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1 Introduction

Given a positive integer n ∈ Z+, a permutation of an (ordered) list of n distinct objects is any
reordering of this list. When describing the reorderings themselves, though, note that the
nature of the objects involved is more or less irrelevant. E.g., we can imagine interchanging
the second and third items in a list of five distinct objects, no matter what those items are,
and this defines a particular permutation upon any list of five objects.

Since the nature of the objects being rearranged (i.e., permuted) is immaterial, it is
common to use the integers 1, 2, . . . , n, as the standard list of n objects. Alternatively, one
can also think of these integers as labels for the items in any list of n distinct elements.

2 Definition for and examples of permutations

Let n ∈ Z+ be a positive integer. Then, mathematically, we define a permutation as any
invertible (a.k.a. bijective) transformation of the finite set {1, . . . , n} into itself.

Definition 2.1. A permutation π of n elements is a one-to-one and onto function having
the set {1, 2, . . . , n} as both its domain and codomain.

In other words, a permutation is a function π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that,
for every integer i ∈ {1, . . . , n}, there exists exactly one integer j ∈ {1, . . . , n} for which
π(j) = i. We will usually denote permutations by Greek letters such as π (pi), σ (sigma),
and τ (tau). The set of all permutations of n elements is denoted by Sn and is commonly
called the symmetric group of degree n. (In particular, the set Sn forms a group under
function composition as discussed in Section 3 below.)

Given a permutation π ∈ Sn, there are several common notations used for specifying
how π permutes the integers 1, 2, . . . , n. The important thing to keep in mind when working
with any of these notations is that π is a function defined on the finite set {1, 2, . . . , n}, with
notation a convenient short-hand for keeping track of how π transforms this set.
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Definition 2.2. Given a permutation π ∈ Sn, denote πi = π(i) for each i ∈ {1, . . . , n}.
Then the two-line notation for π is given by the 2 × n matrix

π =

(
1 2 · · · n
π1 π2 · · · πn

)
.

In other words, given a permutation π ∈ Sn and an integer i ∈ {1, . . . , n}, we are denoting
the image of i under π by πi instead of using the more conventional function notation π(i).
Then, in order to specify the image of each integer i ∈ {1, . . . , n} under π, we list these
images in a two-line array as shown above. (One can also use so-called one-line notation for
π, which is given by simply ignoring the top row and writing π = π1π2 · · ·πn.)

It is important to note that, although we represent permutations as 2 × n matrices, you
should not think of permutations as linear transformations from an n-dimensional vector
space to a two-dimensional vector space. Moreover, the composition operation on permuta-
tion that we describe in Section 3 below does not correspond to matrix multiplication. The
use of matrix notation in denoting permutations is merely a matter of convenience.

Example 2.3. Suppose that we have a set of five distinct objects and that we wish to
describe the permutation that places the first item into the second position, the second item
into the fifth position, the third item into the first position, the fourth item into the third
position, and the fifth item into the fourth position. Then, using the notation developed
above, we have the permutation π ∈ S5 such that

π1 = π(1) = 3, π2 = π(2) = 1, π3 = π(3) = 4, π4 = π(4) = 5, π5 = π(5) = 2.

Moreover, written in two-line notation,

π =

(
1 2 3 4 5
3 1 4 5 2

)
.

It is relatively straightforward to find the number of permutations of n elements, i.e., to
determine cardinality of the set Sn. To construct an arbitrary permutation of n elements,
we can proceed as follows: First, choose an integer i ∈ {1, . . . , n} to put in the first position.
Clearly, we have exactly n possible choices. Next, choose the element to go in the second
position. Since we have already chosen one element from the set {1, . . . , n}, there are now
exactly n−1 remaining choices. Proceeding in this way, we have n−2 choices when choosing
the third element from the set {1, . . . , n}, then n−3 choices when choosing the fourth element,
and so on until we are left with exactly one choice for the nth element.

Theorem 2.4. The number of elements in the symmetric group Sn is given by

|Sn| = n · (n − 1) · (n − 2) · · · · · 3 · 2 · 1 = n!
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We conclude this section by describing the one permutation in S1, the two permutations
in S2, and the six permutations in S3. For your own practice, you should (patiently) attempt
to list the 4! = 24 permutations in S4.

Example 2.5.

1. Given any positive integer n ∈ Z+, the identity function id : {1, . . . , n} −→ {1, . . . , n}
given by id(i) = i, ∀ i ∈ {1, . . . , n}, is a permutation in Sn. This function can be
thought of as the trivial reordering that does not change the order at all, and so we
call it the trivial or identity permutation.

2. If n = 1, then, by Theorem 2.4, |Sn| = 1! = 1. Thus, S1 contains on the identity
permutation.

3. If n = 2, then, by Theorem 2.4, |Sn| = 2! = 2·1 = 2. Thus, there is only one non-trivial
permutation π in S2, namely the transformation interchanging the first and the second
elements in a list. As a function, π(1) = 2 and π(2) = 1, and, in two-line notation,

π =

(
1 2
π1 π2

)
=

(
1 2
2 1

)
.

4. If n = 3, then, by Theorem 2.4, |Sn| = 3! = 3 ·2 ·1 = 6. Thus, there are five non-trivial
permutation in S3. Using two-line notation, we have that

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}

Once more, you should always regard a permutation as being simultaneously a function
and a reordering operation. E.g., the permutation

π =

(
1 2 3
π1 π2 π3

)
=

(
1 2 3
2 3 1

)

can be read as defining the reordering that, with respect to the original list, places
the second element in the first position, the third element in the second position, and
the first element in the third position. This permutation could equally well have been
identified by describing its action on the (ordered) list of letters a, b, c. In other words,(

1 2 3
2 3 1

)
=

(
a b c
b c a

)
,

regardless of what the letters a, b, c might happen to represent. In particular, if we set
a = 2, b = 1, and c = 3, then the above equally becomes(

1 2 3
2 3 1

)
=

(
2 1 3
1 3 2

)
.
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3 Composition of permutations

Let n ∈ Z+ be a positive integer and π, σ ∈ Sn be permutations. Then, since π and σ
are both functions from the set {1, . . . , n} to itself, we can compose them to obtain a new
function π ◦ σ (read pi after sigma) that takes on the values

(π ◦ σ)(1) = π(σ(1)), (π ◦ σ)(1) = π(σ(2)), . . . (π ◦ σ)(n) = π(σ(n)).

In two-line notation, we can write π ◦ σ as(
1 2 · · · n

π(σ(1)) π(σ(2)) · · · π(σ(n))

)
or

(
1 2 · · · n

πσ(1) πσ(2) · · · πσ(n)

)
or

(
1 2 · · · n

πσ1 πσ2 · · · πσn

)
.

Example 3.1. From S3, suppose that we have the permutations π and σ given by

π(1) = 2, π(2) = 3, π(3) = 1 and σ(1) = 1, σ(2) = 3, σ(3) = 2.

Then note that
(π ◦ σ)(1) = π(σ(1)) = π(1) = 2,

(π ◦ σ)(2) = π(σ(2)) = π(3) = 1,

(π ◦ σ)(3) = π(σ(3)) = π(2) = 3.

In other words,(
1 2 3
2 3 1

)
◦

(
1 2 3
1 3 2

)
=

(
1 2 3

π(1) π(3) π(2)

)
=

(
1 2 3
2 1 3

)
.

Similar computations (which you should check for your own practice) yield compositions
such as (

1 2 3
1 3 2

)
◦

(
1 2 3
2 3 1

)
=

(
1 2 3

σ(2) σ(3) σ(1)

)
=

(
1 2 3
3 2 1

)
,

(
1 2 3
2 3 1

)
◦

(
1 2 3
1 2 3

)
=

(
1 2 3

σ(1) σ(2) σ(3)

)
=

(
1 2 3
2 3 1

)
,

and (
1 2 3
1 2 3

)
◦

(
1 2 3
2 3 1

)
=

(
1 2 3

id(2) id(3) id(1)

)
=

(
1 2 3
2 3 1

)
.

In particular, note that the result of each composition above is a permutation, that compo-
sition is not a commutative operation, and that composition with id leaves a permutation
unchanged. Moreover, since each permutation π is a bijection, one can always construct an
inverse permutation π−1 such that π ◦ π−1 = id. E.g.,(

1 2 3
2 3 1

)
◦

(
1 2 3
3 1 2

)
=

(
1 2 3

π(3) π(1) π(2)

)
=

(
1 2 3
1 2 3

)
.
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Theorem 3.2. Let n ∈ Z+ be a positive integer. Then the set Sn has the following properties.

1. Given any two permutations π, σ ∈ Sn, the composition π ◦ σ ∈ Sn.

2. (Associativity of Composition) Given any three permutations π, σ, τ ∈ Sn,

(π ◦ σ) ◦ τ = π ◦ (σ ◦ τ).

3. (Identity Element for Composition) Given any permutation π ∈ Sn,

π ◦ id = id ◦ π = π.

4. (Inverse Elements for Composition) Given any permutation π ∈ Sn, there exists a
unique permutation π−1 ∈ Sn such that

π ◦ π−1 = π−1 ◦ π = id.

In other words, the set Sn forms a group under composition.

Note that the composition of permutations is not commutative in general. In particular,
for n ≥ 3, you can easily find examples of permutations π and σ such that π ◦ σ �= σ ◦ π.

4 Inversions and the sign of a permutation

Let n ∈ Z+ be a positive integer. Then, given a permutation π ∈ Sn, it is natural to ask how
“out of order” π is in comparison to the identity permutation. One method for quantifying
this is to count the number of so-called inversion pairs in π as these describe pairs of objects
that are out of order relative to each other.

Definition 4.1. Let π ∈ Sn be a permutation. Then an inversion pair (i, j) of π is a pair
of positive integers i, j ∈ {1, . . . , n} for which i < j but π(i) > π(j).

Note, in particular, that the components of an inversion pair are the positions where the two
“out of order” elements occur.

Example 4.2. We classify all inversion pairs for elements in S3:

• id =

(
1 2 3
1 2 3

)
has no inversion pairs since no elements are “out of order”.

• π =

(
1 2 3
1 3 2

)
has the single inversion pair (2, 3) since π(2) = 3 > 2 = π(3).
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• π =

(
1 2 3
2 1 3

)
has the single inversion pair (1, 2) since π(1) = 2 > 1 = π(2).

• π =

(
1 2 3
2 3 1

)
has the two inversion pairs (1, 3) and (2, 3) since we have that both

π(1) = 2 > 1 = π(3) and π(2) = 3 > 1 = π(3).

• π =

(
1 2 3
3 1 2

)
has the two inversion pairs (1, 2) and (1, 3) since we have that both

π(1) = 3 > 1 = π(2) and π(1) = 3 > 2 = π(3).

• π =

(
1 2 3
3 2 1

)
has the three inversion pairs (1, 2), (1, 3), and (2, 3), as you can check.

Example 4.3. As another example, for each i, j ∈ {1, . . . , n} with i < j, we define the
transposition tij ∈ Sn by

tij =

(
1 2 · · · i · · · j · · · n
1 2 · · · j · · · i · · · n

)
.

In other words, tij is the permutation that interchanges i and j while leaving all other integers
fixed in place. One can check that the number of inversions pairs in tij is exactly 2(j− i)−1.
Thus, the number of inversions in a transposition is always odd. E.g.,

t13 =

(
1 2 3 4
3 2 1 4

)

has inversion pairs (1, 2), (1, 3), and (2, 3).

For the purposes of this course, the significance of inversion pairs is mainly due to the
following fundamental definition.

Definition 4.4. Let π ∈ Sn be a permutation. Then the sign of π, denoted by sign(π) is
defined by

sign(π) = (−1)# of inversion pairs in π =

{
+1, if the number of inversions in π is even

−1, if the number of inversions in π is odd
.

Moreover, we call π an even permutation if sign(π) = +1, and we call π an odd permutation
if sign(π) = −1.
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Example 4.5. Based upon the computations in Example 4.2 above, we have that

sign

(
1 2 3
1 2 3

)
= sign

(
1 2 3
2 3 1

)
= sign

(
1 2 3
3 1 2

)
= +1

and that

sign

(
1 2 3
1 3 2

)
= sign

(
1 2 3
2 1 3

)
= sign

(
1 2 3
3 2 1

)
= −1.

Similarly, from Example 4.3, it follows that any transposition is an odd permutation.

We summarize some of the most basic properties of the sign operation on the symmetric
group in the following theorem.

Theorem 4.6. Let n ∈ Z+ be a positive integer. Then,

• for id ∈ Sn the identity permutation,

sign(id) = +1.

• for tij ∈ Sn a transposition with i, j ∈ {1, . . . , n} and i < j,

sign(tij) = −1. (1)

• given any two permutations π, σ ∈ Sn,

sign(π ◦ σ) = sign(π) sign(σ), (2)

sign(π−1) = sign(π). (3)

• the number of even permutations in Sn, when n ≥ 2, is exactly 1
2
n!.

• the set An of even permutations in Sn forms a group under composition.

5 Summations indexed by the set of all permutations

Let n ∈ Z+ be a positive integer, and recall the following definition:

Definition 5.1. Given a square matrix A = (aij) ∈ Fn×n, the determinant of A is

det(A) =
∑

π ∈Sn

sign(π)a1,π(1)a2,π(2) · · ·an,π(n) , (4)

where the sum is over all permutations of n elements (i.e., over the symmetric group).
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Example 5.2. Take the 2 × 2 matrix

A =

[
a11 a12

a21 a22

]
.

To calculate the determinant of A, let us first list again the two permutations in S2

id =

(
1 2
1 2

)
and σ =

(
1 2
2 1

)
.

The permutation id has sign 1 and the permutation σ has sign −1. Hence the determinant
is given by

det A = a11a22 − a12a21.

Were one to attempt to compute determinants directly using Equation (4), then one
would need to sum up n! terms, where each summand is itself a product of n factors. This
is an incredibly inefficient method for finding determinants since n! increases in size very
rapidly as n increases. E.g., 10! = 3628800. Thus, even if you could compute one summand
per second without stopping, then it would still take you well over a month to compute the
determinant of a 10× 10 matrix using Equation (4). Fortunately, there are properties of the
determinant (as summarized in Section 6 below) that can be used to greatly reduce the size
of such computations. These properties of the determinant follow from general properties
that hold for any summation taken over the symmetric group, which are in turn themselves
based upon properties of permutations and the fact that addition and multiplication are
commutative operations in a field F (which, as usual, we take to be either R or C).

Let T : Sn → V be a function defined on the symmetric group Sn that takes values in
some vector space V . E.g., T (π) could be the term corresponding to the permutation π in
the sum that defines the determinant of A. Then, since the sum∑

π∈Sn

T (π)

is finite, we are free to reorder the summands. In other words, the sum is independent
of the order in which the terms are added, and so we can permute the term order freely
without affecting the value of the sum. Some commonly used reorderings of such sums are
the following: ∑

π∈Sn

T (π) =
∑

π ∈Sn

T (σ ◦ π) (5)

=
∑

π ∈Sn

T (π ◦ σ) (6)

=
∑

π ∈Sn

T (π−1) (7)
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where σ is a fixed permutation.
Equation (5) follows from the fact that, if π runs through each permutation in Sn exactly

once, then σ ◦ π similarly runs through each permutation but in a potentially different
orders. I.e., the action of σ upon something like Equation (4) is that σ merely permutes the
permutations that index the terms. Put another way, there is a one-to-one correspondence
between permutations in general and permutations composed with σ.

Similar reasoning holds for Equations (6) and (7).

6 Properties of the determinant

We summarize some of the most basic properties of the determinant below. The proof of the
following theorem uses properties of permutations, properties of the sign function on permu-
tations, and properties of sums over the symmetric group as discussed in Section 5 above.
In thinking about these properties, it is useful to keep in mind that, using Equation (4), the
determinant of an n × n matrix A is the sum over all possible ways of selecting n entries of
A, where exactly one element is selected from each row and from each column of A.

Theorem 6.1 (Properties of the Determinant). Let n ∈ Z+ be a positive integer, and suppose
that A = (aij) ∈ Fn×n is an n × n matrix. Then

1. det(0n×n) = 0 and det(In) = 1, where 0n×n denotes the n × n zero matrix and In

denotes the n × n identity matrix.

2. det(AT ) = det(A), where AT denotes the transpose of A.

3. denoting by A(·,1), A(·,2), . . . , A(·,n) ∈ Fn the columns of A, det A is a linear function of
column A(·,i), for each i ∈ {1, . . . , n}. In other words, if we denote

A =
[
A(·,1) | A(·,2) | · · · | A(·,n)

]
then, given any scalar z ∈ F and any vectors a1, a2, . . . , an, c, b ∈ Fn,

det [a1 | · · · | ai−1 | zai | · · · | an] = z det [a1 | · · · | ai−1 | ai | · · · | an] ,

det [a1 | · · · | ai−1 | b + c | · · · | an] = det [a1 | · · · | b | · · · | an] + det [a1 | · · · | c | · · · | an] .

4. det(A) is an antisymmetric function of the columns of A. In other words, given any
positive integers 1 ≤ i < j ≤ n and denoting A =

[
A(·,1) | A(·,2) | · · · | A(·,n)

]
,

det(A) = − det
[
A(·,1) | · · · | A(·,j) | · · · | A(·,i) | · · · | A(·,n)

]
.

5. if A has two identical columns, det(A) = 0.
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6. if A has a column of zero’s, det(A) = 0.

7. Properties 3–6 also hold when rows are used in place of columns.

8. given any other matrix B ∈ F
n×n,

det(AB) = det(A) det(B).

9. if A is either upper triangular or lower triangular,

det(A) = a11a22 · · ·ann.

Proof. First, note that Properties 1, 3, 6, and 9 follow directly from the sum given in
Equation (4). Moreover, Property 5 follows directly from Property 4, and Property 7 follows
directly from Property 2. Thus, we need only prove Properties 2, 4, and 8.

Proof of 2. Since the entries of AT are obtained from those of A by interchanging the
row and column indices, it follows that det(AT ) is given by

det(AT ) =
∑

π ∈Sn

sign(π) aπ(1),1aπ(2),2 · · ·aπ(n),n .

Using the commutativity of the product in F and Equation (3), we see that

det AT =
∑

π ∈Sn

sign(π−1) a1,π−1(1)a2,π−1(2) · · ·an,π−1(n) ,

which equals det(A) by Equation (7).
Proof of 4. Let B =

[
A(·,1) | · · · | A(·,j) | · · · | A(·,i) | · · · | A(·,n)

]
be the matrix obtained

from A by interchanging the ith and the jth column. Then note that

det(B) =
∑

π∈Sn

sign(π) a1,π(1) · · ·aj,π(i) · · ·ai,π(j) · · ·an,π(n) .

Define π̃ = π ◦ tij, and note that π = π̃ ◦ tij. In particular, π(i) = π̃(j) and π(j) = π̃(i), from
which

det(B) =
∑

π∈Sn

sign(π̃ ◦ tij) a1,π̃(1) · · ·ai,π̃(i) · · ·aj,π̃(j) · · ·an,π̃(n) .

It follows from Equations (2) and (1) that sign(π̃◦tij) = −sign (π̃). Thus, using Equation (6),
we obtain det(B) = − det(A).
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Proof of 8. Using the standard expression for the matrix entries of the product AB in
terms of the matrix entries of A = (aij) and B = (bij), we have that

det(AB) =
∑

π ∈Sn

sign(π)
n∑

k1=1

· · ·
n∑

kn=1

a1,k1bk1,π(1) · · ·an,knbkn,π(n)

=
n∑

k1=1

· · ·
n∑

kn=1

a1,k1 · · ·an,kn

∑
π∈Sn

sign (π)bk1,π(1) · · · bkn,π(n).

Note that, for fixed k1, . . . , kn ∈ {1, . . . , n}, the sum
∑

π ∈Sn
sign (π)bk1,π(1) · · · bkn,π(n) is the

determinant of a matrix composed of rows k1, . . . , kn of B. Thus, by property 5, it follows
that this expression vanishes unless the ki are pairwise distinct. In other words, the sum
over all choices of k1, . . . , kn can be restricted to those sets of indices σ(1), . . . , σ(n) that are
labeled by a permutation σ ∈ Sn. In other words,

det(AB) =
∑

σ∈Sn

a1,σ(1) · · ·an,σ(n)

∑
π ∈Sn

sign(π) bσ(1),π(1) · · · bσ(n),π(n) .

Now, proceeding with the same arguments as in the proof of Property 4 but with the role
of tij replaced by an arbitrary permutation σ, we obtain

det(AB) =
∑

σ∈Sn

sign(σ) a1,σ(1) · · ·an,σ(n)

∑
π ∈Sn

sign(π ◦ σ−1) b1,π◦σ−1(1) · · · bn,π◦σ−1(n) .

Using Equation (6), this last expression then becomes (det A)(det B).

Note that Properties 3 and 4 of Theorem 6.1 effectively summarize how Elementary Row
and Column Operations interact with the Determinant. These Properties together with
Property 9 facilitate numerical computation of determinants for very large matrices.

7 Further Properties and Applications

There are many, many applications of Theorem 6.1. We conclude these notes with a few
consequences that are particularly useful when computing with matrices. In particular, we
use the determinant to characterize when a matrix can be inverted and, as a corollary, give
a method for using determinants to calculate eigenvalues.

Theorem 7.1. Let n ∈ Z+ and A ∈ Cn×n. Then A is invertible if and only if det(A) �= 0.
Moreover, if det(A) �= 0, then det(A−1) = (det(A))−1.
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Proof. First assume that A is invertible so that AA−1 = I. Then, using Properties 1 and 8
of Theorem 6.1, we obtain

(det(A))(det(A−1)) = 1 .

Therefore, det(A) �= 0 and det(A−1) = (det(A))−1.
It also follows from this that the determinant is invariant under basis transformation,

i.e., if T ∈ Cn×n is invertible, then det(TAT−1) = det(A). By Theorem 5.13 in the textbook,
we know that, given any complex matrix A, there exist an invertible matrix T such that
TAT−1 is upper triangular. Thus, by Property 9 of Theorem 6.1, det(A) is the product of
the diagonal elements of this associated upper triangular matrix. Furthermore, by Theorem
5.16 in textbook, A is invertible if and only if all of the diagonal elements of the associated
upper triangular matrix are non-zero. Thus, A is invertible if det(A) �= 0.

Given a matrix A ∈ Cn×n and a complex number λ ∈ C, the expression P (λ) = det(A−
λIn) is called the characteristic polynomial of A. Note that P (λ) is a basis independent
polynomial of degree n. Thus, as with the determinant, we can consider P (λ) to be associated
with the linear map that has matrix A with respect to some basis. Since the eigenvalues of
A are exactly those λ ∈ C such that A − λI is not invertible, if follows that

Corollary 7.2. The roots of the polynomial P (λ) = det(A − λI) are the eigenvalues of A.


