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1 Definition of Complex Numbers

Let R denote the set of real numbers. We will denote the set of complex numbers by C. Here
is the definition.

Definition 1.1. The set of complex numbers C is defined as

C = {(x, y) | x, y ∈ R}

For any complex number z = (x, y), we call Re(z) = x the real part of z and Im(z) = y the
imaginary part of z.

In other words, we are defining a new collection of numbers z by taking every possible
ordered pair (x, y) of real numbers x, y ∈ R, and x is called the real part of the ordered
pair (x, y) to imply that the set of real numbers R should be identified with the subset
{(x, 0) | x ∈ R} ⊂ C. It is also common to use the term purely imaginary for any complex
number of the form (0, y), where y ∈ R. In particular, the complex number (0, 1) is special,
and it is given the name imaginary unit. It is standard to denote it by the single letter i (or
j if i is being used for something else, such as for electric current in Electrical Engineering).

Note that z = (x, y) = x(1, 0)+y(0, 1) = x1+yi. We usually write z = x+ iy. It is often
significantly easier to perform arithmetic operations on complex numbers when written in
“x + iy” notation, rather than the ordered pair notation of the definition.

2 Operations on Complex Numbers

2.1 Addition and Subtraction of Complex Numbers

Addition of complex numbers is performed component-wise, meaning that the real and imag-
inary parts are simply combined.
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Definition 2.1. Given two complex numbers (x1, y1), (x2, y2) ∈ C, we define their (complex)
sum to be

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Example 2.2. (3, 2) + (17,−4.5) = (3 + 17, 2 − 4.5) = (20,−2.5).

As with the real numbers, subtraction is defined as addition of the opposite number,
a.k.a. the additive inverse of z = (x, y), which is defined as −z = (−x,−y).

Example 2.3. (π,
√

2) − (π/2,
√

19) = (π − π/2,
√

2 −
√

19) = (π/2,
√

2 −
√

19).

The addition of complex numbers shares a few other properties with the addition of real
numbers, including associativity, commutativity, the existence and uniqueness of the additive
identity (or neutral element) denoted by “0”, and the existence and uniqueness of the additive
inverse already mentioned above. We summarize these properties in Theorem 2.4 below.

Theorem 2.4. Let z1, z2, z3 ∈ C be any three complex numbers. Then the following state-
ments are true.

1. (Associativity) (z1 + z2) + z3 = z1 + (z2 + z3).

2. (Commutativity) z1 + z2 = z2 + z1.

3. (Additive Identity) There is a unique complex number denoted 0 such that 0 + z1 = z1.
Moreover, 0 = (0, 0).

4. (Additive Inverses) Given z ∈ C, there is a unique complex number denoted −z such
that z + (−z) = 0. Moreover, if z = (x, y) with x, y ∈ R, then −z = (−x,−y).

The proof of this Theorem is straightforward. Just use the definition of + (when used
to denote the addition of complex numbers) and the familiar properties of the addition
of real numbers. The properties in Theorem 2.4 are collectively called the properties of
a commutative group. Another word for commutative is abelian. So, we say that C is a
commutative group (a.k.. an abelian group) under the operation of addition. Note that +
can be regarded as a function from C × C → C. Such a function is often called a binary
operation.

2.2 Multiplication of Complex Numbers

The definition of multiplication for two complex numbers is at first glance somewhat less
straightforward than that of addition. However, it naturally follows

Definition 2.5. Given two complex numbers (x1, y1), (x2, y2) ∈ C, we define their (complex)
product to be

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).
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According to this definition i2 = −1. In other words, i is a solution of the polynomial
equation z2 + 1 = 0, which does not have solutions in R. This was originally the main
motivation for introducing the complex numbers. Note that the relation i2 = −1 and
assumption that real complex numbers multiply as real numbers do, and that the other
basic properties of real number arithmetic apply to complex numbers, is sufficient to arrive
at the general rule for multiplication of complex numbers

(x1 + y1i)(x2 + y2i) = x1x2 + x1y2i + x2y1i + y1y2i
2

= x1x2 + x1y2i + x2y1i − y1y2

= x1x2 − y1y2 + (x1y2 + x2y1)i

As with addition, the basic properties of complex multiplication are easy to prove enough
using the definition. We summarize these properties in Theorem 2.6 below.

Theorem 2.6. Let z1, z2, z3 ∈ C be any three complex numbers. Then the following state-
ments are true.

1. (Associativity) (z1z2)z3 = z1(z2z3).

2. (Commutativity) z1z2 = z2z1.

3. (Multiplicative Identity) There is a unique complex number denoted 1 such that 1z1 =
z1. Moreover, 1 = (1, 0).

4. (Distributivity of Multiplication over Addition) z1(z2 + z3) = z1z2 + z1z3.

Just as is the case for real numbers, any non-zero complex number z has a unique mul-
tiplicative inverse, which we may denote by z−1 or 1/z.

Theorem 2.6 (continued).

5. (Multiplicative Inverses) Given z ∈ C such that z 6= (0, 0), there is a unique complex
number denoted z−1 such that zz−1 = 1. Moreover, if z = (x, y) with x, y ∈ R, then

z−1 =

(
x

x2 + y2
,

−y

x2 + y2

)

.

Proof. Uniqueness. A complex number w is an inverse of z if zw = 1 (by the commutativity
of complex multiplication this is equivalent to wz = 1). We will first prove that if w and v are
two complex numbers, such that zw = 1 and zv = 1, then we necessarily have w = v. This
means that any z ∈ C can have at most one inverse. To see this, we start from zv = 1. By
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multiplying both sides by w, we obtain wzv = w1. Using the fact that 1 is the multiplicative
unit, the commutativity of the product, and the assumption that w is an inverse, we get
zwv = v = w.

Existence. Now assume z ∈ C with z 6= 0, and write z = x + iy, with x, y ∈ R. Since
z 6= 0, at least one of x or y does not vanish. Hence x2 + y2 > 0. Therefore, we can define

w =

(
x

x2 + y2
,

−y

x2 + y2

)

,

and you can check that zw = 1 by a straightforward computation.

Now, we can define the division of a complex number z1 by a non-zero complex number
z2 as the product of z1 and z−1

2 . Explicitly, for two complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2, we have that their (complex) quotient is

z1

z2
=

x1x2 + y1y2 + (x2y1 − x1y2) i

x2
2 + y2

2

.

Example 2.7. We illustrate the above definition with the following example:

(1, 2)

(3, 4)
=

(
1 · 3 + 2 · 4

32 + 42
,
3 · 2 − 1 · 4

32 + 42

)

=

(
3 + 8

9 + 16
,

6 − 4

9 + 16

)

=

(
11

25
,

2

25

)

.

2.3 Complex Conjugate

Complex conjugation is an operation on complex numbers without analogue in the real
numbers (it acts trivially on real numbers). Nonetheless, it will turn out to be very useful.

Definition 2.8. Given a complex number z = (x, y) ∈ C with x, y ∈ R, we define the
(complex) conjugate of z to be the complex number

z̄ = (x,−y).

The following properties for the complex conjugation are easy to prove.

Theorem 2.9. Given two complex numbers z1, z2 ∈ C,

1. z1 + z2 = z1 + z2.

2. z1z2 = z1 z2.

3. 1/z1 = 1/z1, for all z1 6= 0.

4. z1 = z1 if and only if Im(z1) = 0.
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5. z1 = z1.

6. the real and imaginary parts of z1 can be expressed as

Re(z1) =
1

2
(z1 + z1) and Im(z1) =

1

2i
(z1 − z1).

2.4 The Modulus (a.k.a. Norm, Length, or Magnitude)

In this section, we introduce yet another operation on complex numbers, this time based
upon a generalization of the notion of absolute value of a real number. To motivate the
definition, it is useful to view the set of complex numbers as the two-dimensional Euclidean
plane, i.e., to think of C = R2 being equal as sets. The modulus, or length, of z ∈ C is then
defined as the Euclidean distance between z, as a point in the plane, and the origin (0, 0).
This is the content of the following definition.

Definition 2.10. Given a complex number z = (x, y) ∈ C with x, y ∈ R, the modulus of z
is defined to be

|z| =
√

x2 + y2

In particular, note that, given x ∈ R,

|(x, 0)| =
√

x2 + 0 = |x|

under the convention that the square root function takes on its principal positive value.

Example 2.11. To see geometrically that the modulus of the complex number (3, 4) is

|(3, 4)| =
√

32 + 42 =
√

9 + 16 =
√

25 = 5,

construct the following diagram in the Euclidean plane

0 1 2 3 4 5
0

1

2

3

4

5

x

y

•(3, 4)

and apply the Pythagorean theorem to the resulting right triangle in order to find the
distance from the origin to the point (3, 4).
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The following theorem lists some fundamental properties of the modulus.

Theorem 2.12. Given two complex numbers z1, z2 ∈ C,

1. |z1z2| = |z1| · |z2|.

2. |z1/z2| = |z1|/|z2| assuming that z2 6= 0.

3. |z1| = |z1|.

4. |Re(z1)| ≤ |z1| and |Im(z1)| ≤ |z1|.

5. (Triangle Inequality) |z1 + z2| ≤ |z1| + |z2|.

6. (Another Triangle Inequality) |z1 − z2| ≥ | |z1| − |z2| |.

7. (Formula for Multiplicative Inverse) z1z1 = |z1|2, from which z−1
1 = z1/|z1|2 assuming

z1 6= 0.

2.5 Complex Numbers as Vectors in R2

When complex numbers are viewed as points in the Euclidean plane R2, several of the
operations defined in Section 2 can be directly visualized as if they were operations on
vectors. For the purposes of these notes, we think of vectors as directed line segments
that start at the origin and end at a specified point in the Euclidean plane. These line
segments may also be moved around in space as long as the direction (which we will call the
argument in Section 3.1 below) and the length (a.k.a. the modulus) are preserved. As such,
the distinction between points in the plane and vectors is merely a matter of convention as
long as we at least implicitly think of each vector as having been translated so that it starts
at the origin.

As we saw in Section 2.4 above, the complex modulus can be viewed as the length of
the hypotenuse of a certain right triangle. The sum and difference of two vectors can also
each be represented geometrically as the lengths of specific diagonals within a particular
parallelogram that is formed by copying and translating the two vectors being combined.

Example 2.13. We illustrate the sum (3, 2) + (1, 3) = (4, 5) as the main, dashed diagonal
of the parallelogram in the left-most figure below. The difference (3, 2)− (1, 3) = (2,−1) can
also be viewed as the shorter diagonal of the same parallelogram after is has been translated
in order to begin at the origin. The latter is illustrated in the right-most figure below.
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Vector Sum as Main Diagonal
of Parallelogram

0 1 2 3 4 5
0

1

2

3

4

5

x

y

•
•

•
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(4, 5)

Vector Difference as Minor Diagonal
of Parallelogram

3 Polar Form and Geometric Interpretation for C

As mentioned above, C coincides with the plane R2 when viewed as a set of ordered pairs
of real numbers. Therefore, we can use polar coordinates as an alternate way to uniquely
identify a complex number. This gives rise to the so-called polar form for a complex number,
which turns out to be an often very convenient representation of complex numbers.

3.1 Polar Form for Complex Numbers

The following diagram summarizes the relations between cartesian and polar coordinates in
R

2.

x

y

•z

r

︸ ︷︷ ︸

x = r cos(θ)







y = r sin(θ)

θ

We call the ordered pair (x, y) the rectangular coordinates for the complex number z.
We also call the ordered pair (r, θ) the polar coordinates for the complex number z. The

radius r = |z| is called the modulus of z (as defined in Section 2.4 above), and the angle
θ = Arg(z) is called the argument of z. Since the argument of a complex number describes an
angle that is measured relative to the x-axis, it is important to note that θ is only well-defined
up to adding multiples of 2π. As such, we restrict θ ∈ [0, 2π) and add or subtract multiples
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of 2π as needed (e.g., when multiplying two complex numbers so that their arguments are
added together) in order to keep the argument within this range of values.

It is straightforward to transform polar coordinates into rectangular coordinates using
the equations

x = r cos(θ) and y = r sin(θ).

In order to transform rectangular coordinates into polar coordinates, we first note that
r =

√

x2 + y2 is just the complex modulus. Then θ must be chosen so that it satisfies the
bounds 0 ≤ θ < 2π in addition to the simultaneous equations

x = cos(θ) and y = sin(θ),

where we are assuming that z 6= 0.
Summarizing:

z = x + yi = r cos(θ) + r sin(θ)i = r(cos(θ) + sin(θ)i).

Part of the utility of this expression is that the size r = |z| of z is explicitly part of the very
definition since it is easy to check that | cos(θ) + sin(θ)i| = 1 for any choice of θ ∈ R.

Closely related is the exponential form for complex numbers, which does nothing more
than replace the expression cos(θ) + sin(θ)i with eiθ. The real power of this definition is
that this exponential notation turns out to be completely consistent with the usual usage of
exponential notation for real numbers.

3.2 Geometric Multiplication for Complex Numbers

As alluded to in Section 3.1 above, the general exponential form for a complex number z
is an expression of the form reiθ where r is a non-negative real number and θ ∈ [0, 2π).
The utility of this notation is immediately observed upon multiplying two complex numbers
and applying rules for working with exponents that can be proven to remain true in this
significantly more abstract setting:

Lemma 3.1. Let z1 = r1e
iθ1, z2 = r2e

iθ2 ∈ C. Then

z1z2 = r1r2e
i(θ1+θ2).

Proof. We have

z1z2 = (r1e
iθ1)(r2e

iθ2) = r1r2e
iθ1eiθ2

= r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2

[
(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

]

= r1r2

[
cos(θ1 + θ2) + i sin(θ1 + θ2)

]
= r1r2e

i(θ1+θ2)
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where we have used the usual formulas for sin and cos for the sum of angles.

In particular Lemma 3.1 shows that the modulus |z1z2| of the product is the product
of the moduli r1 and r2 and that the argument Arg(z1z2) of the product is the sum of the
arguments θ1 + θ2.

3.3 Exponentiation and Root Extraction

Another important use for the polar form of a complex number is in exponentiation. The
simplest possible situation here involves the use of a positive integer as a power, in which
case exponentiation is nothing more than repeated multiplication. Given the observations in
Section 3.2 above and using some trigonometric identities, one quickly obtains the following
well-known result.

Theorem 3.2 (de Moivre’s Formula). Let z = r(cos(θ) + sin(θ)i) be a complex number in
polar form and n ∈ Z+ be a positive integer. Then

1. the exponentiation zn = rn(cos(nθ) + sin(nθ)i) and

2. the nth roots of z are given by the n complex numbers

zk = r1/n

[

cos

(
θ

n
+

2πk

n

)

+ sin

(
θ

n
+

2πk

n

)

i

]

where k = 0, 1, 2, . . . , n − 1.

Note in particular that we are not only always guaranteed the existence of an nth root for
any complex number, but that we are also always guaranteed to have exactly n of them.
This level of completeness in root extraction contrasts very sharply with the delicate care
that must be taken when one wishes to extract roots of real numbers without the aid of
complex numbers.

An important special case of de Moivre’s Formula yields an infinite family of well-studied
of numbers called the roots of unity. By unity we just mean the complex number 1 = 1+0i,
and by the nth roots of unity we mean the n numbers

zk = 11/n

[

cos

(
0

n
+

2πk

n

)

+ sin

(
0

n
+

2πk

n

)

i

]

= cos

(
2πk

n

)

+ sin

(
2πk

n

)

i

= e2πi(k/n),

where k = 0, 1, 2, . . . , n−1. These numbers have many interesting properties and important
applications despite how simple they might appear to be.
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3.4 Some Complex Elementary Functions

We conclude these notes by defining three of the basic elementary functions that take com-
plex arguments. In this context, “elementary function” is used as a technical term and
essentially means something like “one of the most common forms of function encountered
when beginning to learn Calculus.” The most basic elementary functions include the fa-
miliar polynomial and algebraic functions, such as the nth root function, in addition to the
somewhat more sophisticated exponential function, the trigonometric functions, and the
logarithmic function. For the purposes of these notes, we will now define the complex ex-
ponential function and two complex trigonometric functions. However, definitions for the
remaining basic elementary functions can be found in any book on Complex Analysis.

The basic groundwork for defining the complex exponential function was already put into
place in Sections 3.1 and 3.2 above. In particular, we have already defined the expression
eiθ to mean the sum cos(θ) + sin(θ)i for any real number θ. Historically, this equivalence is
a special case of the more general Euler’s formula

ex+yi = ex(cos(y) + sin(y)i),

which we here take as our definition of the complex exponential function applied to any
complex number x + yi for x, y ∈ R.

Given this exponential function, one can them define the complex sine function and the
complex cosine function as

sin(z) =
eiz − e−iz

2i
and cos(z) =

eiz + e−iz

2
.

Remarkably, these functions retain many of their familiar properties, which should be taken
as a sign that the definitions — however abstract — have been well thought-out. We sum-
marize a few of these properties as follows.

Theorem 3.3. Given z1, z2 ∈ C,

1. ez1+z2 = ez1ez2 and ez 6= 0 for any choice of z ∈ C.

2. sin2(z1) + cos2(z1) = 1.

3. sin(z1 + z2) = sin(z1) · cos(z2) + cos(z1) · sin(z2).

4. cos(z1 + z2) = cos(z1) · cos(z2) − sin(z1) · sin(z2).


