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The abstract definition of vector spaces only takes into account algebraic properties for
the addition and scalar multiplication of vectors. For vectors in R

n, for example, we also
have geometric intuition which involves the length of vectors or angles between vectors. In
this section we discuss inner product spaces, which are vector spaces with an inner product
defined on them, which allow us to introduce the notion of length (or norm) of vectors and
concepts such as orthogonality.

1 Inner product

In this section V is a finite-dimensional, nonzero vector space over F.

Definition 1. An inner product on V is a map

〈·, ·〉 : V × V → F

(u, v) �→ 〈u, v〉
with the following properties:

1. Linearity in first slot: 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 for all u, v, w ∈ V and 〈au, v〉 =
a〈u, v〉;

2. Positivity: 〈v, v〉 ≥ 0 for all v ∈ V ;

3. Positive definiteness: 〈v, v〉 = 0 if and only if v = 0;

4. Conjugate symmetry: 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

Remark 1. Recall that every real number x ∈ R equals its complex conjugate. Hence for
real vector spaces the condition about conjugate symmetry becomes symmetry.

Definition 2. An inner product space is a vector space over F together with an inner
product 〈·, ·〉.
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Example 1. V = F
n

u = (u1, . . . , un), v = (v1, . . . , vn) ∈ F
n

Then

〈u, v〉 =

n∑
i=1

uivi.

For F = R, this is the usual dot product

u · v = u1v1 + · · ·+ unvn.

For a fixed vector w ∈ V , one may define the map T : V → F as Tv = 〈v, w〉. This map
is linear by condition 1 of Definition 1. This implies in particular that 〈0, w〉 = 0 for every
w ∈ V . By the conjugate symmetry we also have 〈w, 0〉 = 0.

Lemma 2. The inner product is anti-linear in the second slot, that is, 〈u, v + w〉 = 〈u, v〉+
〈u, w〉 for all u, v, w ∈ V and 〈u, av〉 = a〈u, v〉.
Proof. For the additivity note that

〈u, v + w〉 = 〈v + w, u〉 = 〈v, u〉 + 〈w, u〉
= 〈v, u〉+ 〈w, u〉 = 〈u, v〉+ 〈u, w〉.

Similarly,
〈u, av〉 = 〈av, u〉 = a〈v, u〉 = a〈v, u〉 = a〈u, v〉.

Note that the convention in physics is often different. There the second slot is linear,
whereas the first slot is anti-linear.

2 Norms

The norm of a vector is the analogue of the length. It is formally defined as follows.

Definition 3. Let V be a vector space over F. A map

‖ · ‖ : V → R

v �→ ‖v‖
is a norm on V if

1. ‖v‖ = 0 if and only if v = 0;
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2. ‖av‖ = |a|‖v‖ for all a ∈ F and v ∈ V ;

3. Triangle inequality ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V .

Note that in fact ‖v‖ ≥ 0 for all v ∈ V since

0 = ‖v − v‖ ≤ ‖v‖ + ‖ − v‖ = 2‖v‖.

Next we want to show that a norm can in fact be defined from an inner product via

‖v‖ =
√
〈v, v〉 for all v ∈ V .

Properties 1 and 2 follow easily from points 1 and 3 of Definition 1. The triangle inequality
requires proof (which we give in Theorem 5).

Note that for V = R
n the norm is related to what you are used to as the distance or

length of vectors. Namely for v = (x1, . . . , xn) ∈ R
n we have

‖v‖ =
√

x2
1 + · · · + x2

n.

x2

x3

x1

v

3 Orthogonality

Using the inner product, we can now define the notion of orthogonality, prove the Pythagorean
theorem and the Cauchy-Schwarz inequality which will enable us to prove the triangle in-
equality. This will show that ‖v‖ =

√〈v, v〉 indeed defines a norm.
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Definition 4. Two vectors u, v ∈ V are orthogonal (u⊥v in symbols) if and only if 〈u, v〉 =
0.

Note that the zero vector is the only vector that is orthogonal to itself. In fact, the zero
vector is orthogonal to all vectors v ∈ V .

Theorem 3 (Pythagorean Theorem). If u, v ∈ V with u⊥v, then

‖u + v‖2 = ‖u‖2 + ‖v‖2.

Proof. Suppose u, v ∈ V such that u⊥v. Then

‖u + v‖2 = 〈u + v, u + v〉 = ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈v, u〉
= ‖u‖2 + ‖v‖2.

Note that the converse of the Pythagorean Theorem holds for real vector spaces, since in
this case 〈u, v〉+ 〈v, u〉 = 2Re〈u, v〉 = 0.

Given two vectors u, v ∈ V with v �= 0 we can uniquely decompose u as a piece parallel
to v and a piece orthogonal to v. This is also called the orthogonal decomposition. More
precisely

u = u1 + u2

so that u1 = av and u2⊥v. Namely write u2 = u − u1 = u − av. For u2 to be orthogonal to
v we need

0 = 〈u − av, v〉 = 〈u, v〉 − a‖v‖2.

Solving for a yields a = 〈u, v〉/‖v‖2, so that

u =
〈u, v〉
‖v‖2

v +

(
u − 〈u, v〉

‖v‖2
v

)
. (1)

Theorem 4 (Cauchy-Schwarz inequality). For all u, v ∈ V we have

|〈u, v〉| ≤ ‖u‖‖v‖.

Furthermore, equality holds if and only if u and v are linearly dependent, i.e., are scalar
multiples of each other.

Proof. If v = 0, then both sides of the inequality are zero. Hence assume that v �= 0.
Consider the orthogonal decomposition

u =
〈u, v〉
‖v‖2

v + w
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where w⊥v. By the Pythagorean theorem we have

‖u‖2 =

∥∥∥∥〈u, v〉
‖v‖2

v

∥∥∥∥
2

+ ‖w‖2 =
|〈u, v〉|2
‖v‖2

+ ‖w‖2 ≥ |〈u, v〉|2
‖v‖2

.

Multiplying both sides by ‖v‖2 and taking the square root yields the Cauchy-Schwarz in-
equality.

Note that we get equality in the above arguments if and only if w = 0. But by (1) this
means that u and v are linearly dependent.

The Cauchy-Schwarz inequality has many different proofs. Here is another one.

Proof. For given u, v ∈ V consider the norm square of the vector u + reiθv,

0 ≤ ‖u + reiθv‖2 = ‖u‖2 + r2‖v‖2 + 2Re(reiθ〈u, v〉).

Since 〈u, v〉 is a complex number, one can choose θ so that eiθ〈u, v〉 is real. Hence the right
hand side is a parabola ar2 + br + c with real coefficients. It will lie above the real axis,
i.e. ar2 + br + c ≥ 0, if it does not have any real solutions for r. This is the case when the
discriminant satisfies b2 − 4ac ≤ 0. In our case this means

4|〈u, v〉|2 − 4‖u‖2‖v‖2 ≤ 0.

Equality only holds if r can be chosen such that u + reiθv = 0, which means that u and v
are scalar multiples.

We now come to the proof of the triangle inequality which shows that ‖v‖ =
√〈v, v〉

indeed defines a norm.

Theorem 5 (Triangle inequality). For all u, v ∈ V we have

‖u + v‖ ≤ ‖u‖ + ‖v‖.

Proof. By straighforward calculation we obtain

‖u + v‖2 = 〈u + v, u + v〉 = 〈u, u〉 + 〈v, v〉+ 〈u, v〉 + 〈v, u〉
= 〈u, u〉+ 〈v, v〉 + 〈u, v〉 + 〈u, v〉 = ‖u‖2 + ‖v‖2 + 2Re〈u, v〉.

Note that Re〈u, v〉 ≤ |〈u, v〉| so that using the Cauchy-Schwarz inequality we obtain

‖u + v‖2 ≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖ + ‖v‖)2.

Taking the square root of both sides gives the triangle inequality.
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Remark 6. Note that equality holds for the triangle inequality if and only if v = ru or u = rv
for r ≥ 0. Namely, equality in the proof happens only if 〈u, v〉 = ‖u‖‖v‖ which is equivalent
to the above statement.

v

u

u+v

u+v‘
v‘

Theorem 7 (Parallelogram equality). For all u, v ∈ V we have

‖u + v‖2 + ‖u − v‖2 = 2(‖u‖2 + ‖v‖2).

Proof. By direct calculation

‖u + v‖2 + ‖u − v‖2 = 〈u + v, u + v〉 + 〈u − v, u − v〉
= ‖u‖2 + ‖v‖2 + 〈u, v〉 + 〈v, u〉+ ‖u‖2 + ‖v‖2 − 〈u, v〉 − 〈v, u〉
= 2(‖u‖2 + ‖v‖2).

v

u

u+vu−v

h

g
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4 Orthonormal bases

We now define the notion of orthogonal and orthonormal bases of an inner product space.
As we will see later, orthonormal bases have very special properties that simplify many
calculations.

Definition 5. Let V be an inner product space with inner product 〈·, ·〉. A list of nonzero
vectors (e1, . . . , em) of V is called orthogonal if

〈ei, ej〉 = 0 for all 1 ≤ i �= j ≤ m.

The list (e1, . . . , em) is called orthonormal if

〈ei, ej〉 = δi,j for all i, j = 1, . . . , m,

where δij is the Kronecker delta symbol and is 1 if i = j and zero otherwise.

Proposition 8. Every orthogonal list of nonzero vectors in V is linearly independent.

Proof. Let (e1, . . . , em) be an orthogonal list of vectors in V and suppose a1, . . . , am ∈ F are
such that

a1e1 + · · · + amem = 0.

Then
0 = ‖a1e1 + · · ·+ amem‖2 = |a1|2‖e1‖2 + · · ·+ |am|2‖em‖2

Note that ‖ek‖ > 0 for all k = 1, . . . , m since every ek is a nonzero vector. Also |ak|2 ≥ 0.
Hence the only solution to this equation is a1 = · · · = am = 0.

Definition 6. An orthonormal basis of a finite-dimensional inner product space V is an
orthonormal list of vectors that is basis (i.e., in particular spans V ).

Clearly any orthonormal list of length dim V is a basis of V .

Example 2. The canonical basis of F
n is orthonormal.

Example 3. The list (( 1√
2
, 1√

2
), ( 1√

2
,− 1√

2
)) is an orthonormal basis of R

2.

The next theorem shows that the coefficients of a vector v ∈ V in terms of an orthonormal
basis are easy to compute via the inner product.

Theorem 9. Let (e1, . . . , en) be an orthonormal basis of V . Then for all v ∈ V we have

v = 〈v, e1〉e1 + · · · + 〈v, en〉en

and ‖v‖2 =
∑n

k=1 |〈v, ek〉|2.
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Proof. Let v ∈ V . Since (e1, . . . , en) is a basis of V there exist unique scalars a1, . . . , an ∈ F

such that
v = a1e1 + · · ·+ anen.

Taking the inner product on both sides with respect to ek yields 〈v, ek〉 = ak.

5 The Gram-Schmidt orthogonalization procedure

We now come to a very important algorithm, called the Gram-Schmidt orthogonalization
procedure. This algorithm makes it possible to construct for each list of linearly independent
vectors (or a basis) a corresponding orthonormal list (or orthonormal basis).

Theorem 10. If (v1, . . . , vm) is a linearly independent list of vectors in V , then there exists
an orthonormal list (e1, . . . , em) such that

span(v1, . . . , vk) = span(e1, . . . , ek) for all k = 1, . . . , m. (2)

Proof. The proof is constructive, that is, we will actually construct the vectors e1, . . . , em

with the desired properties. Since (v1, . . . , vm) is linearly independent, vk �= 0 for all k =
1, 2, . . . , m. Set e1 = v1

‖v1‖ . This is a vector of norm 1 and satisfies (2) for k = 1. Next set

e2 =
v2 − 〈v2, e1〉e1

‖v2 − 〈v2, e1〉e1‖ .

This is in fact the normalized version of the orthogonal decomposition (1)

w = v2 − 〈v2, e1〉e1

where w⊥v2. Note that ‖e2‖ = 1 and span(e1, e2) = span(v1, v2).
Now suppose e1, . . . , ek−1 have been constructed such that (e1, . . . , ek−1) is an orthonormal

list and span(v1, . . . , vk−1) = span(e1, . . . , ek−1). Then define

ek =
vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1

‖vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1‖ .

Since (v1, . . . , vk) is linearly independent we know that vk �∈ span(v1, . . . , vk−1). Hence also
vk �∈ span(e1, . . . , ek−1). Hence the norm in the definition of ek is not zero and hence ek is
well-defined (we are not dividing by zero). Also, a vector divided by its norm has norm 1.
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Hence ‖ek‖ = 1. Furthermore

〈ek, ei〉 =

〈
vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1

‖vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1‖ , ei

〉

=
〈vk, ei〉 − 〈vk, ei〉

‖vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1‖ = 0

for 1 ≤ i < k. Hence (e1, . . . , ek) is orthonormal.
From the definition of ek we see that vk ∈ span(e1, . . . , ek) so that span(v1, . . . , vk) ⊂

span(e1, . . . , ek). Since both lists (e1, . . . , ek) and (v1, . . . , vk) are linearly independent, they
must span subspaces of the same dimension and therefore are the same subspace. Hence (2)
holds.

Example 4. Take v1 = (1, 1, 0) and v2 = (2, 1, 1) in R
3. The list (v1, v2) is linearly indepen-

dent (check!). Then

e1 =
v1

‖v1‖ =
1√
2
(1, 1, 0).

Next

e2 =
v2 − 〈v2, e1〉e1

‖v2 − 〈v2, e1〉e1‖ .

The inner product is 〈v2, e1〉 = 1√
2
〈(1, 1, 0), (2, 1, 1)〉 = 3√

2
, so that

u2 = v2 − 〈v2, e1〉e1 = (2, 1, 1)− 3

2
(1, 1, 0) =

1

2
(1,−1, 2).

Calculating the norm of u2 we obtain ‖u2‖ =
√

1
4
(1 + 1 + 4) =

√
6

2
. Hence normalizing this

vector we obtain

e2 =
u2

‖u2‖ =
1√
6
(1,−1, 2).

The list (e1, e2) is therefore orthonormal with the same span as (v1, v2).

Corollary 11. Every finite-dimensional inner product space has an orthonormal basis.

Proof. Let (v1, . . . , vn) be a basis for V . This list is linearly independent and spans V . Apply
the Gram-Schmidt procedure to this list to obtain an orthonormal list (e1, . . . , en) which still
spans V . By Proposition 8 this list is linearly independent and hence a basis of V .

Corollary 12. Every orthonormal list of vectors in V can be extended to an orthonormal
basis of V .

Proof. Let (e1, . . . , em) be an orthonormal list of vectors in V . By Proposition 8 this list
is linearly independent and hence can be extended to a basis (e1, . . . , em, v1, . . . , vk) of V
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by the Basis Extension Theorem. Now apply the Gram-Schmidt procedure to obtain a
new orthonormal basis (e1, . . . , em, f1, . . . , fk). The first m vectors do not change since they
already are orthonormal. The list still spans V and is linearly independent by Proposition 8
and therefore forms a basis.

Recall that we proved that for a complex vector space V there is always a basis with
respect to which a given operator T ∈ L(V, V ) is upper-triangular. We would like to extend
this result to require the additional property of orthonormality.

Corollary 13. Let V be an inner product space over F and T ∈ L(V, V ). If T is upper-
triangular with respect to some basis, then T is upper-triangular with respect to some or-
thonormal basis.

Proof. Let (v1, . . . , vn) be a basis of V with respect to which T is upper-triangular. Apply
the Gram-Schmidt procedure to obtain an orthonormal basis (e1, . . . , en). Note that

span(e1, . . . , ek) = span(v1, . . . , vk) for all 1 ≤ k ≤ n.

We proved before that T is upper-triangular with respect to a basis (v1, . . . , vn) if and only
if span(v1, . . . , vk) is invariant under T for all 1 ≤ k ≤ n. Since the span has not changed by
going to the basis (e1, . . . , en), T is still upper-triangular even for this new basis.

6 Orthogonal projections and minimization problems

Definition 7. Let V be a finite-dimensional inner product space and U ⊂ V a subset of V .
Then the orthogonal complement of U is the set

U⊥ = {v ∈ V | 〈u, v〉 = 0 for all u ∈ U}.

Note that in fact U⊥ is always a subspace of V (as you should check!) and

{0}⊥ = V, V ⊥ = {0}.

If U1 ⊂ U2, then U⊥
2 ⊂ U⊥

1 .
Furthermore, if U ⊂ V is not only a subset, but a subspace then we will now show that

V = U ⊕ U⊥

U⊥⊥ = U.

Theorem 14. If U ⊂ V is a subspace of V , then V = U ⊕ U⊥.

Proof. We need to show that
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1. V = U + U⊥.

2. U ∩ U⊥ = {0}.
To show 1, let (e1, . . . , em) be an orthonormal basis of U . Then for all v ∈ V we can write

v = 〈v, e1〉e1 + · · ·+ 〈v, em〉em︸ ︷︷ ︸
u

+ v − 〈v, e1〉e1 − · · · − 〈v, em〉em︸ ︷︷ ︸
w

. (3)

The vector u ∈ U and

〈w, ej〉 = 〈v, ej〉 − 〈v, ej〉 = 0 for all j = 1, 2, . . . , m

since (e1, . . . , em) is an orthonormal list of vectors. Hence w ∈ U⊥. This implies that
V = U + U⊥.

To prove 2, let v ∈ U∩U⊥. Then v has to be orthogonal to every vector in U , in particular
to itself, so that 〈v, v〉 = 0. However, this implies v = 0, so that U ∩ U⊥ = {0}.
Example 5. R

2 is the direct sum of two orthogonal lines and R
3 is the direct sum of a plane

and a line orthogonal to this plane. For example

R
2 = {(x, 0) | x ∈ R} ⊕ {(0, y) | y ∈ R}

R
3 = {(x, y, 0) | x, y ∈ R} ⊕ {(0, 0, z) | z ∈ R}.

Theorem 15. If U ⊂ V is a subspace of V , then U = (U⊥)⊥.

Proof. First we show that U ⊂ (U⊥)⊥. Let u ∈ U . Then for all v ∈ U⊥ we have 〈u, v〉 = 0.
Hence u ∈ (U⊥)⊥ by the definition of (U⊥)⊥.
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Next we show that (U⊥)⊥ ⊂ U . Suppose 0 �= v ∈ (U⊥)⊥ such that v �∈ U . Decompose v
according to Theorem 14

v = u1 + u2 ∈ U ⊕ U⊥,

where u1 ∈ U and u2 ∈ U⊥. Then u2 �= 0 since v �∈ U . Furthermore, 〈u2, v〉 = 〈u2, u2〉 �= 0.
But then v is not in (U⊥)⊥ which contradicts our initial assumption. Hence we must have
(U⊥)⊥ ⊂ U .

By Theorem 14 we have the decomposition V = U ⊕ U⊥ for every subspace U ⊂ V .
Hence we can define the orthogonal projection PU of V onto U as follows. Every v ∈ V
can be uniquely written as v = u + w where u ∈ U and w ∈ U⊥. Define

PU : V → V

v �→ u.

Clearly, PU is a projection operator since P 2
U = PU . It also satisfies

range PU = U

null PU = U⊥

so that rangePU⊥null PU . Therefore PU is called an orthogonal projection.
The decomposition of a vector v ∈ V into a piece in U and a piece in U⊥ as given in (3)

yields the following formula for PU

PUv = 〈v, e1〉e1 + · · ·+ 〈v, em〉em,

where (e1, . . . , em) is an orthonormal basis of U .
Let us now apply the inner product to the following minimization problem. Given a

subspace U ⊂ V and a vector v ∈ V , find the vector u ∈ U that is closest to the vector v,
that is, such that ‖v − u‖ is smallest. The next proposition shows that PUv is the closest
point in U to the vector v and that this minimum is in fact unique.

Proposition 16. Let U ⊂ V be a subspace of V and v ∈ V . Then

‖v − PUv‖ ≤ ‖v − u‖ for every u ∈ U .

Furthermore, equality holds if and only if u = PUv.

Proof. Let u ∈ U and set P := PU for short. Then

‖v − Pv‖2 ≤ ‖v − Pv‖2 + ‖Pv − u‖2

= ‖(v − Pv) + (Pv − u)‖2 = ‖v − u‖2,
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where the second line follows from Pythagoras’ Theorem 3 since v−Pv ∈ U⊥ and Pv−u ∈ U .
Equality only holds if ‖Pv − u‖2 = 0 which is equivalent to Pv = u.


