Homework Set 5: Exercises on Matrices and Linear Maps

Directions: Please work on all problems! Hand in solutions to the Calculational Problems 1, 2(i,m,r), 5(a), 6(a) and the Proof-Writing Problems 11 and 13 at the beginning of lecture on February 9, 2007.
As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C}.

1. Suppose that A, B, C, D, and E are matrices over \mathbb{F} having the following sizes:

$$
A \text { is } 4 \times 5, \quad B \text { is } 4 \times 5, \quad C \text { is } 5 \times 2, \quad D \text { is } 4 \times 2, \quad E \text { is } 5 \times 4 .
$$

Determine whether the following matrix expressions are defined, and, for those that are defined, determine the size of the resulting matrix.
(a) $B A$
(b) $A C+D$
(c) $A E+B$
(d) $A B+B$
(e) $E(A+B)$
(f) $E(A C)$
2. Suppose that A, B, C, D, and E are the following matrices:

$$
A=\left[\begin{array}{rr}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{rr}
4 & -1 \\
0 & 2
\end{array}\right], C=\left[\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right], D=\left[\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 0 & 1 \\
3 & 2 & 4
\end{array}\right], E=\left[\begin{array}{rrr}
6 & 1 & 3 \\
-1 & 1 & 2 \\
4 & 1 & 3
\end{array}\right] .
$$

Determine whether the following matrix expressions are defined, and, for those that are defined, compute the resulting matrix.
(a) $D+E$
(b) $D-E$
(c) $5 A$
(d) $-7 C$
(e) $2 B-C$
(f) $2 E-2 D$
(g) $-3(D+2 E)$
(h) $A-A$
(i) $A B$
(j) $B A$
(k) $(3 E) D$
(l) $(A B) C$
(m) $A(B C)$
(n) $(4 B) C+2 B$
(o) $D-3 E$
(p) $C A+2 E$
(q) $4 E-D$
(r) $D D$
3. Suppose that A, B, and C are the following matrices and that $a=4$ and $b=-7$.

$$
A=\left[\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 0 & 1 \\
3 & 2 & 4
\end{array}\right], B=\left[\begin{array}{rrr}
6 & 1 & 3 \\
-1 & 1 & 2 \\
4 & 1 & 3
\end{array}\right], \text { and } C=\left[\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 0 & 1 \\
3 & 2 & 4
\end{array}\right]
$$

Verify computationally that
(a) $A+(B+C)=(A+B)+C$
(b) $(A B) C=A(B C)$
(c) $(a+b) C=a C+b C$
(d) $a(B-C)=a B-a C$
(e) $a(B C)=(a B) C=B(a C)$
(f) $A(B-C)=A B-A C$
(g) $(B+C) A=B A+C A$
(h) $a(b C)=(a b) C$
(i) $B-C=-C+B$
4. Suppose that A is the matrix

$$
A=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]
$$

Compute $p(A)$ where $p(x)$ is given by
(a) $p(x)=x-2$
(b) $p(x)=2 x^{2}-x+1$
(c) $p(x)=x^{3}-2 x+4$
(d) $p(x)=x^{2}-4 x+1$
5. In each of the following, find matrices A, x, and b such that the given system of linear equations can be expressed as the single matrix equation $A x=b$.

$$
\text { (a) }\left\{\begin{array} { r r }
{ 2 x _ { 1 } - 3 x _ { 2 } + 5 x _ { 3 } = } & { 7 } \\
{ 9 x _ { 1 } - x _ { 2 } + x _ { 3 } } & { = - 1 } \\
{ x _ { 1 } + 5 x _ { 2 } + 4 x _ { 3 } } & { = 0 }
\end{array} \quad \text { (b) } \left\{\begin{array}{rl}
4 x_{1} & -3 x_{3}+x_{4}=1 \\
5 x_{1}+x_{2} & 1 \\
2 x_{1}-5 x_{2}+9 x_{3}-x_{4}= & 0 \\
3 x_{2}-x_{3}+7 x_{4}= & 2
\end{array}\right.\right.
$$

6. In each of the following, express the matrix equation as a system of linear equations.
(a) $\left[\begin{array}{rrr}3 & -1 & 2 \\ 4 & 3 & 7 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}2 \\ -1 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{rrrr}3 & -2 & 0 & 1 \\ 5 & 0 & 2 & -2 \\ 3 & 1 & 4 & 7 \\ -2 & 5 & 1 & 6\end{array}\right]\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
7. Let U, V, and W be finite-dimensional vector spaces over \mathbb{F} with $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$. Prove that

$$
\operatorname{dim}(\operatorname{null}(T \circ S)) \leq \operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{null}(S))
$$

8. Let V be a finite-dimensional vector space over \mathbb{F} with $S, T \in \mathcal{L}(V, V)$. Prove that $T \circ S$ is invertible if and only if both S and T are invertible.
9. Let V be a finite-dimensional vector space over \mathbb{F} with $S, T \in \mathcal{L}(V, V)$, and denote by I the identity map on V. Prove that $T \circ S=I$ if and only if $S \circ T=I$.
10. Let $n \in \mathbb{Z}_{+}$be a positive integer and $a_{i, j} \in \mathbb{F}$ be scalars for $i, j=1, \ldots, n$. Prove that the following two statements are equivalent:
(a) The trivial solution $x_{1}=\cdots=x_{n}=0$ is the only solution to the homogeneous system of equations

$$
\begin{gathered}
\sum_{k=1}^{n} a_{1, k} x_{k}=0 \\
\vdots \\
\sum_{k=1}^{n} a_{n, k} x_{k}=0 .
\end{gathered}
$$

(b) For every choice of scalars $c_{1}, \ldots, c_{n} \in \mathbb{F}$, there is a solution to the system of equations

$$
\begin{gathered}
\sum_{k=1}^{n} a_{1, k} x_{k}=c_{1} \\
\vdots \\
\sum_{k=1}^{n} a_{n, k} x_{k}=c_{n} .
\end{gathered}
$$

11. Let V be a finite-dimensional vector space over \mathbb{F} with $T \in \mathcal{L}(V, V)$, and let U_{1}, \ldots, U_{m} be subspaces of V that are invariant under T. Prove that $U_{1}+\cdots+U_{m}$ must then also be an invariant subspace of V under T.
12. Let V be a finite-dimensional vector space over \mathbb{F} with $T \in \mathcal{L}(V, V)$, and suppose that U_{1} and U_{2} are subspaces of V that are invariant under T. Prove that $U_{1} \cap U_{2}$ is also an invariant subspace of V under T.
13. Let $T \in \mathcal{L}\left(\mathbb{F}^{2}, \mathbb{F}^{2}\right)$ be defined by

$$
T(u, v)=(v, u)
$$

for every $u, v \in \mathbb{F}$. Compute the eigenvalues and associated eigenvectors for T.
14. Let $T \in \mathcal{L}\left(\mathbb{F}^{3}, \mathbb{F}^{3}\right)$ be defined by

$$
T(u, v, w)=(2 v, 0,5 w)
$$

for every $u, v, w \in \mathbb{F}$. Compute the eigenvalues and associated eigenvectors for T.
15. Let $n \in \mathbb{Z}_{+}$be a positive integer and $T \in \mathcal{L}\left(\mathbb{F}^{n}, \mathbb{F}^{n}\right)$ be defined by

$$
T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\cdots+x_{n}, \ldots, x_{1}+\cdots+x_{n}\right)
$$

for every $x_{1}, \ldots, x_{n} \in \mathbb{F}$. Compute the eigenvalues and associated eigenvectors for T.
16. Let V be a finite-dimensional vector space over \mathbb{F} with $T \in \mathcal{L}(V, V)$ invertible and $\lambda \in \mathbb{F} \backslash\{0\}$. Prove that λ is an eigenvalue for T if and only if λ^{-1} is an eigenvalue for T^{-1}.
17. Let V be a finite-dimensional vector space over \mathbb{F}, and suppose that $T \in \mathcal{L}(V, V)$ has the property that every $v \in V$ is an eigenvector for T. Prove that T must then be a scalar multiple of the identity function on V.

