Practice Problems

The Final Exam will consist of 8 questions, one of which is a question where you will need to state definitions or theorems from class, and one of which is a true or false question. (You do not need to know how to do Problem 6(c) as we did not cover that!).

1. Let \(v_1, v_2, v_3 \in \mathbb{R}^3 \) be given by \(v_1 = (1, 2, 1), \ v_2 = (1, -2, 1), \) and \(v_3 = (1, 2, -1). \) Apply the Gram-Schmidt procedure to the basis \((v_1, v_2, v_3) \) of \(\mathbb{R}^3, \) and call the resulting orthonormal basis \((u_1, u_2, u_3). \)

2. Let \(A \in \mathbb{C}^{3 \times 3} \) be given by
\[
A = \begin{bmatrix}
1 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & -1
\end{bmatrix}.
\]

(a) Calculate \(\det(A). \)
(b) Find \(\det(A^4). \)

3. Let \(P \subset \mathbb{R}^3 \) be the plane containing 0 perpendicular to the vector \((1, 1, 1). \) Using the standard norm, calculate the distance of the point \((1, 2, 3) \) to \(P. \)

4. Let \(V = \mathbb{C}^4 \) with its standard inner product. For \(\theta \in \mathbb{R}, \) let
\[
v_\theta = \begin{pmatrix}
1 \\
e^{i\theta} \\
e^{2i\theta} \\
e^{3i\theta}
\end{pmatrix} \in \mathbb{C}^4.
\]

Find the canonical matrix of the orthogonal projection onto the subspace \(\{v_\theta\}^\perp. \)

5. Let \(r \in \mathbb{R} \) and let \(T \in \mathcal{L}(\mathbb{C}^2) \) be the linear map with canonical matrix
\[
T = \begin{pmatrix}
1 & -1 \\
-1 & r
\end{pmatrix}.
\]

(a) Find the eigenvalues of \(T. \)
(b) Find an orthonormal basis of \(\mathbb{C}^2 \) consisting of eigenvectors of \(T. \)
(c) Find a unitary matrix \(U \) such that \(UTU^* \) is diagonal.
6. Let A be the complex matrix given by:

$$A = \begin{bmatrix}
5 & 0 & 0 \\
0 & -1 & -1 + i \\
0 & -1 - i & 0
\end{bmatrix}$$

(a) Find the eigenvalues of A.
(b) Find an orthonormal basis of eigenvectors of A.
(c) Calculate $|A| = \sqrt{A^*A}$.
(d) Calculate e^A.

7. Give an orthonormal basis for $\text{null}(T)$, where $T \in \mathcal{L}(\mathbb{C}^4)$ is the map with canonical matrix

$$
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}.
$$

8. Describe the set of solutions $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ of the system of equations

$$
\begin{align*}
x_1 - x_2 + x_3 &= 0 \\
x_1 + 2x_2 + x_3 &= 0 \\
2x_1 + x_2 + 2x_3 &= 0
\end{align*}
$$

9. Prove or give a counterexample: For any $n \geq 1$ and $A, B \in \mathbb{R}^{n \times n}$, one has

$$\det(A + B) = \det(A) + \det(B).$$

10. Prove or give a counterexample: For any $r \in \mathbb{R}$, $n \geq 1$ and $A \in \mathbb{R}^{n \times n}$, one has

$$\det(rA) = r \det(A).$$

11. Prove or give a counterexample: For any $n \geq 1$ and $A \in \mathbb{C}^{n \times n}$, one has

$$\text{null}(A) = (\text{range}(A))^\perp.$$

12. Prove or give a counterexample: The Gram-Schmidt process applied to an orthonormal list of vectors reproduces that list unchanged.

13. Prove or give a counterexample: Every unitary matrix is invertible.