Advanced Linear Algebra. Syllabus

L \#	Topics	Notes \& Remarks
1	What is Linear Algebra?	Notes
2	Complex Numbers	Notes
3	Complex Numbers	
4	Fundamental Theorem of Algebra (proof optional)	Notes
5	Vector Spaces, Subspaces	Axler pp 4-14
6	Direct Sum, Span	Axler pp 14-23
7	Linear Independence, Bases	Axler pp 23-31
8	Dimension	Axler pp 31-34
9	Linear Maps	Axler p 37-41
10	Null Space, Range	Axler pp 41-47
11	Matrix of a Linear Map	Axler pp 48-53
12	More on Matrices	Notes
13	Invertibility	Axler pp $53-58$
14	Eigenvalues and eigenvectors	Axler pp 75-80
15	Existence of Eigenvalues	Axler pp 81-84
16	Upper Triangular Matrix Representation	Axler pp 84-90
17	Diagonalization (2x2) and Applications	Notes
18	Midterm	
19	Inner Product Spaces	Axler pp $97-101$
20	Cauchy-Schwarz, Triangle Inequality, Pythagoras	Axler pp 101-106
21	Orthonormal Bases, Gram-Schmidt procedure	Axler pp 106-110
22	Orthogonal Projections, Minimization Problems	Axler pp 111-116
23	Vectors and Coordinates - Maps and Matrices	Notes
24	Spectral Theorem for Normal Maps (complex)	Axler pp 127-133
25	Diagonalization	Notes
26	Positive Operators, Polar and Singular Value Decomposition	Axler pp 144-155
27	Permutations and the Determinant	Notes
28	Properties of the Determinant	Notes
29	LU-Factorization and Solving Linear Systems	Notes

Notes of all lectures are available on the class website at http://www.math.ucdavis.edu/~anne/WQ2007/mat67.html

Additional handouts with useful material are:
Common Math Symbols, Notes on Sets and Functions, Matrices, Solving Linear Equations, Homework Sets and Solutions

