Homework 9: last one!!! due March 13, 2002 in class

- (1) Artin 8.1.1(a) (pg. 300)
- (2) Artin 8.1.5 (pg. 300)
- (3) Artin 8.1.11 (pg. 301)
- (4) Artin 8.2.1 (pg. 301)
- (5) Artin 8.2.5 (pg. 301)
- (6) Let $a = x_1 + ix_2$ and $b = x_3 + ix_4$ be two complex numbers. Show that $a\bar{a} + b\bar{b} = 1$ if and only if $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$. Conclude that there is a bijective correspondence between SU_2 and the 3-sphere S^3 .
- (7) Let $Q \in U_2$ and $\delta = \det Q$. Show that if ϵ is a square root of δ , then $\epsilon \bar{\epsilon} = 1$, and $\det(\bar{\epsilon}Q) = 1$.
- (8) Suppose that $A, A' \in SU_2$ are trace 0 matrices corresponding to the points $y = (0, y_2, y_3, y_4)$ and $y' = (0, y'_2, y'_3, y'_4)$ respectively. Show that if we denote the usual dot product of y and y' in matrix notation by $\langle A, A' \rangle$, then $\langle A, A' \rangle = -\frac{1}{2} \operatorname{tr}(AA')$.
- (9) Let $P = \begin{pmatrix} \frac{i}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{-1+i}{\sqrt{3}} & \frac{-i}{\sqrt{3}} \end{pmatrix} \in SU_2$. Explicitly compute the matrix $\varphi(P)$ where $\varphi: SU_2 \to SO_3$ is the orthogonal representation.
- (10) Prove the following: The set $V = \{A \in M_2(\mathbb{C}) \mid A^* = -A, \operatorname{tr} A = 0\}$ is a vector space over \mathbb{R} under the usual matrix addition and

$$\mathcal{B} = \left\{ \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\}$$

is a basis for V.