LECTURE 14: YANG-BAXTER EQUATION AND DOUBLE SCHUBERT POLYNOMIALS

CARLOS BARRERA-RODRIGUEZ

1. THE YANG-BAXTER EQUATION (CONTINUED). DOUBLE SCHUBERT POLYNOMIALS.

Last time we talked about the nil-Coxeter algebra, and we saw that the nil-Coxeter relations for $u_1, u_2, \ldots, u_{n-1}$ are given by

\[
\begin{align*}
 u_i u_j &= u_j u_i & \text{for } |i - j| > 1 \\
 u_i u_{i+1} u_i &= u_{i+1} u_i u_{i+1} \\
 u_i^2 &= 0
\end{align*}
\]

We showed the following result for $h_i(x) = 1 + xu_i(x)$.

Lemma 1.1.

\[
\begin{align*}
 h_i(x)h_i(y) &= h_i(x + y) \\
 h_i(x)h_j(y) &= h_j(y)h_i(x) & |i - j| > 1 \\
 h_i(x)h_j(x + y)h_i(y) &= h_j(y)h_i(x + y)h_j(x) & |i - j| = 1
\end{align*}
\]

The last relation is called the Yang-Baxter equation.

We also learned that we can associate to a strand configuration \mathcal{C} a polynomial

\[
\Phi(\mathcal{C}) \in \mathcal{H}[x]. \text{ In the above example } \Phi(\mathcal{C}) = h_{s_2}(x_3 - x_2)h_{s_1}(x_3 - x_1).
\]

Next we consider a particular configuration, as shown in the following figure.

\[\text{Figure 1. Strand representation}\]

(Date: February 6th, 2009.)
\[\Phi(C_{sp}) = \prod_{d=2}^{n-2} \prod_{\begin{array}{c} i-j=d \\ i+j \leq n \end{array}} h_{i+j-1}(x_i - y_j). \]

Note that the order of the factors in the product is important! Deforming Fig. 2 we obtain Fig. 3 (using only braid and commutation relations which we showed last time do not change \(\Phi(C_{sp}) \)), which simplifies the calculation of \(\Phi \).
By this simple observation it is easy to see that we can rewrite Φ as:

$$\Phi(C_{sp}) = \prod_{i=1}^{n} \prod_{j=n-i}^{1} h_{i+j-1}(x_i - y_j)$$

where recall $h_i(x) = 1 + xu_i$.

Theorem 1.2. If one decomposes $\Phi(C_{sp})$ in $H[x, y]$ as

$$\Phi(C_{sp}) = \sum_{w \in S_n} \Phi_w(C_{sp})w$$

then

$$\Phi_w(C_{sp}) = \sigma_w(x, y).$$

Proof. Let us first look at

$$\Phi_{w_0}(C_{sp}) = \prod_{i+j \leq n} (x_i - y_j) = \Delta(x, y) = \sigma_{w_0}(x, y)$$

Recall $\partial \sigma_w = \sigma_{ws_i}$ if $\ell(ws_i) = \ell(w) - 1$. Hence it remains to show that the same recursion holds for the coefficient polynomials in $\Phi(C_{sp})$. But we have that

$$\partial_i \Phi_{ws_i}(C_{sp}) = \Phi_w(C_{sp})$$

for $\ell(ws_i) = \ell(w) - 1$

if and only if

$$\partial_i \Phi(C_{sp}) = \Phi(C_{sp})u_i.$$

Set

$$H_i(x) = h_{n-1}(x) \cdots h_{i+1}(x)h_i(x),$$

Then note that

$$H_i(x) = H_{i+1}(x)h_i(x),$$

$$h_i(x)H_j(y) = H_j(y)h_i(x) \text{ if } j > i + 1,$$

$$h_i(x)h_i(-x) = 1.$$

Lemma 1.3.

(a) $H_i(x)H_i(y) = H_i(y)H_i(x)$

(b) $H_i(x)H_{i+1}(y) - H_i(y)H_{i+1}(x) = (x - y)H_i(x)H_{i+1}(y)u_i.$

Proof.

(a) This follows be descending induction on i:

$$H_i(x)H_i(y) = H_{i+1}(x)H_{i+2}(y)h_{i+1}(y)h_i(y)$$

$$= H_{i+1}(x)H_{i+2}(y)h_i(x)h_{i+1}(y)h_i(y-x)h_i(x)$$

$$= H_{i+1}(x)H_{i+2}(y)h_{i+1}(y-x)h_i(y)h_{i+1}(x)h_i(x)$$

(this latter is theY-B eq.)

$$= H_{i+1}(x)H_{i+1}(y)h_{i+1}(-x)h_i(y)h_{i+1}(x)h_i(x)$$

$$= H_{i+1}(y)H_{i+1}(x)h_{i+1}(-x)h_i(y)h_{i+1}(x)h_i(x)$$

(but $H_{i+2}(x) = H_{i+1}(x)h_{i+1}(-x)$)

$$= H_{i+1}(y)h_i(y)H_{i+2}(x)h_{i+1}(x)h_i(x)$$

$$= H_i(y)H_i(x)$$

$$= H_i(x)H_i(y)$$
(b) \[H_i(x)H_{i+1}(y) - H_i(y)H_{i+1}(x) = H_i(x)H_i(y)h_i(-y) - H_i(y)H_i(x)h_i(-x) \]

(\text{and } h_i(-y) = 1 - yu_i, \ h_i(-x) = 1 - xu_i)

\[= H_i(x)H_i(y)(-yu_i) + H_i(x)H_i(y)xu_i \]

\[= (x-y)H_i(x)H_i(y)u_i \]

\[= (x-y)H_i(x)H_{i+1}(y)(1 + yu_i)u_i \]

(\text{but } 1 + yu_i = 0)

\[= (x-y)H_i(x)H_{i+1}(y)u_i \]

\[\square \]

Lemma 1.4.

(a) \(h_i(x-y) = H_{i+1}^{-1}(x)H_i^{-1}(y)H_i(x)H_{i+1}(y) \)

(b) \(h_{n-1}(x-y_{n-1}) \cdots h_1(x-y_1) = H_{n-1}^{-1}(y_{n-1}) \cdots H_i^{-1}(y_i)H_i(x)H_{i+1}(y_i) \cdots H_n(y_{n-1}) \)

Proof.

(a) Observe that the equality is equivalent to

\[H_i(y)H_{i+1}(x)h_i(x)h_i(-y) = H_i(x)H_{i+1}(y) \]

but this latter is equivalent to \(H_i(y)H_i(x) = H_i(x)H_i(y) \), which corresponds precisely to part (a) of the previous lemma.

(b) This part can be proved by descending induction on \(i \) and the previous lemma.

We leave the details to the reader. \(\square \)

We now complete the proof of Theorem 1.2. Using Lemma 1.4 (b) we find that

\[\Phi(C_{sp}) = \prod_{i=1}^{n-1} \prod_{j=n-i}^{1} h_{i+j-1}(x_i - y_j) \]

\[= \sigma^{-1}(y)\sigma(x) \]

where \(\sigma(x) = H_1(x_1)H_2(x_2) \cdots H_{n-1}(x_{n-1}) \). Hence it remains to show that

\[\partial_i\sigma(x) = \sigma(x)u_i. \]

But we can see that

\[\partial_i\sigma(x) = \frac{H_1(x_1) \cdots H_{n-1}(x_{n-1}) - H_1(x_1) \cdots H_i(x_{i+1})H_{i+1}(x_i) \cdots H_{n-1}(x_{n-1})}{(x_i - x_{i+1})} \]

\[= H_1(x_1) \cdots H_{n-1}(x_{n-1})u_i \]

\[= \sigma(x)u_i \]

by Lemma 1.3 (b). \(\square \)