Homework Set 6: Exercises on Eigenvalues

Directions: Please work on all exercises and hand in your solutions to Problems 6 and 7 at the beginning of lecture on February 16, 2006. (Because of the midterm there is only one set of homeworks this week!)
As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C}, and $\mathbb{F}[z]$ denotes the set of polynomials with coefficients over \mathbb{F}.

1. Let V be a finite-dimensional vector space over \mathbb{F}, and let $S, T \in \mathcal{L}(V)$ be linear operators on V with S invertible. Given any polynomial $p(z) \in \mathbb{F}[z]$, prove that

$$
p\left(S \circ T \circ S^{-1}\right)=S \circ p(T) \circ S^{-1}
$$

2. Let V be a finite-dimensional vector space over $\mathbb{C}, T \in \mathcal{L}(V)$ be a linear operator on V, and $p(z) \in \mathbb{C}[z]$ be a polynomial. Prove that $\lambda \in \mathbb{C}$ is an eigenvalue of the linear operator $p(T) \in \mathcal{L}(V)$ if and only if T has an eigenvalue $\mu \in \mathbb{C}$ such that $p(\mu)=\lambda$.
3. Let V be a finite-dimensional vector space over \mathbb{C} with $T \in \mathcal{L}(V)$ a linear operator on V. Prove that, for each $k=1, \ldots, \operatorname{dim}(V)$, there is an invariant subspace U_{k} of V under T such that $\operatorname{dim}\left(U_{k}\right)=k$.
4. Prove or give a counterexample to the following claim:

Claim. Let V be a finite-dimensional vector space over \mathbb{F}, and let $T \in \mathcal{L}(V)$ be a linear operator on V. If the matrix for T with respect to some basis on V has all zeros on the diagonal, then T is not invertible.
5. Prove or give a counterexample to the following claim:

Claim. Let V be a finite-dimensional vector space over \mathbb{F}, and let $T \in \mathcal{L}(V)$ be a linear operator on V. If the matrix for T with respect to some basis on V has all non-zero elements on the diagonal, then T is invertible.
6. Let V be a finite-dimensional vector space over \mathbb{F}, and let $S, T \in \mathcal{L}(V)$ be linear operators on V. Suppose that T has $\operatorname{dim}(V)$ distinct eigenvalues and that, given any eigenvector v for T associated to some eigenvalue λ, v is also an eigenvector for S associated to some (possibly distinct) eigenvalue μ. Prove that $T \circ S=S \circ T$.
7. Let V be a finite-dimensional vector space over \mathbb{F}, and suppose that the linear operator $P \in \mathcal{L}(V)$ has the property that $P^{2}=P$. Prove that $V=\operatorname{null}(P) \oplus \operatorname{range}(P)$.

