Homework Set 6: Exercises on Eigenvalues

Directions: Please work on all exercises and hand in your solutions to Problems 6 and 7 at the **beginning** of lecture on February 16, 2006. (Because of the midterm there is only one set of homeworks this week!)

As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C} , and $\mathbb{F}[z]$ denotes the set of polynomials with coefficients over \mathbb{F} .

1. Let V be a finite-dimensional vector space over \mathbb{F} , and let $S, T \in \mathcal{L}(V)$ be linear operators on V with S invertible. Given any polynomial $p(z) \in \mathbb{F}[z]$, prove that

$$p(S \circ T \circ S^{-1}) = S \circ p(T) \circ S^{-1}.$$

- 2. Let V be a finite-dimensional vector space over \mathbb{C} , $T \in \mathcal{L}(V)$ be a linear operator on V, and $p(z) \in \mathbb{C}[z]$ be a polynomial. Prove that $\lambda \in \mathbb{C}$ is an eigenvalue of the linear operator $p(T) \in \mathcal{L}(V)$ if and only if T has an eigenvalue $\mu \in \mathbb{C}$ such that $p(\mu) = \lambda$.
- 3. Let V be a finite-dimensional vector space over \mathbb{C} with $T \in \mathcal{L}(V)$ a linear operator on V. Prove that, for each $k = 1, \ldots, \dim(V)$, there is an invariant subspace U_k of V under T such that $\dim(U_k) = k$.
- 4. Prove or give a counterexample to the following claim:

Claim. Let V be a finite-dimensional vector space over \mathbb{F} , and let $T \in \mathcal{L}(V)$ be a linear operator on V. If the matrix for T with respect to some basis on V has all zeros on the diagonal, then T is not invertible.

5. Prove or give a counterexample to the following claim:

Claim. Let V be a finite-dimensional vector space over \mathbb{F} , and let $T \in \mathcal{L}(V)$ be a linear operator on V. If the matrix for T with respect to some basis on V has all non-zero elements on the diagonal, then T is invertible.

- 6. Let V be a finite-dimensional vector space over \mathbb{F} , and let $S, T \in \mathcal{L}(V)$ be linear operators on V. Suppose that T has dim(V) distinct eigenvalues and that, given any eigenvector v for T associated to some eigenvalue λ , v is also an eigenvector for S associated to some (possibly distinct) eigenvalue μ . Prove that $T \circ S = S \circ T$.
- 7. Let V be a finite-dimensional vector space over \mathbb{F} , and suppose that the linear operator $P \in \mathcal{L}(V)$ has the property that $P^2 = P$. Prove that $V = \operatorname{null}(P) \oplus \operatorname{range}(P)$.