Homework 2 due October 17, 2014 in class

Read: Artin Chapters 2.3, 2.4, 2.5

1. Artin 2.1.1 (pg. 69)

Let S be a set. Prove that the law of composition defined by ab = a for all $a, b \in S$ is associative. For which sets does this law have an identity?

2. Artin 2.2.6 (pg. 70)

Let G be a group, with multiplicative notation. We define an *opposite group* G^0 with law of composition $a \star b$ as follows: The underlying set is the same as G, but the law of composition is the opposite; that is, we define $a \star b = ba$. Prove that this defines a group.

3. Determine the elements of the cyclic group generated by $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ explicitly.

4. Artin 2.4.1 (pg. 70)

Let a, b be elements of a group G. Assume that a has order 7 and that $a^3b = ba^3$. Prove that ab = ba.

5. Artin 2.2.4bcde (pg. 70)

In which of the following cases is H a subgroup of G?

- (b) $G = \mathbb{R}^{\times}$ and $H = \{1, -1\}.$
- (c) $G = \mathbb{Z}^+$ and H is the set of positive integers.
- (d) $G = \mathbb{R}^{\times}$ and H is the set of positive reals.

(e)
$$G = GL_2(\mathbb{R})$$
 and H is the set of all matrices $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ with $a \neq 0$.

6. Artin 2.4.5 (pg. 70)

Prove that every subgroup of a cyclic group is cyclic.

- 7. Artin 2.4.6 (pg. 70)
 - (a) Let G be a cyclic group of order 6. How many of its elements generate G?
 - (b) Answer the same question for cyclic groups of order 5 and 8.
 - (c) Describe the number of elements that generate a cyclic group of arbitrary order n.
- 8. Prove that a group in which every element except the identity has order 2 is abelian.
- 9. Prove that the additive group \mathbb{R}^+ is isomorphic to the multiplicative group P of positive reals.