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Call the books 1,2, ..., n.
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« State space: 2 = all permutations of n books on a shelf
+ Choose book a with probability z.

* Move chosen book to front:

BiBy---a-+ By —aBiBy - By

Popular books end up at the front!
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State space:
Q = {123,132,213,231, 312,321}
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Example: 3 books

State space:
2T 2 Q = {123,132,213,231, 312,321}

Transition matrix:

.

321 - 3 2 z1 0 xz2 0 x3 O

/ 1 0 z1 z2 0 z3 O
| Teo= |7 0 T 0 0
/ 0 0 =z 0 a3

/ 132D 1 a5

i
‘\‘ 0 = 0 x2 x3 O
\ 2 3 13)1 1 2 0 0 0 z3
\ \ i istribution:

\ RV \ Stationary distribution:

\ U.T(x) =W
? = (:;14:12’3’ Il;lfjs ljlffs ;;i:jg LT11+Tj2 ) l’rlsz)
231 D2
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Random to top shuffle Markov chain

Random to top generator

ZSZ i° SlX )

such that

= me(m,m,...77?1-,...,71'”)
=il
Stationary state (Hendricks 72)

palr 7r1+1+ +zﬁn

Alternative derivation of stationary state: geometric finite semigroups
(Diaconis, Brown, Ayyer, Steinberg, Thiéry, Rhodes, S., ...)
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Tsetlin library: semigroup formulation

P(n) set of subsets of [n] = {1,2,...,n}, multiplication is union
This semigroup forms a left regular band

Uv-U=U-V, U-U=U, Yu,v € P(n)

1
[2
1C {1} {2 D2 {31 D3
3 3
| > >

1,27 {1,2} {1,3 7O 1,3 {2,3} 2,3

N

{1,2,3}31,2,3

Right Cayley graph Cay(P(n), [n])



Tsetlin library: Karnofsky—Rhodes expansion
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Tsetlin library: Karnofsky—Rhodes expansion

12521 12 Slerts
/ 3 / 3 1 2
1,2212  1,3<*13 1,272 21 233523 31251,3 323523
) A )
3‘ 2‘ 3‘ ‘1 12 1
123 132 213 231 312 321
—r\‘ -~ —r\‘ -~ -~ -~
1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Minimal ideal: K = permutations of n letters

Random walk on K by left multiplication = Tsetlin library

Remark (Take away)

Left versus right is important!
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Tsetlin library: Karnofsky—Rhodes expansion

i .3 .3 Y 5578 55918
L,2:7212 1,3:213 1,2.7221 233523 31y 1,3 323523
123 132 213 231 312 321
1\ 1\ 1\ 1\ 1\ 1\

! 7 7 7 7 7
1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Property: unique simple path to permutation = = mymz - - - mp
All paths to 7 mimimo{m1, m2}* - mif{m, ..., m} -

Remark (Intuition, see and )
Stationary distribution ¥ for s € K
= probability of starting at 1 and reaching s

Extended to all finite Markov chains with Rhodes in 2019
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Tsetlin library: stationary distribution

All paths to 7: mimimo{m, ma}* - mi{me, ..., m} - 7n

Question: How do we compute the stationary distribution from this?

o0
1 1 - » — ;l f— 1 r j— .
Geometric series: Y En= Y = T where z, = H‘Ll
sea* £=0 1€ESs
> -
X
s 1-— (uLa —+ :Lb)

se{a,b}*

Stationary distribution for Tsetlin library
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Tsetlin library: stationary distribution

All paths to 7: mimimo{m, ma}* - mi{me, ..., m} - 7n

Question: How do we compute the stationary distribution from this?

Geometric series: Z — Zla = where z, = H‘“
s€Ea* £=0 i€s
> .
By = ——
se{a,b}* ‘La +:Lb)

Stationary distribution for Tsetlin library

\I}ﬂ-: Z $52H$

semymfmo{my, w2}y i=1

Rederivation of result of Hendricks 1972.



Eigenvalues

Phatarfod 1991

) _1\k
dn :=n!'Sp_, 52 = number of derangements of &,

For every subset S = {i1,...,ix} C [n], there is an eigenvalue
Ziy, + - - + x4, which occurs with multiplicity d,,—.
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g-deformations

Recall: Tsetlin library as action of symmetric group &,, on permutations:

T(x) = Zsi,l <51 X(X)

Hecke algebra ., (q):

TiTj = T]'Ti if |Z —j‘ >1
Tin+1Ti = TL‘+1TL'TL'+1 fOI‘ 1 < 7 g n—2
(T +1)(Ti —q) =0 forl<i<n—1

The g-analogue of the random-to-top shuffle becomes
(Lusztig 2006 and Axelrod-Freed, Brauner, Chiang, Commins, Lang 2024)

T(@)=)Y Tim1--Th
=1

Question: How to introduce probabilities X' (x)?
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g-deformations

We define three ¢-deformations of the Tsetlin library:

T(q7x) = ZTZ‘71 . -Tl X(X)

1. Actions of Hecke algebra on permutations: 7s,, (¢, x)

2. Action of Hecke algebra on words of content m where m = (m, ..., my)
is a composition of n: Tw,, (¢, x)

3. Action of Hecke algebra on flags: 7¢,5(q, %)

*+ Only 7¢/5(q,x) is related to a left-regular band.
» We obtain 7s,, (¢,x) and Tw,, (g, x) by lumping.



+ Definition of the Markov chains 7s,, (¢,%), Tw,, (¢,%), Ta/ (4, %)



+ Definition of the Markov chains Te,, (¢,%), Tw, (¢,%), Ta,5(q,%)
« Stationary distribution



+ Definition of the Markov chains Te,, (¢,%), Tw, (¢,%), Ta,5(q,%)
« Stationary distribution

+ Eigenvalues and multiplicities
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g-Tsetlin library on permutations

Action of Hecke generator 7; on permutations:

qms; i1 < T
7TTZ' =
wsi+(q— D1 mig1 > m

Action of ¢~ T} acquires a probabilistic meaning if 0 < ¢=' < 1.

Definition ( )

g-Tsetlin library
T(gx) =Y Tie1--T1 X(g,%)
=1

with

m X(g,x) = T g Zl’i:

n—my
q i=1




g-Tsetlin library on permutations

Various specializations

g-Tsetlin library g-random-to-top
zi = ¢"""/[n]
T(g,%) - ()
g=1 qg=1
T
09 x; =1/n v

Tsetlin library random-to-top



g-Tsetlin library on permutations

Various specializations

g-Tsetlin library g-random-to-top
zi =q""'/[n]
T(g,%) - ()
T (x
09 x; =1/n v
Tsetlin library random-to-top
g-integers:
_ qn =1l _ . n—1
[n]q—qf1 =1l+q+-+g






Example (¢-Tsetlin library for n = 3)
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Example (¢-Tsetlin library for n = 3)

(quqjl)zl (qfql2)11 o 0 z3 0

7(‘7_;)“ %1 T 0 3 0

T =| = 0 = Lm0
x1 0 0 T2 0 a3

0 1 0 T2 zz3 0

0 I 0 T2 0 I3

Stationary distribution: left eigenvector

\I/(q,X) : T(q7 X) = (.%1 tx2 4o+ l’n)\I/(q,X)

Example (n = 3 continued)

P — p— 2 -
(g, %) = (qxlm q(z1 + x2) 5, TLT A% = Q%5 qT1Ts

b b b
71 — g? z1 — ¢> —T2 +q
P q(z2 +x3) w123 T2T3
2 ) )
T2 —q T1 + T2 T1+ T2



Example (¢-Tsetlin library for n = 3 continued)

(®—q+1)z1
2

<qj1)11

(g=D=zy

q2

1
q
0
0

T
1

oo o<l 8 8

x3 O
z3 0
x3

0 I3
zz 0
0 3



Example (¢-Tsetlin library for n = 3 continued)

(qQ—qQH)wl (g=D)zy

q q2

(g=1)zy il

q q

0

T(a,x) = =

I 0

0 T

0 T

oo o<l 8 8

xz3 0

xs3 0
0 3
0 T3

x3 O
0 x3

Eigenvalues of T (q,x): 0,0, ¢ %z1,q "2, 23, &1 + 22 + 3
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Stationary distribution

k
K(bix) := > ap,q """ forb = (by,...,bx) weakly decreasing
=1

r(b;x) := k(b>;x) for bs reordering of b in weakly decreasing order

* Left-to-right minimum of = € &,, is w; such thatm; > n; forall 1 <i < j.
* LRM(7) = set of positions of left-to-right minima of =

Theorem ( )

q— nv(m)

V(g )r = =3
II (1—q"’*"*1x(7r1 ..... wk,l;x))
k=1
n—1 n—1
x II (g %) 11 (5(mpp s ThixX) = @ KTy s Tl_13%)
k=1 k=1
kELRM () k¢LRM (7)



Eigenvalues

Theorem ( )

Forevery S = {i1 > i2 > --- > ix} C [n], there is an eigenvalue of T (g, x)

k
X ;
As(a) =D Sty

j=1

which occurs with multiplicity d,, .
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g-Tsetlin library on words

W set of words in alphabet {1,2,...,¢}
with content m = (ma, ..., m,) composition of n

Action of Hecke algebra

q(wl.,.w¢+1 wi...wn) If Wi+41 < Wy
(wl...wi+1wi...wn)+(q— l)w if Wit1 > Wy

Probabilities
mwl

qmw1+1+---+me [mwl}q

w - Xw, (q,x) = w
g-Tsetlin library on words

n

Twn(@:%) := > Tic1 -+ T1 Xiwn (g,%)

=1
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The semigroup formed by union of sets is replaced by an action on flags over
finite fields.

I, finite field with ¢ elements
G = GL,(F,)

B upper triangular matrices
Aflagis a sequence f = (Vo C Vi C --- C V,,) of subspaces of Fy.
The set of all flags is

G/B={Fe= Vo CVi C--- C V)| dim(V;) = i}

The standard flag is given by

E. = (0, {e1), (e1,€2),...,{e1,e2,...,¢en))

20



Number of flags

The number of lines in Iy is

The number of flags in Fy is [n],!
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Number of flags

The number of lines in Iy is

The number of flags in Fy is [n],!
Example (n = 2 and ¢ = 2)
F3 has [2]> = 3 lines:
<61>, <€2> and <61 + €2>

There are [2]2! = 3 flags in F3:

{0} C {e1) C (e1, e2) 1 0
{O} g <€1 +€2> C <€1,€2> <0£ 1) (Oé € Fg)

{0} C {ea) C {er, e2) (? é)



Equivalence classes

Because of the action of GL,(F,), flags can be represented by equivalence
classes [7] = [(0, (v1), (v1,v2), ..., (vi,v2,...,v,))] labeled by permutations.
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Equivalence classes

Because of the action of GL,(F,), flags can be represented by equivalence

classes [7] = [(0, (v1), (v1,v2), ..., (vi,v2,...,v,))] labeled by permutations.
Example (GL3(F,))
1 0 0
[123] = a 1 0]|e,B,y€l,
B v 1
0 1 0 1 0 0
[213] = 1 0 0||la,BeEF,p, [132]= a 0 1||la,Bel,
a f 1 B 1 0
0 1 0 0 0 1
[312] = 0 a 1||laeck,p, [231]= 1 0 0flacT,
1 0 0 a 1 0
0 0 1
321]=(0 1 0
1 0 O



Hecke action on flags

The action of the Hecke generator T; on a flag is given by
VoC-CVa)Ti= > (WS- CVinCWC Vi C--- CVR),
W#V;
where the sum is over all subspaces V;—1 C W C V;4; such that dim(W) =
and W # V;. (Ram—Halverson and lwahori)
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and W # V;. (Ram—Halverson and lwahori)
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0
1

2 = @

1 0 1
0|Tr= |1 0
0 0 0

R
N
~ N = O o

The last sum gives rise to ¢ terms (or flags) related to the permutation 231.



Hecke action on flags

The action of the Hecke generator T; on a flag is given by
VoC-CVa)Ti= > (WS- CVinCWC Vi C--- CVR),
W#V;
where the sum is over all subspaces V;—1 C W C V;4; such that dim(W) =
and W # V;. (Ram—Halverson and lwahori)

0
0
1

2 = @

1 0 1
0|Tr= |1 0
0 0 0

R
~ N = O o
S = O

The last sum gives rise to ¢ terms (or flags) related to the permutation 231.

This corresponds to Hecke action [321]77 = ¢[231].



Hecke action on flags

The action of the Hecke generator T; on a flag is given by

VoC- CVa)h= > (S CVin CWCVin C---CVa)
W#V;

Another example for a flag of the form

((0,1,0)) € ((0,1,),(1,0,8)) € [213]

0 1 0 0 0 1 0 1 0
1 0 0|T:=|1 0 0|+> |1 0 0
a B 1 a 1 0) t#0\a B+t 1

0 0 1 0 1 0

=11 0 0|+> [1 00

a 1 0 7€Fq \ax vy 1

Y#B

This corresponds to [213]7> = [231] + (¢ — 1)[213].



g-Tsetlin library on flags

g-Tsetlin library on flags is implemented by adding lines and variables
associated to the topmost nonzero entry in line L;

(Vo C--- CVo)Ta/(g,x) =

nlq
S XEL)(VoC L CVi+Lj S C Va1 +L; CVaS

j=1

where X(L]) = q:%i if Lj =S <€7; TP ZZ:H_I Ck6k>.
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g-Tsetlin library on flags

g-Tsetlin library on flags is implemented by adding lines and variables
associated to the topmost nonzero entry in line L;

(Vo C--- CVa)Tg/B(g,x) =

n]q
S XLH)VoC L CVA+L; € CVaa+ L CVa)

j=1
where X(L]) = q:%i if Lj =S <€7; TP ZZ:H_I Ck6k>.

+ The generators of the left regular band are the [n], lines in Fy.
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g-Tsetlin library on flags

g-Tsetlin library on flags is implemented by adding lines and variables
associated to the topmost nonzero entry in line L;

(Vo C---C Vn)TG/B(qu) =

ZX YVoCL;CVi+L; C--CVa1+L; CVaV

where X(L]) = q,gf%l if Lj =S <€7; TP ZZ:H_I Ck6k>.
+ The generators of the left regular band are the [n], lines in Fy.
« Theline L = (e; + ZZ:Z.H crex) has probability
Ti
Y= n—1
q

because there are ¢"* lines L with leading term e; since there are ¢
choices for each coefficient cy.
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Example n =3 and ¢ = 2

Partial KR-expanded Cayley graph

(e1) (e1 + e2) (e1 + e3)
@), (1+2) (2+3), (3), (1 +3)
(2), (1), {(1+2+3) .
Grn () @\ CRECHIEE
(e1, e2) (e1,e2 + e3) (e1,e3)
/q Mes l gi%i?; 24 3)
61,62,63 <617€3,€2>

F. = <€1> Q <€1,€3> Q <€1,€3,€2>
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Example n =3 and ¢ = 2

Partial KR-expanded Cayley graph

(e1) (e1 + e2) (e1 + e3)
@), (1+2) (2+3), (3), (1 +3)
(2), (1), {(1+2+3) .
Grn () @\ CRECHIEE
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F. = <€1> Q <€1,€3> Q <€1,€3,€2>

yo oyt (@— Dy
1—y1 1—y3—qun

Yr, = x (qy2 +q(q — Dy1)

26



Example n =3 and ¢ = 2

Partial KR-expanded Cayley graph

(e1) (e1+e2) (er +es)
(2+3),
(2),(1+2) (3), (1 +3)

(2), (1), {(1+2+3) .
(1+2) Q, Q Qfa>1<1>7<1+3>

(e1, e2) (e1,e2 +e3) (e1,e3)

/q Mes l g>jr<22>,+<i>jrz+3>

61,62,63 <617€3,€2>

F. = <€1> Q <€1,€3> Q <€1,€3,€2>

yo oyt (@— Dy
1—y1 1—y3—qun

Yr, = x (qy2 +q(q — Dy1)

T q2w3+(q—1)x1 B 1\11
2 - (72 [132]

> —m q
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General stationary distribution

Fix permutation = € S,,.
Define bi(s) = #{t € {m1,...,m—1} | t > s}.

Define x(s < m,) = 1if s < m, and 0 else.
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General stationary distribution

Fix permutation = € S,,.
Define bi(s) = #{t € {m1,...,m—1} | t > s}.

Define x(s < m,) = 1if s < m, and 0 else.

Theorem ( )

The stationary distribution for a flag associated to the permutation
™ = mims ... T, fOr a general prime power q is given by

[Tiey flm...me)

’([}Tr = n—1 @
| (1 — D se{m1ym} m)
where
_ Ls _ 1 \x(s<mg)
flm...mp) = Z e (¢g—1) .
SE{ Al goocy T}
STy



Eigenvalues

g-derangement numbers (Wachs 1989)

du(@) = ot 3 oo
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Eigenvalues

g-derangement numbers (Wachs 1989)

du(@) = ot 3 oo

k=0

—

Theorem ( )

Eigenvalues of T/ (x, q):
For every subset S = {i1 > i2 > --- > ir} C [n], there is an eigenvalue

k
X
As(g;x) = Z Wj_ﬁl

Jj=1



Eigenvalues

g-derangement numbers (Wachs 1989)

n

du(@) = ot 3 oo

k=0

—

Theorem ( )

Eigenvalues of T/ (x, q):
For every subset S = {i1 > i2 > --- > ir} C [n], there is an eigenvalue
i X
As(g,x) = Z; o
=
Multiplicities:

As (g, x) occurs with multiplicity d,, . (q)q™ 1) (n—1=i2)+F(n—kt+l=iy)
when k # n, and with multiplicity 1 when k = n.



Conclusion

+ Construction of stationary state of ¢-Tsetlin library via projection of a
geometric semigroup Markov chain on flags
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* Proof directly in 7s,, (¢, %) not known
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Conclusion

+ Construction of stationary state of ¢-Tsetlin library via projection of a
geometric semigroup Markov chain on flags

* Proof directly in 7s,, (¢, %) not known
* Application to other Markov chains

* multi-species ASEP

« type C analogue

* signed permutations

* linear extension analogues
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