Homework Set Four: Matrices and Linear Maps

Directions: Please submit your solutions to the Calculational Exercises and the Proof-Writing Exercises at the **beginning** of lecture on **Friday**, **October 23**, **2009**.

Calculational Exercises

Submit solutions to Exercises 1, 2(i, m, r), 3(a), and 4(a).

1. Suppose that A, B, C, D, and E are matrices over \mathbb{F} having the following sizes:

A is 4×5 , B is 4×5 , C is 5×2 , D is 4×2 , E is 5×4 .

Determine whether the following matrix expressions are defined, and, for those that are defined, determine the size of the resulting matrix.

(a) BA (b) AC + D (c) AE + B (d) AB + B (e) E(A + B) (f) E(AC)

2. Suppose that A, B, C, D, and E are the following matrices:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix},$$
$$D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, \text{ and } E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}.$$

Determine whether the following matrix expressions are defined, and, for those that are defined, compute the resulting matrix.

3. In each of the following, find matrices A, x, and b such that the given system of linear equations can be expressed as the single matrix equation Ax = b.

4. In each of the following, express the matrix equation as a system of linear equations.

$$(a) \begin{bmatrix} 3 & -1 & 2 \\ 4 & 3 & 7 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 3 & -2 & 0 & 1 \\ 5 & 0 & 2 & -2 \\ 3 & 1 & 4 & 7 \\ -2 & 5 & 1 & 6 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Proof-Writing Exercises

- 1. Let U, V, and W be vector spaces over \mathbb{F} , and suppose that the linear maps $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$ are both injective. Prove that the composition map $T \circ S$ is injective.
- 2. Let V and W be vector spaces over \mathbb{F} , and suppose that $T \in \mathcal{L}(V, W)$ is surjective. Given a spanning list (v_1, \ldots, v_n) for V, prove that $\operatorname{span}(T(v_1), \ldots, T(v_n)) = W$.