.. linkall ===================================== Young's lattice and the RSK algorithm ===================================== This section provides some examples on the RSK algorithm explained in Chapter 8 of Stanley's book [Stanley2013]_. We begin by creating the first few levels of Young's lattice `Y`. For we need to define the elements and the order relation for the poset, which is containment of partitions:: sage: level = 6 sage: elements = [b for n in range(level) for b in Partitions(n)] sage: ord = lambda x,y: y.contains(x) sage: Y = Poset((elements,ord), facade=True) sage: H = Y.hasse_diagram() sage: view(H) # optional .. image:: ../media/young_lattice.png :scale: 60 :align: center We can now define the up and down operators on `\QQ Y`. First we do so on partitions:: sage: QQY = CombinatorialFreeModule(QQ,elements) sage: def up_operator_on_partitions(la): ....: covers = Y.upper_covers(la) ....: return sum(QQY(c) for c in covers) sage: def down_operator_on_partitions(la): ....: covers = Y.lower_covers(la) ....: return sum(QQY(c) for c in covers) Here is the result when we apply the operators to the partition `(2,1)`:: sage: la = Partition([2,1]) sage: up_operator_on_partitions(la) B[[2, 1, 1]] + B[[2, 2]] + B[[3, 1]] sage: down_operator_on_partitions(la) B[[1, 1]] + B[[2]] Now we define the up and down operator on `\QQ Y`:: sage: def up_operator(b): ....: return sum(b.coefficient(p)*up_operator_on_partitions(p) for p in b.support()) sage: def down_operator(b): ....: return sum(b.coefficient(p)*down_operator_on_partitions(p) for p in b.support()) We can check the identity `D_{i+1} U_i - U_{i-1} D_i = I_i` explicitly on all partitions of 3 (so that `i=3`):: sage: for p in Partitions(3): ....: b = QQY(p) ....: assert down_operator(up_operator(b)) - up_operator(down_operator(b)) == b ....: We can also check that the coefficient of `\lambda \vdash n` in `U^n(\emptyset)` is equal to the number of standard Young tableaux of shape `\lambda`:: sage: u = QQY(Partition([])) sage: for i in range(4): ....: u = up_operator(u) ....: sage: u B[[1, 1, 1, 1]] + 3*B[[2, 1, 1]] + 2*B[[2, 2]] + 3*B[[3, 1]] + B[[4]] For example, the number of standard Young tableaux of shape `(2,1,1)` is 3:: sage: StandardTableaux([2,1,1]).cardinality() 3 We can test this in general:: sage: for la in u.support(): ....: assert u[la] == StandardTableaux(la).cardinality() ....: Let us now turn to the RSK algorithm. If we want to verify Example 8.12, we can do so as follows:: sage: p = Permutation([4,2,7,3,6,1,5]) sage: p.robinson_schensted() [[[1, 3, 5], [2, 6], [4, 7]], [[1, 3, 5], [2, 4], [6, 7]]] The tableaux can also be displayed as tableaux:: sage: P,Q = p.robinson_schensted() sage: P.pp() 1 3 5 2 6 4 7 sage: Q.pp() 1 3 5 2 4 6 7 The inverse RSK algorithm is also implemented:: sage: RSK_inverse(P,Q, output='word') word: 4273615