Homework Set Seven: Permutations and more on Eigenvalues

Directions: Submit your Homework at the beginning of lecture on Friday, November 13, 2009.

Calculational Exercises

1. Let $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ be defined by

$$
T\binom{x}{y}=\binom{y}{x+y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2} .
$$

Define two real numbers λ_{+}and λ_{-}as follows:

$$
\lambda_{+}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{-}=\frac{1-\sqrt{5}}{2} .
$$

(a) Find the matrix of T with respect to the canonical basis for \mathbb{R}^{2} (both as the domain and the codomain of T; call this matrix A).
(b) Verify that λ_{+}and λ_{-}are eigenvalues of T by showing that v_{+}and v_{-}are eigenvectors, where

$$
v_{+}=\binom{1}{\lambda_{+}}, \quad v_{-}=\binom{1}{\lambda_{-}} .
$$

(c) Show that $\left(v_{+}, v_{-}\right)$is a basis of \mathbb{R}^{2}.
(d) Find the matrix of T with respect to the basis $\left(v_{+}, v_{-}\right)$for \mathbb{R}^{2} (both as the domain and the codomain of T; call this matrix B).
2. (a) For each permutation $\pi \in \mathcal{S}_{3}$, compute the number of inversions in π, and classify π as being either an even or an odd permutation.
(b) Use your result from Part (a) to construct a formula for the determinant of a 3×3 matrix.
3. Let $A \in \mathbb{C}^{3 \times 3}$ be given by

$$
A=\left[\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & -1
\end{array}\right]
$$

(a) Calculate $\operatorname{det}(A)$.
(b) Find $\operatorname{det}\left(A^{4}\right)$.

Proof-Writing Exercises

1. (a) Let $a, b, c, d \in \mathbb{F}$ and consider the system of equations given by

$$
\begin{align*}
& a x_{1}+b x_{2}=0 \tag{1}\\
& c x_{1}+d x_{2}=0 . \tag{2}
\end{align*}
$$

Note that $x_{1}=x_{2}=0$ is a solution for any choice of a, b, c, and d. Prove that this system of equations has a non-trivial solution if and only if $a d-b c=0$.
(b) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{F}^{2 \times 2}$, and recall that we can define a linear operator $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ on \mathbb{F}^{2} by setting $T(v)=A v$ for each $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in \mathbb{F}^{2}$.

Show that the eigenvalues for T are exactly the $\lambda \in \mathbb{F}$ for which $p(\lambda)=0$, where $p(z)=(a-z)(d-z)-b c$.

Hint: Write the eigenvalue equation $A v=\lambda v$ as $(A-\lambda I) v=0$ and use the first part.
2. Let V be a finite-dimensional vector space over \mathbb{F}, and let $S, T \in \mathcal{L}(V)$ be linear operators on V. Suppose that T has $\operatorname{dim}(V)$ distinct eigenvalues and that, given any eigenvector $v \in V$ for T associated to some eigenvalue $\lambda \in \mathbb{F}, v$ is also an eigenvector for S associated to some (possibly distinct) eigenvalue $\mu \in \mathbb{F}$. Prove that $T \circ S=S \circ T$.

