Homework 8
due Wednesday March 5 in class

1. Biggs 20.1 # 3 page 443
2. Biggs 20.1 # 4 page 443
3. Biggs 20.2 # 1 page 447
4. Biggs 20.2 # 4 page 448

5. In the RSA encryption system choose $n = 65$. Find the decryption key d for $e = 5$ and for $e = 7$. For $n = 33$ and $e = 3$ encrypt the message $M = 18$.

6. (a) Suppose you are handed the cheap rubik box in the following configuration:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

front face back face

Can you bring it back to the initial configuration by a finite sequence of simple moves?

(b) Now suppose that rotating the two central rectangles by 180^0 are also allowed moves. Can you reach the initial configuration in this case?

[Hint: Use Maple for this problem!!]