MAT 261

Homework 4 due May 23

Problem 1. Recall that the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ has the basis E, F, H with relations

[H, E] = 2E, [H, F] = -2F, [E, F] = H.

Let $\lambda \in \mathbb{C}$. The Verma module $\Delta(\lambda)$ is an infinite-dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$ with basis

 $v_0 = v, \quad v_1 = Fv, \quad v_2 = F^2 v, \quad v_3 = F^3 v, \dots$

such that Ev = 0 and $Hv = \lambda v$. In particular, $Fv_k = v_{k+1}$.

- (1) Find Ev_k and Hv_k for all $k \ge 0$.
- (2) Suppose that λ is not a nonnegative integer. Prove that $\Delta(\lambda)$ is irreducible.
- (3) Suppose that $\lambda = m$ is a nonnegative integer. Prove that $\Delta(m)$ has a unique proper submodule R_m , and the quotient $L(m) = \Delta(m)/R_m$ is finite-dimensional. Find the dimension of L(m).
- (4) Prove that L(0) is trivial and L(1) is isomorphic to the vector representation C².
- (5) Prove that L(2) is isomorphic to the adjoint representation of $\mathfrak{sl}_2(\mathbb{C})$.
- (6) Suppose that $V = \bigoplus_{m} \tilde{L}(m)^{\oplus k_m}$. Let a_i denote the dimension of the *H*-eigenspace in *V* with eigenvalue *i*. Prove that $a_i = a_{-i}$, $a_i \ge a_{i+2}$ for $i \ge 0$ and $a_i \ge a_{i-2}$ for $i \le 0$.

In the next problems, L(m) is the irreducible representation of $\mathfrak{sl}_2(\mathbb{C})$ of dimension m + 1.

Problem 2. Use characters to prove $L(1) \otimes L(n) \cong L(n+1) \oplus L(n-1)$.

Problem 3. Decompose $L(a) \otimes L(b)$ into irreducible representations for all $a, b \in \mathbb{Z}_{\geq 0}$.

Problem 4. Decompose $L(1) \otimes L(1) \otimes L(1)$ into irreducible representations.

Problem 5. Prove that for all *n* the tensor product $\underbrace{L(1) \otimes \cdots \otimes L(1)}_{n}$ con-

tains a unique copy of L(n) and all other irreducible summands are of the form L(j) with j < n.