
LECTURE 3: k-CONJUGATES AND THE PIERI RULE

TRAVIS SCRIMSHAW

1. k-Schur Functions

Recall the map P from (k+1)-cores to k-bounded partitions and its inverse map
c.

Definition 1.1. Let λ be a k-bounded partition, the k-conjugate is λ(k) := P (c(λ)t).

Definition 1.2. Let r ≤ k and s
(k)
∅ = 1. The k-Pieri rule is:

(1.1) hrs
(k)
λ =

∑
µ

s(k)µ

where the sum is over all k-bounded partitions µ such that µ/λ is a horizontal
r-strip and µ(k)/λ(k) is a vertical r-strip.

Example 1.3. Let k = 2, then we have

λ =
c // t // P // = λ(2).

Let Λ(k) = Q[h1, h2, . . . , hk] and Λ(k) = Λ/〈mλ | λ1 > k〉. We note that they are
dual with respect to the Hall inner product 〈hλ,mµ〉 = δλµ.

Definition 1.4. A k-Schur function s
(k)
λ ∈ Λ(k), labeled by k-bounded partitions,

are defined by the k-Pieri rule.

Remark 1.5. Note that this is different than the usual Pieri rule for Schur functions
since µ/λ implies that µt/λt.

Example 1.6. Let k = 3, µ = and λ = . We first note that µ/λ = . Next
we have

c // t // P //

c // t // P //

and so µ(3)/λ(3) is not well-defined since λ(3) 6⊆ µ(3).
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Example 1.7. Consider h1s
(3)

. Thus the possible shapes are , and ,

however the first shape is not 3 bounded, and a simple check will show that the
last two satisfy all conditions. Thus we have

h1s
(3)

= s
(3)

+ s
(3)
.

Remark 1.8. From this point onwards we will have n = k + 1.

2. Affine Symmetric Group And Affine Grassmannian Elements

Definition 2.1. The affine symmetric group is the group with the following pre-
sentation:〈

s0, s1, . . . , sn−1

s2i = 1 for all i
sisj = sj − si 1 < |i− j| < n− 1

sisi+1si = si+1sisi+1 indices considered mod n

〉

Remark 2.2. The symmetric group Sn is a finite group, however S̃n is an infinite
group. Consider the infinite reduced word:

· · · s0sn−1 · · · s1s0sn−1 · · · s1s0
and it we truncate this at finite length k, it is an element of length k in S̃n.

Looking now at S̃n/Sn, the left cosets are called affine Grassmannian elements

and are identified with a minimal length coset representative w ∈ S̃n/Sn
· · · s0 = w.

Such elements are affine Grassmannian if w = 1 or s0 is the only generator such
that `(ws0) < `(w).

Proposition 2.3. There exists a bijection between affine Grassmannian elements

in S̃n of length m and (k + 1)-cores of length m.

To begin, we must define an action of S̃n/Sn on (k−1)-cores. Let µ be a partition
and the content of a cell c = (i, j) is defined at j − i. The reside is the content
modulo n. A cell c is called an addable corner if µ ∪ {c} is a partition and c is
called a removable corner if µ− {c} is a partition.

Example 2.4. Consider the partition (4, 3, 1).

O

X O

X O

X O

The boxes marked with an X are removable corners, and those with an O are
addable.

Define the action of si on a (k + 1)-core κ as the partition where you either:

(1) Add all possible corners of reside i.
(2) Remove all possible corners of reside i.
(3) Do nothing.

We note that these actions are mutually exclusive since if there exists an addable
corner of reside i and a removable corner of reside i, then κ would not be a (k+ 1)-
core (i.e. there exists a (k + 1)-ribbon).
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Proof sketch. We being by having s
(k)
∅ 7→ 1. Then we note that adding corners of

reside i corresponds to multiplying by si and increasing the length of the Grass-
mannian element. In particular, the only thing we can do is multiply by s0 and we
get . Next we have a choice of either sn−1 which yields or s1 which yields .
Then proceed in this fashion. �

3. Pieri Rule

Recall the usual Pieri rule is hrsλ =
∑
µ sµ where we sum over all partitions µ

such that µ/λ is a horizontal r-strip. For example

h2s = s + s + s + s .

Definition 3.1. The hook length of a cell (i, j) ∈ λ, where i is the row index and
j is the column index, is defined as λi + λtj − i− j + 1 where λt is the transpose or
conjugate partition.

Heuristically this is the number of cells above and to the right of cell c = (i, j)
plus 1 (or one can think of also counting c). For example, consider the partition
(4, 2, 1) or , the hook length of (1, 2) is 2 + 1 + 1 = 4.

Definition 3.2. An r-core is a partition λ such that no cell has a hook length of
r.

Example 3.3. The partition is note a 2-core. In fact, it is easy to see the only
2-cores are staircase partitions (n, n− 1, n− 2, . . . , 2, 1).

Example 3.4. The partition (5, 3, 1, 1) is a 3-core.

Example 3.5. The partition (12, 8, 5, 5, 2, 2, 1) is a 5-core.

.

Remark 3.6. We can push the hook to the boundary, and so we get a ribbon
whose size is the hook length. An ribbon is skew-shape which does not contain any
2× 2 shape. Thus a partition is an r-core if there does not exist an r-ribbon which
can be removed.

The size of an r-core λ is the number of cells of λ and denoted by |λ|. The
r-length of an r-core λ is the number of cells with hook length less than r and
denoted by |λ|r. We say a partition λ is k-bounded if λ1 < k.

Proposition 3.7 (Lapointe & Morse). There exists a bijection between (k+1)-cores
of (k + 1)-length m and k-bounded partitions of size m.
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Proof. The bijection is described by removing all cells with hook length greater
than k and sliding the rows to the right to obtain a partition. The inverse map is
starting from the top, slide rows to the right until all cells in the top row have hook
length less than k, then add cells to obtain a partition. �

Example 3.8. Let k = 4, then the partition (12, 8, 5, 5, 2, 2, 1) under the bijection
becomes (4, 3, 3, 3, 2, 2, 1) by removing the shape (8, 5, 2, 2). In terms of Young
diagrams, we have:

↔

by removing

To go back, we have:

→ → →
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