Problem 1.
Suppose you intercept the public key
\[(e, n) = (972828952658213, 1021916794516973)\]
and the ciphertext 667391567223399. What was the original message?
(*Hint:* you can use Sage and the factor command to first “crack”
the code and then decipher it. If you use the ASCII decoding of the
resulting number you actually get a text.)

Problem 2.
Consider the following variant of the Diffie–Hellman key exchange pro-
tocol:

1. Alice and Bob publicly choose a big prime \(p \) and a number
 \(1 < r < p \) together.
2. Alice secretly chooses an integer \(1 \leq k_A < p - 1 \) and Bob
 secretly chooses an integer \(1 \leq k_B < p - 1 \).
3. Alice tells Bob \(k_A r \pmod{p} \).
4. Bob tells Alice \(k_B r \pmod{p} \).
5. The “secret” key is \(s \equiv k_A k_B r \pmod{p} \) which both Alice and
 Bob can easily compute.

Now do the following:

(a) Suppose you are Alice and you agreed with Bob to pick \(p = 83 \)
 and \(r = 6 \). You secretly picked \(k_A = 42 \) and receive from Bob
 \(k_B r \equiv 79 \pmod{83} \). What would be the secret key \(s \)? Which
 number would you tell Bob?
(b) Everybody including evil Eve knows \(p = 83, r = 6 \), the number
 Alice told Bob \(k_A r \) and the number Bob told Alice \(k_B r \). Eve
 can now solve for \(x \) and \(y \) in \(xr + yp = 1 \) since \(\gcd(r, p) = 1 \).
 What are \(x \) and \(y \)?
(c) Show that Eve can now retrieve \(k_A \). How?

This exercise shows that in the Diffie-Hellman key exchange it is im-
portant to take exponents and not just products!
Problem 3.
This is a real life scenario that happened recently: Professor Dan Bump from Stanford University opened a repository with some files and asked all collaborators to send their public keys. Is it secure to send the public key by e-mail? Explain your answer!

Problem 4.
Show that if n is a positive integer, then
$$\mu(n)\mu(n + 1)\mu(n + 2)\mu(n + 3) = 0,$$
where $\mu(n)$ is the Möbius function.

Problem 5.
Let n be a positive integer. Show that
$$\prod_{d|n} \mu(d) = \begin{cases} -1 & \text{if } n \text{ is a prime} \\ 0 & \text{if } n \text{ has a square factor} \\ 1 & \text{if } n \text{ is square-free and composite}. \end{cases}$$