MAT 261

Spring 2025

Homework 3 due May 9

Problem 1. The Lie algebra \mathfrak{sl}_2 consists of traceless 2×2 matrices (over \mathbb{R} or over \mathbb{C}) and has basis

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Compute the commutators [H, E], [H, F] and [E, F].

Problem 2. The Lie algebra \mathfrak{so}_3 consists of real skew-symmetric 3×3 matrices. Find the basis in \mathfrak{so}_3 and compute all commutators in this basis.

Problem 3. The Lie algebra \mathfrak{su}_2 consists of complex 2×2 matrices X such that $X^* = -X$ and $\operatorname{Tr}(X) = 0$. Find the basis in \mathfrak{su}_2 over \mathbb{R} and compute all commutators in this basis.

Problem 4. Use Problems 1-3 to prove the following:

- (1) The Lie algebras \mathfrak{so}_3 and \mathfrak{su}_2 are isomorphic.
- (2) The complexified Lie algebras so₃ ⊗ C, su₂ ⊗ C and sl₂(ℝ) ⊗ C = sl₂(C) are all isomorphic.

Problem 5. Show that U(n) and $SU(n) \times U(1)$ are not isomorphic as groups.

Hint: Compute the centers Z(U(n)) and $Z(SU(n) \times U(1))$.

Problem 6. Let X and Y be $n \times n$ matrices. Show by induction that

$$(\mathrm{ad}_X)^m(Y) = \sum_{k=0}^m \binom{m}{k} X^k Y(-X)^{m-k},$$

where

$$(\mathrm{ad}_X)^m(Y) := \underbrace{[X, \dots [X, [X, Y]] \dots]}_m.$$

Now show by direct computation that

$$e^{\operatorname{ad}_X}(Y) = \operatorname{Ad}_{e^X}(Y) := e^X Y e^{-X}$$

Assume that it is legal to multiply power series term by term.