Syllabus: Advanced Linear Algebra

L \#	Topics	Notes \& Remarks
1	What is linear algebra?	Chapter 1
2,3	Complex numbers	Chapter 2
	Discussion: Calculations with complex numbers; encoding linear systems	covers L1-3; 12.1
4	Fundamental theorem of algebra (proof optional)	Chapter 3
5	Vector spaces and subspaces	Chapter 4.1-4.3
6	Direct sum, linear span	Chapter 4.4-5.1
	Discussion: Vector space of matrices and operations on matrices	covers L5,6; 12.2
7	Linear independence of vectors	Chapter 5.2
8	Bases and dimensions of vector spaces	Chapter 5.3-5.4
9	Linear maps	Chapter 6.1
	Discussion: Linear independence, homogenous linear systems, Gaussian elimination	covers: L7,8; 12.3.1-2
10	Null space and range of linear maps	Chapter 6.2-6.4
11	Dimension formula for a linear map	Chapter 6.5
12	Matrix of a linear map	Chapter 6.6
	Discussion: Linear maps, inhomogeneous systems, LU-factorization	covers L9-12; 12.3.3-4
13	Invertibility	Chapter 6.7
14	Midterm	Chapter 7.1-7.3
15	Eigenvalues and eigenvectors	L12,13; 12.4
	Discussion: Linear maps	Chapter 7.4
16	Existence of eigenvalues	Chapter 7.5
17	Upper triangular matrix representation	Chapter 7.6
18	Diagonalization (2x2) and applications	L15-18; 12.5
	Discussion: Eigenvalues and eigenvectors, special operations on matrices	Chapter 8.1-8.5
19	Permutations and the determinant	Chapter 8.6-8.7
20	Properties of the determinant	Chapter 9.1-9.2
21	Inner product spaces	L19-21
	Discussion: Calculation of the determinant, inner product spaces	Chapter 9.3
22	Cauchy-Schwarz, triangle inequality, Pythagoras	Chapter 9.4-9.5
23	Orthonormal bases, Gram-Schmidt procedure	Chapter 9.6
24	Orthogonal projections, minimization problems	L22-24
	Discussion: Gram-Schmidt procedure and orthogonal projections	Chapter 10
25	Change of bases	Chapter 11.1-11.2
26	Self-adjoint and normal operators	Lhapter 11.3
27	Spectral theorem for normal maps (complex)	Chapter 11.4
	Discussion: Change of basis, diagonalization	Chapter 11.6-11.7
28	Diagonalization	
29	Positive operators, polar and singular value decompositions	

Lecture notes Linear Algeba as an Introduction to Abstract Mathematics by Isaiah Lankham, Bruno Nachtergaele, and Anne Schilling are available on the class website at
http://www.math.ucdavis.edu/~anne/FQ2007/mat67.html

