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Goal

@ Exploration of variants of RSK

> Insertion of multisets instead of integers
» Enumerative manifestations of double centralizer theorem:

V = @ V, = @ Uy ® W,y operators A, B acting
A A

A only acting on Uy, B only acting on W)
@ Applications to partition algebras

> Insertion

partition diagrams — (standard tableau, multiset-valued tableau)
» Well behaved with respect to subalgebras
» dimensions of irreducibles = number of tableaux

@ Uniform block permutation algebra — plethysm



RSK
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@ RSK algorithm and representation theory (review)



RSK

The Robinson—Schensted—Knuth correspondence

@ Robinson 1938: permutations in S,
— Uaen SYT(A) x SYT(X)

@ Schensted 1961: words of length nin [k] = {1,2,... k}
— U/\I—n SSYT[k]()\) X SYT()\)

e Knuth 1970: generalized permutations over [n] and [k] of length ¢
— UAF( SSYT[k](/\) X SSYT[H]()\)



Application: D

Uniform block permutatio

Generalized permutations

A, B ordered alphabets (i.e. A= [n]|, B =[k])

Definition
A generalized permutation is a two-line array w = (5, £ ..
@ ai,...,ay €A by,....bp € B
@ aj<pajppforl<ig<i—1
@ b; <p bjt+1 whenever a; = aj 41
Example
Generalized permutation from [6] to [5]:
11122 3 333 466
155231355112

w O

b, ) such that
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Row insertion
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Application: Diagram algebras Uniform block permutation algebra The plethysm p

RSK correspondence

generalized permutation w = (Zi Zi - Zﬁ)

Row insert by, by, ..., by one by one
Record new box when inserting b; by a;

Theorem (Knuth 1970 )

3 bijection

generalized permutation from A to B — (P, Q)

@ shape(P) = shape(Q)
@ P is semistandard tableau with entries in B

@ @ is semistandard tableau with entries in A



RSK

RSK and representation theory

Schensted 1961
@ Combinatorial bijection

{words of length nin [k]} — U SSYTpq(A) x SYT(A)
AFn

@ Enumerative result

K=Y #HSSYT(N) - #SYT(N)
AFn

@ Representation theory interpretation
GLy x S,-module V®" where V = C¥ (commuting actions)

ver= Pwp e s
An

Wk)‘ is a simple left GL,-module
S* is a simple right S,-module
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Application: Diagram algebras

Variant

@ Encoding of partition diagrams as generalized permutations with
multisets

@ RSK algorithm gives pairs of standard multiset tableaux
@ Well behaved with respect to subalgebras

@ Matches the representation theory and dimensions of Halverson and
Jacobson (2018)

@ New map from standard multiset tabelaux to Bratteli diagrams
(different from Benkart and Halverson (2017))



Application: Diagram algebras Uniform block permutation algebra

The plethysm problem

Partition diagrams

Partition of two alphabets [k] and []

Example

m=1{{1,2,4,2,5}, {3} {5 6,7,3,4,6,7},{8,8},{1}} represented by:

6
99996@

Pi(n) = spanc{r | 7 I [K] U [K]}

Partition algebra
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(Non)propagating blocks

Example

m=1{{1,2,4,2,5},{3},{5,6,7,3,4,6,7},{8,8},{1}} represented by:
@ & G 6 @ © @

A block is propagating if it contains vertices from both [k] and [k].

Example

{1,2,4,2,5} is propagating.

Otherwise, the block is non-propagating.

Example

{3} and {1} are non-propagating.



Application: Diagram algebras

The correspondence

7 = {m,m,..., 7} set partition of [k] U []
Order: last letter order

® T, Tj, .-, 7, propagating blocks of 7 ordered as 7Tj1r << wj;,
where 7" = 7; N [k] and 7 = m; N [K]

® 0j,...,0;, C [k] non-propagating blocks in [k] ordered as
oy < - <0,

® 7;,...,7;, C [k] non-propagating blocks in [k] ordered as

Th < < Tj

at o . gt
(P.Q)=RSK| * * e
T T 0 T,
T = P by adjoining row containing n — p — b empty cells followed by

T,'l, e 77','b
S = Q@ by adjoining row containing n — p — a empty cells followed by

O','l,...,U,'a



Application: Diagram algebras

Uniform block permutation algebra

The plethysm problem

The correspondence — example

Example

m={{2,3,4,4,5},{5,2,3},{1,6,7,8},{7,8},{9,6},{1},{9}} € Po(18)

+ o+ -
T Ty, 7ij _ {2’,3’,4} isl {}’9} {?}
Apply RSK:
p={4078 1519
23| 6 234/16
Adjoin new rows:
45|78 5[9
T = 23|6 5 — |234|16
[T T T TTTTTI30s] [T T T TTTTTTIs8




Application: Diagram algebras

The correspondence — Theorem

SMT,(A) = set of standard multiset tableaux over alphabet [k]

Theorem (COSSZ'20)
Let n > 2k. 3 bijection

V: {set partitions of [k] U [k]} — U SMT[;]()\) x SMT (M)
AFn

Enumerative result

B(2k) =Y #SMT (1)

AFn



Application: Diagram algebras

Restriction to subalgebras

Subclasses of set partitions

permutation perfect matching partial permutation matching
iy ;.\-/.}@ ;.\?@ :
@ ® ® 0 6 ® @ O

planar planar matching planar perfect planar partial

matching permutation



Application: Diagram algebras

Subalgebras of the partition algebra Py (n)

Subalgebra Ay ‘ Diagrams spanning the subalgebra ‘ Dimension
Partition algebra Py(n) all diagrams B(2k)
Group algebra of symmetric group CSy permutations k!
Brauer algebra By(n) perfect matchings (2k — 1)
Rook algebra Ri(n) partial permutations 'ko (’f)2 !
Rook-Brauer algebra RBy(n) matchings ‘io (3 (2i — 1)1
i=
Temperley-Lieb algebra TLy(n) planar perfect matchings k+-1 (2kk)
Motzkin algebra My(n) planar matchings :é) = (3 3%
Planar rook algebra PRy(n) planar partial permutations (2,(")
Planar algebra PPy(n) planar diagrams st (39
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The plethysm problem

Properties under W

Ay subalgebra of partition algebra
SMT 4, () set of standard multiset-valued tableaux under W for Ay
Definition
T € SMTAk()\)
@ T is matching if the first row contains sets of size less than or equal
to 2 and all other rows contain only sets of size 1.
@ Two sets S and S’ are non-crossing if there do not exist elements
a,beSandc,de S'suchthata<c<b<dorc<a<d<b.
e We say that c € [k] is between a set S if there exist a,b € S such
that a < ¢ < b.
o T is planar if
it has two rows

the sets in the first row are pairwise non-crossing

no element belonging to one of the sets in the second row is between
any set in the tableau



Application: Diagram algebras

Tableaux for subalgebras

Under the bijection W, the tableaux are characterized as follows:

properties characterizing SMT 4,

Ax diagrams spanning Ag sizes of entries other properties
in first row
Pi(n)  all diagrams — —
PPy(n) planar diagrams — planar
CSk permutations 0 matching
Bi(n)  perfect matchings 0,2 matching
Ri(n)  partial permutations 0,1 matching
RBi(n) matchings 0,12 matching
TLi(n) planar perfect matchings 0,2 matching & planar
My (n)  planar matchings 0,1,2 matching & planar
PR (n) planar partial permutations 0,1 matching & planar
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Tableaux for subalgebras

Corollary

Let n > 2k and A F n. For each of the algebras Ay let ng be the
irreducible A-representation indexed by \. Then

dim <v§k) = #SMT 4, ().

Corollary

If n > 2k, then for each subalgebra Ay of the partition algebra Py(n), we
have

dim(Ax) = Y (#SMT4,(V)*.

AFn
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Diagram algebras

@ Restrict diagonal action of GL, on V®k to0 S, C GL,: for o € S,

o(Vii®Vvp, @ ® V) =0V, ® - R0V,

@ What commutes with this action?
Answer: Partition algebra Py (n) Martin, Jones 1990s

e Basis: set partitions of {1,2,..., k}U{1,2,... k}

Remark
@ S, and GL, form a centralizer pair

@ Pi(n) and S, form a centralizer pair
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Martin and Jones
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See-Saw pairs

Roe Goodman « Nodan R Wallach
Symmetry,
Representations,

and Invariants
(See book by Goodman, Wallach)

€] Springer



Application: Diagram algebras

See-Saw pairs

A — B algebra embedding Resb V3 = @ (Vﬁ\L)GBCM
m

oA and D centralizer pair

B D
4 B and C centralizer pair
A C

@ Indices for the simple modules for B and C are the same.
@ Indices for the simple modules for A and D are the same.

(DC)\;:,
Res2 Vj = @ (Vé)

A



Application: Diagram algebras

Our See-Saw pair

Resg, Var, = €D (v5,) ™™

o
P (n) . A @D\p,
Resg/ V,’jk(n) = @ (Vsk)
A

Idea: Restrict representations of Py(n) to Sk
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The approach

Uy uniform block permutation algebra

Sk = Uy —  P(n)
—_—
special cases of plethysm generalized LR coefficients

Goal: Combinatorial model for the representation theory of U
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Uniform block permutation algebra

Uniform block permutations

Tanabe 1997, Kosuda 2006

Party algebra, centralizer algebra for complex reflection groups
Definition

The set partition d = {d, da, ..., ds} of [k] U [k] is uniform if
|di N [K]| = |di N [K]| for all 1 <7 < £, Let

U = {d - [k] U [k] : d uniform}.

Example

d = {{27 ZI.}? {57 7}7 {17 3’ i’ i}’ {47 67 ‘5)7 6}7 {77 8) 97 57 g? g}}

Think of d as a size-preserving bijection

< {2+ {5 {13} {46} {7,8,9} >
{4y {7} {1,2} {3,6} {589}

= Elements of U are called uniform block permutations
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Uniform block permutations — continued

Example
Diagram for {{1,3,1,2},{2,4}, {4,6,3,6},{5,7},{7,8,9,5,8,9}}

The product of

is obtained by stacking the diagrams of d and d’:



Uniform block permutation algebra

|ldempotents
For every set partition 7 of [k] we define:

er ={AUA:Ac 1} el

where A = {i: i € A}. For example,
o o
€2|7/14|36/589 — ﬁ
o o

The set E(Uy) = {er : m & [k]} is a complete set of idempotents in Uy. J

Lemma



Uniform block permutation algebra

Maximal subgroups

Definition
M finite monoid, e idempotent
Maximal subgroup: Ge = unique largest subgroup of M containing e

Lemma
The maximal subgroup of Uy at the idempotent e, is

Ge, = {d € Uy : top(d) = bot(d) = 7}

Example

For m = {{1},{2},{3,4},{5,6}}

“=IR R TS KRR KA
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Maximal subgroups — continued

Example
For 7 = {{1}, {2}, {3,4}, {5,6}} with type(r) = (1%2?)

=R TS KRR KA

Theorem
For 7 & [k] with type(m) = (191222 ... k)

Ge, >~ S5, X S5, X -+- X S5,



Uniform block permutation algebra

Representation theory of U

Bemianmin Steinberg

Representation
Theory of Finite
Monoids

(See book by Steinberg 2016)

£) sprimger

Indexing set of simple modules

k
I = {()\(1), PO )\(k)> : \) are partitions such that Z i|)\(")| = k}
i=1

Example

h={((3),0,0),((2,1),0,0),((1,1,1),0,0), (1), (1), 0), (0,0, (1))}




Uniform block permutation algebra

Characters, symmetric functions, and plethysm

Theorem (OSSZ 2022)

Multiplicity of Vg in Ressk VL),‘ is (s\m[si]sx@ [s2] - - - syw [skl, su)
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The plethysm problem

Plethysm via representations of GL,

GL,(C) = invertible n x n matrices

Definition J

@ GL,-representation p: GL, — GL,
@ GL,-representation 7: GL,, — GL,

@ Composition is GL,-representation
Top: GL, — GL,
Definition
Character of composition is plethysm:

char(7 o p) = char(7)[char(p)]



Frobenius map

R" space of class functions of GL,
A" ring of symmetric functions of degree n

Power sum symmetric function py

PX = PXxPXy " P,
Pr=X{ +Xp 4"

Schur function s,

a= 3 D

TESSYT())
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Frobenius map — continued

Definition
The Frobenius characteristic map is ch”: R" — A"

=Y S
= ~ XuPu
pEn “p
where z, = 1%1a112%23;! .- for y = 1912%2. ..

Remark

The irreducible character x* indexed by A under the Frobenius map is
ch(x*) = s

by the identity

s\ = Z X,Lpu
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Plethysm problem

Problem
Find a combinatorial interpretation for the coefficients a LENin the
expansion
SA [SH] = Zal)/\uslf
14
Problem

Find a crystal on tableaux of tableaux which explains a¥ ,.



The plethysm problem

Thank you !

Remark (Take away)
Plethysm is hard!

Remark (Take away)

Integrable systems, representation theory and combinatorics all play hand
in hand!
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