Homework Set Three: Linear Span and Bases

Directions: Submit your solutions to all homework problems separately at the beginning of lecture on Friday, October 16, 2009.

Calculational Exercises

1. Consider the real vector space $V=\mathbb{R}^{4}$. For each of the following five statements, provide either a proof or a counterexample.
(a) $\operatorname{dim} V=4$.
(b) $\operatorname{span}((1,1,0,0),(0,1,1,0),(0,0,1,1))=V$.
(c) The list $((1,-1,0,0),(0,1,-1,0),(0,0,1,-1),(-1,0,0,1))$ is linearly independent.
(d) Every list of four vectors $v_{1}, \ldots, v_{4} \in V$, such that $\operatorname{span}\left(v_{1}, \ldots, v_{4}\right)=V$, is linearly independent.
(e) Let v_{1} and v_{2} be two linearly independent vectors in V. Then, there exist vectors $u, w \in V$, such that $\left(v_{1}, v_{2}, u, w\right)$ is a basis for V.
2. Consider the complex vector space $V=\mathbb{C}^{3}$ and the list $\left(v_{1}, v_{2}, v_{3}\right)$ of vectors in V, where

$$
v_{1}=(i, 0,0), \quad v_{2}=(i, 1,0), \quad v_{3}=(i, i,-1) .
$$

(a) Prove that $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)=V$.
(b) Prove or disprove: $\left(v_{1}, v_{2}, v_{3}\right)$ is a basis for V.

Proof-Writing Exercises

1. Let V be a vector space over \mathbb{F}, and suppose that $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a linearly independent list of vectors in V. Given any $w \in V$ such that

$$
\left(v_{1}+w, v_{2}+w, \ldots, v_{n}+w\right)
$$

is a linearly dependent list of vectors in V, prove that $w \in \operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
2. Let $\mathbb{F}_{m}[z]$ denote the vector space of all polynomials with degree less than or equal to $m \in \mathbb{Z}_{+}$and having coefficient over \mathbb{F}, and suppose that $p_{0}, p_{1}, \ldots, p_{m} \in \mathbb{F}_{m}[z]$ satisfy $p_{j}(2)=0$. Prove that $\left(p_{0}, p_{1}, \ldots, p_{m}\right)$ is a linearly dependent list of vectors in $\mathbb{F}_{m}[z]$.
3. Let V be a finite-dimensional vector space over \mathbb{F}, and suppose that U is a subspace of V for which $\operatorname{dim}(U)=\operatorname{dim}(V)$. Prove that $U=V$.

