LECTURE 14: YANG-BAXTER EQUATION AND DOUBLE
SCHUBERT POLYNOMIALS

CARLOS BARRERA-RODRIGUEZ

1. THE YANG-BAXTER EQUATION (CONTINUED). DOUBLE SCHUBERT
POLYNOMIALS.

Last time we talked about the nil-Coxeter algebra, and we saw that the nil-
Coxeter relations for uy, us, ... u,—1 are given by

wiu; = uju; for |t —j| >1
UiUi1Us = U1 U UG 41
uz2 =0

We showed the following result for h;(z) = 1 + au;(z).

Lemma 1.1.

hi(z)hi(y) = hi(z +y)
hi(x)h;(y) = hj(y)hi(z) [|i—j]>1
hi(x)hj(x +y)hi(y) = hij(y)hi(z +y)hi(x) [i—jl=1

The last relation is called the Yang-Baxter equation.

We also learned that we can associate to a strand configuration C a polynomial
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FIGURE 1. Strand representation

®(C) in H[z]. In the above example ®(C) = hg, (x5 — x2)hs, (T3 — 21).
Next we consider a particular configuration, as shown in the following figure.
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FIGURE 2. Particular configuration

n—2
©(Cop)= [ I Pivir(x:i—y)).
d=2—n i—j=d
i+j<n
Note that the order of the factors in the product is important! Deforming Fig. 2
we obtain Fig. 3 (using only braid and commutation relations which we showed
last time do not change ®(Csp)), which simplifies the calculation of .
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FiGURE 3. Simplified particular configuration
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By this simple observation it is easy to see that we can rewrite ® as:

n—1 1

H H hitj—1(xi —y5)
where recall h;(z) =1+ 2u;.
Theorem 1.2. If one decomposes ®(Csp) in Hlz,y] as

Cop)= Y Du(C
weSy

then

(I)w(csp) = O'w(xu y)
Proof. Let us first look at

q)wo (Csp) = H (xz - yj) = A(Ia y) = Owyg (:E,y)
i+j<n

Recall 0;0,, = oyws, if £(ws;) = £(w) — 1. Hence it remains to show that the same
recursion holds for the coefficient polynomials in ®(Csp). But we have that

0i®uws,; (Csp) = @ (Csp)  for L(ws;) = l(w) — 1
if and only if
8i(1)(CSp) = (I)(Csp)ui
Set
Hi(z) = hyp—1(x) - - - hi1(z)hi (),
Then note that
Hi(z) = Hi1(x)hi(z),
hi(x)H;(y) = Hj(y)hi(x) if j > i+ 1,
Lemma 1.3.

(a) Hi(x)H;(y) = Hi(y)H;(x)
(b) Hi(z)Hiv1(y) — Hi(y)Hiv1 () = (z — y) Hi(x) Hiv1 (y)u;
Proof.
(a) This follows be descending induction on i:
H;(x)H;(y) = Hi+1hi($)Hi+2(y)hi+1(y)hi(y)
= Hip1(2)Hivz(y)hi(@)hita (y)hi(y — x)hi(2)
= Hip1(x)Hivz(y)his1(y — 2)hi(y)hivi(x)hi(z)
(this latter is theY-B eq.)
= Hip1(@)Hip1(9)hiv1 (—2)hi(y)hiv1 (@) hi(z)
= Hi1(y)Hipr (2)hit1(—2)hi(y) his1 (x)hi(2)
(but Hiyo(x) = Hip1(x)hit1(—x))
= Hip1(y)hi(y) Hiv2(x)hig1 (2)hi(z)
= Hi(y)Hi(x)



(b)
Hi(z)Hiv1(y) — Hi(y)Hipa (z) = Hi(x)H; (y)hi(—y) — Hi(y) Hi(z)hi(—z)
(and h;(—y) =1 —yu;, hi(—z) =1— 2w;)
= H;(z)H;(y)(—yu;) + Hi(z)H; (y)zu;
= (z — y)H;(x) Hi (y)u;
= (z — y)Hi(x)Hiy1(y) (1 + yui)us
(but 14+ yu; =0)
= (z —y)Hi(z)Hit1 (y)ui

Lemma 1.4.
(a) hi(z —y) = Hipa H(2)Hi ' Y)Hi(2) Hi 1 (y) )
() hn—1(@—yn—1) - hi(e—yi) = Hno1™ (yn—1) - Hi™ (ya) Hi(@) Hiz1 (i) - - - Hn (yn—1)
Proof.
(a) Observe that the equality is equivalent to
Hi(y)Hiv1(x)hi(x)hi(—y) = Hi(x)Hiz1(y)
but this latter is equivalent to H;(y)H;(x) = H;(x)H;(y), which corresponds pre-
cisely to part (a) of the previous lemma.

(b) This part can be proved by descending induction on ¢ and the previous lemma.
We leave the details to the reader. ]

We now complete the proof of Theorem 1.2. Using Lemma 1.4 (b) we find that

n—1 1
®(Csp) = H hij—1(zi — y5)
=1 j=n—1
=0 (y)o(z)
where o(z) = Hy(x1)Ha2(x2) - - Hp—1(25—1). Hence it remains to show that

But we can see that
D0 (x) = Hi(xz1) - Hyp1(zn-1) — Hi(z1) - Hi(@ig1) Hiv1(23) - Hpe1(Tn—1)

=Hi(z1) - Hyp_1(Tn-1)u;
= o(x)u;

by Lemma 1.3 (b). O



