LECTURE 1: COXETER GROUPS AND SCHUBERT CALCULUS

STEVEN PON, ALEXANDER WAAGEN

Class website: http://www.math.ucdavis.edu/ anne/WQ2009/280.html

Recommended references:

Combinatorics of Cozeter Groups, by Bjorner and Brenti;

Reflection Groups and Cozxeter Groups, by Humphreys;

Young Tableauzr by Fulton;

Symmetric Functions, Schubert Polynomials and Degeneracy Loci by Manivel,
Notes on Schubert Polynomials by Macdonald.

1. ABOUT SCHUBERT POLYNOMIALS

Schubert polynomials were first introduced in 1982 by Lascoux and Schutzen-
berger. They are of great interest in mathematics, as they relate to combinatorics,
representation theory and geometry. For example, they form a natural basis of the
cohomology ring H*(G/B). They are also related to flag varieties and Grassman-
nians, etc.

2. THE SYMMETRIC GROUP

The symmetric group S, is of primary importance in the study of Coxeter groups
and Schubert polynomials. We define S,, as follows:

Definition 2.1. Let S, be the group generated by s;, for 1 < i < n, with relations:
e s7=1foralll<i<n;
o s;s; =sjs; if |i —j| >2; and
® S;S;115i = Si+15:Si+1 for all 1 < i < n.

Alternatively, we can think of S,, as permuting the numbers {1,2,...,n}. We
can represent a permutation using 1-line notation, say w = [w1,ws,...,w,] where
w; = w(i). For example, the permutation of {1,2,3} that switches 1 and 2 and
leaves 3 fixed is w = [2,1,3]. We can then view the elements s; as transpositions
that either switch the numbers in positions ¢ and 7 + 1, or switch the locations of 4
and ¢ + 1, depending on whether s; acts on the right or the left.

Given an element w of S;,, we can express w as a minimal product of transposi-
tions s;. We call such an expression a reduced expression, which is not necessarily
unique. We let R(w) be the set of all reduced expressions of w. If w is a reduced
expression of w, we let ¢(w) = number of transpositions in w. By the following
lemma, ¢(w) = ¢(w) is well defined.

Lemma 2.2. Given w,v € R(w), {(w) = £(v).
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One last thing we must note about the symmetric group is the existence of a
unique longest element. In 1-line notation, this element is [n,n — 1,...,1], and it
has length w We denote this element by wy.

3. D1vIDED DIFFERENCE OPERATORS

Definition 3.1. Let K[X] := Z[x1,22,...,2,] be the polynomial ring over the
integers in n variables.

If w € Sy, then S, acts on K[X] by w (2;) = ¢ fori =1,2,...,n.
Definition 3.2. We define the divided difference operator, 0; : K[X] — K[X], by
f(xla"'axn) _Sif(xla"'axn)

Ti — Ti4+1

aif(xla"'7xn) =

for1 <i<n.

Given this definition, one can check the following relations:
(1) 97 =0
(2) 82(')] = 8J81 for |Z — ]| > 2
(3) 0i0;410; = 0,410,011
These three relations are checked explicitly below:
(1) Let f € K[X]. Then

() = o(fEnmn) —sif o))

Tj — Ti41
f@1,e@n)=8if(®1,000Tn) S_(f(931,~-'ywn)75if(w17~~~aajn))
o Ti—Tit1 H Ti—Tit1
Ti — Tj41
1

= (:E 7$'+1)2 (f(xlv"'vxn) - sif(x17"'7$n) - f($1,...,$n) +S¢f(231,...,.7:n))

= 0

(2) Let f € K[X]. Then
f(z1,..., Tn)—s; f(x1,..., Ty,) . (f(wl ..... Tn)—s; f(x1,..., a:n))

o Tj—Tj41 Tj—Tj+1
0;0;f =

= . . o [f(xl""7x7L)_sj(f('r17"'7xn))_Si(f(xl""’xn))+8isj(f(x1""
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(3) Similar to above —simply expand using the definition, and apply the relation
SiSi+15; = Si4+15iSi+1-

Given the above three relations for divided difference operators, we can define
the divided difference operator corresponding to a general element of the symmetric

group:
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Definition 3.3. Given w € S, and w = $;,8;, -+ - 8;, € R(w), we let
O = 04,0, -+ Oy,

By the above relations, d,, is well-defined and does not depend on the choice of
reduced word. The algebra generated by 0; for 1 < ¢ < n is known as the nil-Hecke
algebra. Note that if we were to try to use a non-reduced word in the definition of
8.y, we would get 0 because 97 = 0.

We can then define Schubert polynomials:

Definition 3.4. For every w € S, we define the Schubert polynomial o, by:

_ n—1_n—2 1 0
Ow = Oy—1y, ('rl Lo o 'xn—lxn)

where wy 1s the unique longest element of S,,.
This is a straightforward definition; however, it is not ideal from a combinatorial
standpoint since it involves applying a large number of divided difference operators.

Billey, Jockusch and Stanley derived a more combinatorial formula (based on work
by Fomin and Stanley) for Schubert polynomials that is presented below.

4. COMBINATORIAL DEFINITION OF SCHUBERT POLYNOMIALS
In the following, we identify a reduced word with the indices of that reduced
word. For example, if w = wjwowswy = 53518251 is a reduced expression for an
element w € S,,, we identify w with the word 3121, so statements such as 1 < w;
make sense.

Definition 4.1. Let a =a;---ap, € R(w). We say that a p-tuple o = (a1,...,qp)
of positive integers is a — compatible if:

e 0<a; <as < - <y

o aj <aj foralll <j<p;and

o a; <y ’Lf a; < Gj41-

Let C(a) denote the set of a-compatible sequences.

Theorem 4.2 (Fomin, Stanley 1991; Billey, Jockusch, Stanley 1993).

a€R(w) aeC(a)

Proof of this theorem is withheld until later in the class.

Example: Let w = [3,1,2,5,4]. Then we have R(w) = {214,241,421}. Note
that we are writing reduced words as acting from left to right. We have to list all
a-compatible sequences for each reduced word.

o w=214: 0 < ag < 1so0 ay =1. Since a; are weakly increasing, a; = 1 as
well. Then a3 can be 2,3, or 4 since we need as < az < az.

e w = 241: There are no a-compatible sequences because a3 must be 1, but
we have an ascent a1 < as, so we must have 0 < a1 < as < az = 1.



[3,1,2,5,4]
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FIGURE 1. An algorithm to find the set of reduced words of [3,1,2,5,4].

e w=421. 0 < a3 <1soaz=1. This forces a; = as = 1.
Therefore, a,, = o3 + 2229 + 2323 + 2324

The set of reduced words C (w) can be found by checking for descents in w. If
there is a descent at w (7), multiply by s;, and form a tree as in figure 1 to find the
set of all inverses of reduced words of w, from which it is trivial to find the set of
reduced words of w.

Note: For those interested in experimentation, SAGE (sagemath.org) can be
very helpful. New functionality is being added daily, and it’s free and open-source.

5. COXETER GROUPS

Definition 5.1. Let S be a set. A matriz m : S x S — {1,2,...,00} is called a
Coxeter matriz if:

o m(s,s’) =m(s',s) forall s,s’ € S

e m(s,s)=1 < s=¢
Definition 5.2. A Cozeter graph is a graph with vertex set S and an undirected
edge {s,s'} if m(s,s’) > 3. Additionally, we label the edge {s,s'} by m(s,s’) if
m(s,s’) > 4.

Example 5.3. The following is a Coxeter matriz:

1 2 3 2
2 1 4 2
3 4 1 o
2 2 oo 1

The Cozeter graph corresponding to this matriz is given in figure 2.
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F1Gure 2. A Coxeter graph.
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