MAT 261

University of California

Spring 2025

Homework 2 due April 25

Problem 1. Let

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

be the Pauli matrices.

- (1) Show that the Pauli matrices form a basis over the real numbers of the vector space of 2×2 complex matrices X which are self-adjoint $X = X^*$ and traceless Tr(X) = 0.
- (2) Show that the Pauli matrices form an orthonormal basis under the inner product $\langle X, Y \rangle = \frac{1}{2} \operatorname{Tr}(XY).$

Problem 2. Find the exponential of the following matrices:

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}.$$

Problem 3. Prove that

(1)
$$\exp\begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}.$$

Problem 4. Show that every 2×2 matrix X with trace zero satisfies

$$X^2 = -\det(X)I.$$

Show that

$$\exp X = \cos\left(\sqrt{\det X}\right)I + \frac{\sin\sqrt{\det X}}{\sqrt{\det X}}X.$$

Use this to give an alternative derivation of (1).

Problem 5. Suppose that α is an irrational real number.

- Prove that Γ_α := {e^{2πiαk} : k ∈ Z} is a subgroup of U(1) = S¹.
 Prove that Γ_α contains elements of the form e^{2πiφ} with 0 < φ < 1/N for all N.

Hint: divide S^1 into N equal arcs and prove that one of them contains at least two elements of Γ_{α} .

(3) Use part (b) to prove that Γ_{α} is dense in U(1) (and hence is **not** a matrix Lie group).

Problem 6. Suppose that α is an irrational real number. Use Problem 5 to prove that the one-parameter subgroup

$$\left\{ \exp \begin{pmatrix} 2\pi it & 0\\ 0 & 2\pi i\alpha t \end{pmatrix} : t \in \mathbb{R} \right\}$$

is dense in $U(1) \times U(1)$ (and hence is **not** a matrix Lie group).