Homework 5
due March 17, 2017

Problem 1. Let $|\lambda| = |\mu| = n$. Show that $\langle h_\lambda, h_\mu \rangle$ is equal to the number of double cosets $S_\lambda w S_\mu$ in the symmetric group S_n, where $S_\lambda = S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_\ell}$, embedded as a subgroup of S_n, similarly for S_μ, and $w \in S_n$.

Problem 2. Define the Kronecker product on symmetric functions in terms of the power-sum basis by

$$p_\lambda \ast p_\mu = \delta_{\lambda\mu} z_\lambda p_\lambda.$$

Equivalently, the symmetric functions p_λ/z_λ are orthogonal idempotents with respect to \ast.

1. Prove that the Kronecker coefficients $a_{\lambda\mu\nu}$ defined by

$$s_\mu \ast s_\nu = \sum \lambda a_{\lambda\mu\nu} s_\lambda$$

are invariant under permuting the indices λ, μ, ν.

2. Show that if $f \in \Lambda^n$, then $e_n \ast f = w f$.

Remark: In fact $a_{\lambda\mu\nu}$ are non-negative integers. It is an open problem to find a combinatorial rule for the computation of the Kronecker coefficients, except for some special cases.

Problem 3. The principle specialization of a symmetric function in the variables $\{x_1, x_2, \ldots, x_m\}$ is obtained by replacing x_i by q^i for all i.

(a) Show that the Schur function specialization $s_\lambda(q, q^2, \ldots, q^m)$ is the generating function for semistandard λ-tableaux with all entries of size at most m.

(b) Define the content of cell (i, j) to be $c_{i,j} = j - i$. Prove that

$$s_\lambda(q, q^2, \ldots, q^m) = q^{m(\lambda)} \prod_{(i,j) \in \lambda} \frac{1 - q^{c_{i,j}+m}}{1 - q^{h_{i,j}}}$$

where $m(\lambda) = \sum_{i \geq 1} i \lambda_i$ and $h_{i,j}$ is the hook length of the cell (i, j) in λ.
Problem 4. Let \(r \) be a positive integer. A poset \(A \) is \(r \)-differential if it satisfies the definition from class with the second condition replaced by

- If \(a \in A \) covers \(k \) elements for some \(k \), then it is covered by \(k + r \) elements.

Prove the following statements about \(r \)-differential posets \(A \).

(a) The rank cardinalities \(|A_n| \) are finite for all \(n \geq 0 \). (This implies that the operations \(D \) and \(U \) are well-defined).
(b) Let \(A \) be a graded poset with \(A_n \) finite for all \(n \geq 0 \). Then \(A \) is \(r \)-differential if and only if \(DU - UD = rI \).
(c) In any \(r \)-differential poset

\[
\sum_{a \in A_n} (f^a)^2 = r^n n!,
\]

where \(f^a \) is the number of saturated \(\emptyset - a \) chains.
(d) If \(A \) is \(r \)-differential and \(B \) is \(s \)-differential, then the product \(A \times B \) is \((r + s) \)-differential. So if \(A \) is 1-differential, then the \(r \)-fold product \(A^r \) is \(r \)-differential.

Problem 5. Show that the crystal operators \(f_i \) and \(e_i \) respect the Knuth relations, that is, if \(w \overset{K}{\succeq} v \), then \(e_i w \overset{K}{\preceq} e_i v \) (resp. \(f_i w \overset{K}{\succeq} f_i v \)) as long as \(e_i \) (resp. \(f_i \)) does not annihilate \(w \). Furthermore, \(w \) and \(f_i w \) have the same recording tableau under Schensted insertion. This proves in particular, that the crystal operators can be defined on semistandard tableaux.