. Let $P \subset \mathbb{R}^{3}$ be the plane containing 0 perpendicular to the vector $(1,1,1)$. Using the standard norm, calculate the distance of the point $(1,2,3)$ to P.
4. Let $V=\mathbb{C}^{4}$ with its standard inner product. For $\theta \in \mathbb{R}$, let

$$
v_{\theta}=\left(\begin{array}{c}
1 \\
e^{i \theta} \\
e^{2 i \theta} \\
e^{3 i \theta}
\end{array}\right) \in \mathbb{C}^{4}
$$

Find the canonical matrix of the orthogonal projection onto the subspace $\left\{v_{\theta}\right\}^{\perp}$.
5. Let $r \in \mathbb{R}$ and let $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ be the linear map with canonical matrix

$$
T=\left(\begin{array}{cc}
1 & -1 \\
-1 & r
\end{array}\right) .
$$

(a) Find the eigenvalues of T.
(b) Find an orthonormal basis of \mathbb{C}^{2} consisting of eigenvectors of T.
(c) Find a unitary matrix U such that $U T U^{*}$ is diagonal.
6. Let A be the complex matrix given by:

$$
A=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & -1+i \\
0 & -1-i & 0
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) Find an orthonormal basis of eigenvectors of A.
(c) Calculate $|A|=\sqrt{A^{*} A}$.
(d) Calculate e^{A}.
7. Give an orthonormal basis for $\operatorname{null}(T)$, where $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ is the map with canonical matrix

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

8. Describe the set of solutions $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ of the system of equations

$$
\left.\begin{array}{rl}
x_{1}-x_{2}+x_{3} & =0 \\
x_{1}+2 x_{2}+x_{3} & =0 \\
2 x_{1}+x_{2}+2 x_{3} & =0
\end{array}\right\} .
$$

9. Prove or give a counterexample: For any $n \geq 1$ and $A, B \in \mathbb{R}^{n \times n}$, one has

$$
\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)
$$

10. Prove or give a counterexample: For any $r \in \mathbb{R}, n \geq 1$ and $A \in \mathbb{R}^{n \times n}$, one has

$$
\operatorname{det}(r A)=r \operatorname{det}(A)
$$

11. Prove or give a counterexample: For any $n \geq 1$ and $A \in \mathbb{C}^{n \times n}$, one has

$$
\operatorname{null}(A)=(\operatorname{range}(A))^{\perp}
$$

12. Prove or give a counterexample: The Gram-Schmidt process applied to an an orthonormal list of vectors reproduces that list unchanged.
13. Prove or give a counterexample: Every unitary matrix is invertible.
