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The goal of this section is to use rc-graphs to show that the set of Schubert
polynomials form a basis for Z[x1, x2, . . .]. Previously we established a combi-
natorial formula for the Schubert polynomials, which was a sum over reduced
words a for an element w ∈ Sn and a-compatible sequences, α. We also defined
the rc-graph D associated to a pairing (a, α), defined the Chute and Ladder
operations on D and showed that these operations didn’t affect the underlying
permutation w of D.

We will now introduce two special rc-graphs associated to any given w, and
show that they are uniquely obtainable by a sequence of inverse chute or ladder
moves.

Definition 1. For w ∈ Sn, set Dbot(w) = {(i, c)|c ≤ mi}, where mi is the
number of j > i such that wj < wi.

Notice that Dbot(w) is ‘left-justified;’ identifying the rc-graph with a string
diagram of the permutation w, the left side of the diagram is the ‘bottom,’
justifying the choice of name.

Definition 2. For w ∈ Sn, set Dtop(w) = {(c, j)|c ≤ nj}, where nj is the
number of i such that i < w−1

j and j > wi.

Notice that Dtop(w) = Dt
bot(w

−1).
For example, let w = [3, 1, 4, 6, 5, 2]. Then m1 = 2, as w1 = 3 and 1 and 2

lie to the right of 3. Likewise, m2 = 0,m3 = 1,m4 = 2,m5 = 1, and m6 = 0.
Then for the rc-graphs Dbot and Dtop we respectively get:
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Set C(D) to be the set of diagrams obtainable from D by Chute moves, and
L(D) to be the set of diagrams obtainable by Ladder moves. Set RC(w) to
be the complete set of rc-graphs associated to w. Then we have the following
result:

Theorem 3.

1. Dtop(w) does not admit an inverse chute move.

2. Any D ∈ RC(w) such that D 6= Dtop(w) admits an inverse chute move.

3. C(Dtop(w)) = RC(w) = L(Dbot(w))

4. σw(x) =
∑

D∈C(Dtop(w)) xD =
∑

D∈L(Dbot(w)) xD, where xD =
∏

(i,j)∈D xi.

Proof.

1. Every column of Dtop(w) begins with an initial run of crossings, and then
no more. As such, no column has an empty space above a crossing, and by
the Lemma in the previous section, the diagram admits no inverse Chute
moves.

2. For any w′ ∈ Sn, take some D ∈ RC(w) such that D does not admit
any inverse Chute move. Then column j has some number k of crossings
gathered at the top, with 0 ≤ k ≤ n − j. Then to construct such a
diagram, we have n choices for the first column, n− 1 for the second, and
so on, yielding a total of n! such diagrams. Since no two permutations can
have matching diagrams, we have a one-to-one correspondence between rc-
graphs admitting no inverse Chute moves and elements of the symmetric
group. Then Dtop(w) is the unique rc-graph for w admitting no inverse
Chute moves.

3. Any rc-graph obtained from Dtop(w) by inverse Chute moves is in RC(w)
by the lemma of the last section. By the uniqueness of Dtop(w), we can
conclude that C(Dtop(w)) is connected under the Chute move operations,
and that C(Dtop(w)) is indeed all of RC(w).

4. The final result follows immediately from the third part of this theorem
and the combinatorial formula for the Schubert polynomials.

Because of the relationship between Dbot(w) and Dtop(w), analagous results
follow for Dbot(w).
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Example: Let’s compute σ[1,4,3,2]. To write Dbot(w), notice that w1 = 1,
and that nothing to the right of w1 is smaller than 1. Then there are no crossings
in the first row of Dbot(w). Now w2 = 4, and both 3 and 2 are less than 4, so
the second row of Dbot(w) has two crossings. Likewise, the third row contains
one crossing, and the last row has no crossings. Since Dbot(w) is ‘left-justified,’
we obtain for Dbot(w) the following rc-graph:
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Applying inverse chute moves to this rc-graph, we can obtain the following
diagrams. The last is Dtop(w).
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Now, to compute σ[1,4,3,2] we take xD for each diagram D and sum over the
set of diagrams. For example, xDbot(w) = x2

2x3. The resulting polynomial is
σ[1,4,3,2](x) = x2

2x3 + x1x
2
2 + x1x2x3 + x2

1x
3 + x2

1x2, where the terms are here
listed in the same order as the diagrams above.

Notice that if I dream up any old monomial, I can dream up quite a few
rc-graphs that produces that monomial. Furthermore, Dbot(w) arises from the
largest reduced word for w in reverse lexicographic order and largest compatible
sequence in lexicographic ordering. Thus, given any monomial, I can produce
an rc-graph that is the bottom-most rc-graph for some w ∈ SN for a sufficiently
large N . Since lexicographic ordering is a total ordering of the monomial basis
of Z[x1, x2, . . .], the set of Schubert polynomials are expressible as an upper-
triangular combination of monomials, with leading coefficient 1. We have proved
the desired result:

Theorem 4. The set of Schubert polynomials σw(x), w ∈ S∞ form an integral
basis of Z[x1, x2, . . .].

One can apply the same trick with Dtop(w), which produces a minimal mono-
mial in reduced lexicographic order.

Next time we will prove Monk’s Formula, which gives a Pieri-like rule for
multiplying the Schubert polynomials.
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