
LECTURE 5: CHARACTERIZATION THEOREM AND
EXAMPLES

MIHAELA IFRIM AND BRANDON BARRETTE

1. Strong Exchange Property

We now review the Strong Exchange Property Theorem from last lecture.

Theorem 1.1. Let w = s1s2 . . . sk be a reduced expression for w ∈ W with si ∈ S
and let t ∈ T . Then `(tw) < `(w) implies that:

(1.1) tw = s1 · · · ŝi · · · sk for some 1 ≤ i ≤ k.

Corollary 1.2. Let w = s1 · · · sk be a reduced word and let t ∈ T . Then the fol-
lowing are equivalent:
(1) `(tw) < `(w);
(2) tw = s1 · · · ŝi · · · sk for some i;
(3) t = s1s2 · · · si · · · s2s1.

Proposition 1.3. Deletion Property
Let w = s1 · · · sk be such that `(w) < k.
Then w = s1 · · · ŝi · · · ŝj · · · sk for some 1 ≤ i < j ≤ k.

Proof. We choose i maximal such that sisi+1 · · · sk is not reduced and therefore
`(si · · · sk) < `(si+1 · · · sk). By the Strong Exchange Property we obtain:

si · · · sk = si+1 · · · ŝj · · · sk for some 1 < j ≤ k.

Using the equality above we obtain:

w = s1 · · · sk = s1 · · · ŝi · · · ŝj · · · sk

which ends our proof. �

Corollary 1.4. The following properties hold:
(1) Any word w = s1 · · · sk contains a reduced word as a subword by deleting an
even number of letters.
(2) Suppose that s1 · · · sk = s′1 · · · s′k and also suppose that both are reduced. Then
⇒ {s1, . . . , sk} = {s′1, . . . , s′k}.
(3) S is a minimal generating set for W .

Proof. (1) follows from Deletion Property.
(2) Suppose ∃ sj which is not included in the set I := {s′1, . . . , s′k}. Here we choose
j minimal with the property just mentioned. By Corollary 1.2, if t = s1 · · · sj · · · s1

then there must exists an i such that

s1 · · · sj · · · s1 = s′1 · · · s′i · · · s′1
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for some i.
Therefore sj = (sj−1 · · · s1)(s′1 · · · s′i · · · s′1)(s1 · · · sj−1) - where all are letters in I.
Using the Deletion Property we can find a reduced subword of the right-hand side,
but this will give us:

sj = s′a ∈ I

which is a contradiction with the assumption that sj is not in I.
(3) Follows from (2) since no element s ∈ S can be written as a product of other
elements in S. �

2. Characterization of Coxeter groups

We will assume that W is an arbitrary group. Let S ⊆ W be a generating set
such that s2 = e, ∀s ∈ S. Therefore the concept of length, `(w), where w ∈ W
still makes sense and the concept of reduced expressions also still makes sense.

In this new context, we say that the system (W,S) has the Exchange or Deletion
property if the following hold:

The Exchange Property
Let w = s1 · · · sk be reduced, and let s ∈ S. Then `(sw) < `(w) ⇒ sw =
si · · · ŝi · · · sk for some i, 1 ≤ i < j < k.

The Deletion Property
If w = s1 · · · sk, then `(w) < k ⇒ w = si · · · ŝi · · · ŝj · · · sk for 1 ≤ i < j < k.

Theorem 2.1. Characterization Theorem
Let W be a group group and let S ⊆ W be a generating set with s2 = e ∀s ∈ S.
Then the following are equivalent:
(1) (W,S) is a Coxeter system.
(2) W satisfies the Exchange Property.
(3) W satisfies the Deletion Property.

Proof. The proof will be presented in the next lecture. �

Now let’s look at the following example:

Example 2.2. Sn is the well known group of permutations of [n]. Sn is gener-
ated by S = {s1, · · · , sn−1} where si = (i, i + 1). In one line notation, we have
si = [1, · · · , i− 1, i + 1, i, · · · , n]. Recall that s2

i = e.
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Fixing x ∈ Sn we recall that:

Right action by si:
Then xsi is obtained from x by interchanging the positions of x(i) and x(i + 1).
For example we have [31524]s3 = [31254].

Left action by si:
Then six is contained from x by interchanging the values i and i + 1.
A numerical example is the following s3[31524] = [41523]and this shows that S
generates Sn.

Definition 2.3. The inversion number of x ∈ Sn is given by the following
expression:

inv(x) =| {(i, j) | i < j, x(i) > x(j)} | .

Looking at the definition it is easy to see that the following lemma holds:

Lemma 2.4. The following equality holds:

inv(xsi) = inv(x) +

{
1 if x(i) < x(i + 1)
−1 if x(i) > x(i + 1)

The property that we will prove now shows a very useful relation between the
length of a word and the number of inversions of the word.

Proposition 2.5. We have the following relation:
`(x) = inv(x), ∀x ∈ Sn.

Proof. We know that we have `(e) = inv(e). Then by the Lemma 2.4 we obtain
that inv(x) ≤ `(x).

Claim. `(x) ≤ inv(x).

Proof. (of the claim) Since inv(x) = 0 ⇒ x = e ⇒ `(e) = 0. Hence the claim is
true for inv(x) = 0. We proceed by induction on inv(x). Let x ∈ Sn be such that
inv(x) = k + 1. Then x 6= e ⇒ ∃s ∈ S such that inv(xs) = k. By the induction
hyphothesis `(xs) ≤ k ⇒ `(x) ≤ k + 1 = inv(x).This finishes the proof. �

�

We recall from our previous lectures that the descent set DR(x) = {s ∈ S |
`(xs) < `(x)}.

Proposition 2.6. For Sn we have DR(x) = {si ∈ S | such that x(i) > x(i + 1)}.
This implies that the definition of DR(x) that we wrote above is the same with the
notion we just stated in the statement of the proposition.

Proof. By the Proposition 2.5 we have:

DR(x) = {s ∈ S | inv(xs) < inv(x)} = {si ∈ S | such that x(i) > x(i + 1)}.
�

Proposition 2.7. Using the Characterization Theorem we can prove that (Sn, S)
is a Coxeter system of type An−1.

The proof will be given in the next lecture.
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