
LECTURE 18: MONK’S RULE

MOHAMED OMAR

1. Monk’s Rule & Insertion Algorithm

Theorem 1.1 (Monk’s Rule). Let w ∈ S∞, and sr be a simple transposition. Then

σw · σsr
=

∑
k≤r<l

l(wtkl)=l(w)+1

σwtkl
.

The proof of Monk’s Rule will follow from a combinatorial bijection coming from
an Insertion Algorithm on rc-graphs. In this lecture, we describe this algorithm and
show how the combinatorial consequences imply Monk’s Rule.

We begin by detailing the input and output of the Insertion Algorithm. For brevity,
we will say that (i, j) exhibits property (?) if at the ith row and jth column of the
rc-graph, the two strands do not make a cross, and the upper strand and lower
strand start at s and t respectively with s ≤ r < t.

Input: D ∈ RC(w), and r, i ∈ Z with 0 < i ≤ r.

Output: Ir(D, i) = (D′, k, l) with k, l ∈ N, D′ ∈ RC(w′) with l(w′) = l(w) + 1.

(1) i0 = i, j0 is maximal such that (i0, j0) is as in (?); add a crossing at (i0, j0)
to D. Set s0 = s, t0 = t

(2) If the result is an rc-graph, STOP.
(3) Else:

(a) The two strands cross again at (i1, j
′

1). Delete the second crossing at
(i1, j

′

1) from D.
(b) Find j1 < j

′

1 maximal such that (i1, j1) is an in (?)
(c) Add a crossing at (i1, j1). Set (s1, t1) to be the corresponding labels

of the beginnings of the strands at (i1, j1)
(d) GOTO Step 2.

The rc-graph D′ obtained from this algorithm is the result of applying p add and
delete steps beginning at the rc-graph D, and a final addition step upon exiting the
algorithm. We say that the insertion path of this algorithm is the sequence of
row-column index pairs (i0, j0), (i1, j

′

1), (i1, j1), (i2, j
′

2), . . . , (ip, jp). Notice that the
indices in the insertion path satisfy the two conditions:

i = i0 > i1 > · · · > ip.

j0 < j
′

1 > j1 < j
′

2 > j2 < · · · < j
′

p > jp.

Date: February 18, 2009.

1



Now recall that the output of the Insertion Algorithm is a triple (D′, k, l) with
D′ ∈ RC(w′). The statistics k and l are precisely sp and tp respectively. Letting
tkl be the transposition exchanging k and l, we set w′ = wtkl.

We now illustrate an example of this algorithm. Our input will be:

D ∈ RC([135642]) (s0, t0) = (3, 5) r = 4 i = 3

We shall use the recording table for the rc-graphs, as they completely determine
the rc-graph structure. In this example, our recording table is

1 2 3 4 5 6
1 + +
2
3 +
4 + +
5 +
6

Since i = 3, we see that (i0, j0) = (3, 2) because j0 is maximal under condition
(?). Thus we add a crossing at (3, 2) to give us

1 2 3 4 5 6
1 + +
2
3 + +
4 + +
5 +
6

This is not an rc-graph since the two strands at (3, 2) cross again at (1, 4), so
(i1, j

′

1) = (1, 4). From this, (i1, j1) = (1, 3) and hence (s1, t1) = (2, 5). We delete
the crossing at (1, 4) and add the crossing at (1, 3). This gives us an rc-graph with
the table below:

1 2 3 4 5 6
1 + +
2
3 + +
4 + +
5 +
6

Thus the output is (D′, k, l) with k = 2, l = 5 and D′ the rc-graph given by the
table above.

A nice consequence of the Insertion Algorithm is the following proof of Monk’s
Rule.

1.1. Proof of Monk’s Rule. By the algorithm, we have a monomial preserving
bijection between

RC(w)×RC(sr) −→
⋃

w′=wtkl
k≤r<l

l(w′)=l(w)+1

RC(w′)

2



given by the map that sends (D, i) 7→ Ir(D, i). The result then follows by the
correspondence of rc-graphs and Schubert polynomials.

2. Stanley Symmetric Functions

Let {u′

1, . . . , u
′

n−1} be the generators of the nil Coxeter algebra. Recall the
functions hi(x) = 1 + xu

′

i, and H1(x) = hn−1(x)hn−2(x) · · ·h1(x).

Definition 2.1 (Stanley Symmetric Function). Let w ∈ Sn. Define

Fw(x) = lim
s→∞

σ1s×w = 〈H1(x1)H1(x2) · · · · 1, w〉

The action and inner products in the above definition are defined as follows. For
any u

′

i and w ∈ Sn,

u
′

i · w =

{
siw if l(siw) = l(w) + 1
0 else

The inner product is defined by 〈v, w〉 = δv,w. Also recall we can re-write Fw(x) as

Fw(x) =
∑

u=(a1,...,at)
a composition

〈Aat(u) · · ·Aa1(u) · 1, w〉xa1
1 · · ·xat

t .

where for any positive integer k, Ak(u) =
∑

bk<···<b1
ub1 · · ·ubk

. We now describe
some properties of Stanley symmetric functions.

(1) [x1x2 · · ·xl(w)]Fw(x) = The number of reduced words for w.
(2) Fw(x) is symmetric (since the functions Hi and Ai are).
(3) Fw(x) =

∑
λ〈sλt(u)·1, w〉sλ(x). (The sλt(u) functions are non-commutative

Schur functions).
(4) 〈sλt(w) · 1, w〉 = cw

λ = the number of Semistandard Young Tableaux T of
shape λt such that w(T ) · 1 = w.

Statements (3) and (4) will be proved next time.

3


