Homework Set Seven: Permutations and more on Eigenvalues

Directions: Submit your Homework at the beginning of lecture on Friday, November 13, 2009.

Calculational Exercises

1. Let $T \in \mathcal{L}(\mathbb{R}^2)$ be defined by
 \[
 T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x + y \end{pmatrix}, \quad \text{for all } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.
 \]

 Define two real numbers λ_+ and λ_- as follows:
 \[
 \lambda_+ = \frac{1 + \sqrt{5}}{2}, \quad \lambda_- = \frac{1 - \sqrt{5}}{2}.
 \]

 (a) Find the matrix of T with respect to the canonical basis for \mathbb{R}^2 (both as the domain and the codomain of T; call this matrix A).

 (b) Verify that λ_+ and λ_- are eigenvalues of T by showing that v_+ and v_- are eigenvectors, where

 \[
 v_+ = \begin{pmatrix} 1 \\ \lambda_+ \end{pmatrix}, \quad v_- = \begin{pmatrix} 1 \\ \lambda_- \end{pmatrix}.
 \]

 (c) Show that (v_+, v_-) is a basis of \mathbb{R}^2.

 (d) Find the matrix of T with respect to the basis (v_+, v_-) for \mathbb{R}^2 (both as the domain and the codomain of T; call this matrix B).

2. (a) For each permutation $\pi \in S_3$, compute the number of inversions in π, and classify π as being either an even or an odd permutation.

 (b) Use your result from Part (a) to construct a formula for the determinant of a 3×3 matrix.

3. Let $A \in \mathbb{C}^{3 \times 3}$ be given by

 \[
 A = \begin{bmatrix}
 1 & 0 & i \\
 0 & 1 & 0 \\
 -i & 0 & -1
 \end{bmatrix}.
 \]

 (a) Calculate $\text{det}(A)$.

 (b) Find $\text{det}(A^4)$.
Proof-Writing Exercises

1. (a) Let \(a, b, c, d \in \mathbb{F}\) and consider the system of equations given by

\[
ax_1 + bx_2 = 0 \quad (1) \\

\]

\[
Cx_1 + dx_2 = 0. \quad (2)
\]

Note that \(x_1 = x_2 = 0\) is a solution for any choice of \(a, b, c,\) and \(d\). Prove that this system of equations has a non-trivial solution if and only if \(ad - bc = 0\).

(b) Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{F}^{2 \times 2}\), and recall that we can define a linear operator \(T \in \mathcal{L}(\mathbb{F}^2)\) on \(\mathbb{F}^2\) by setting \(T(v) = Av\) for each \(v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{F}^2\).

Show that the eigenvalues for \(T\) are exactly the \(\lambda \in \mathbb{F}\) for which \(p(\lambda) = 0\), where \(p(z) = (a - z)(d - z) - bc\).

Hint: Write the eigenvalue equation \(Av = \lambda v\) as \((A - \lambda I)v = 0\) and use the first part.

2. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\), and let \(S, T \in \mathcal{L}(V)\) be linear operators on \(V\). Suppose that \(T\) has \(\dim(V)\) distinct eigenvalues and that, given any eigenvector \(v \in V\) for \(T\) associated to some eigenvalue \(\lambda \in \mathbb{F}\), \(v\) is also an eigenvector for \(S\) associated to some (possibly distinct) eigenvalue \(\mu \in \mathbb{F}\). Prove that \(T \circ S = S \circ T\).