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Tsetlin library



Tsetlin library

Call the books 1, 2, . . . , n.

• State space: Ω = all permutations of n books on a shelf

• Choose book a with probability xa.

• Move chosen book to front:

B1B2 · · · a · · ·Bn → aB1B2 · · ·Bn

Popular books end up at the front!
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Example: 3 books
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State space:
Ω = {123, 132, 213, 231, 312, 321}

Transition matrix:

T (x) =



x1 0 x2 0 x3 0

0 x1 x2 0 x3 0

x1 0 x2 0 0 x3

x1 0 0 x2 0 x3

0 x1 0 x2 x3 0

0 x1 0 x2 0 x3


Stationary distribution:
Ψ · T (x) = Ψ

Ψ =
(

x1x2
x2+x3

, x1x3
x2+x3

, x1x2
x1+x3

, x2x3
x1+x3

, x1x3
x1+x2

, x2x3
x1+x2

)

3



Example: 3 books

213

132

321

312

123

231

2

3

1

2

1

3

1

3

2 1

3

2

2

3

1

3

1

2

State space:
Ω = {123, 132, 213, 231, 312, 321}

Transition matrix:

T (x) =



x1 0 x2 0 x3 0

0 x1 x2 0 x3 0

x1 0 x2 0 0 x3

x1 0 0 x2 0 x3

0 x1 0 x2 x3 0

0 x1 0 x2 0 x3


Stationary distribution:
Ψ · T (x) = Ψ

Ψ =
(

x1x2
x2+x3

, x1x3
x2+x3

, x1x2
x1+x3

, x2x3
x1+x3

, x1x3
x1+x2

, x2x3
x1+x2

)

3



Example: 3 books

213

132

321

312

123

231

2

3

1

2

1

3

1

3

2 1

3

2

2

3

1

3

1

2

State space:
Ω = {123, 132, 213, 231, 312, 321}

Transition matrix:

T (x) =



x1 0 x2 0 x3 0

0 x1 x2 0 x3 0

x1 0 x2 0 0 x3

x1 0 0 x2 0 x3

0 x1 0 x2 x3 0

0 x1 0 x2 0 x3



Stationary distribution:
Ψ · T (x) = Ψ

Ψ =
(

x1x2
x2+x3

, x1x3
x2+x3

, x1x2
x1+x3

, x2x3
x1+x3

, x1x3
x1+x2

, x2x3
x1+x2

)

3



Example: 3 books

213

132

321

312

123

231

2

3

1

2

1

3

1

3

2 1

3

2

2

3

1

3

1

2

State space:
Ω = {123, 132, 213, 231, 312, 321}

Transition matrix:

T (x) =



x1 0 x2 0 x3 0

0 x1 x2 0 x3 0

x1 0 x2 0 0 x3

x1 0 0 x2 0 x3

0 x1 0 x2 x3 0

0 x1 0 x2 0 x3


Stationary distribution:
Ψ · T (x) = Ψ

Ψ =
(

x1x2
x2+x3

, x1x3
x2+x3

, x1x2
x1+x3

, x2x3
x1+x3

, x1x3
x1+x2

, x2x3
x1+x2

)

3



Random to top shuffle Markov chain

Random to top generator

T (x) =
n∑

i=1

si−1 · · · s1X (x)

such that

π · T (x) =
n∑

i=1

xπi(πi, π1, . . . , π̂i, . . . , πn)

Stationary state (Hendricks ‘72)

Ψ · T (x) = Ψ, Ψπ =
n∏

i=1

xπi

xπi+1 + · · ·+ xπn

.

Alternative derivation of stationary state: geometric finite semigroups
(Diaconis, Brown, Ayyer, Steinberg, Thiéry, Rhodes, S., . . . )
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Tsetlin library: semigroup formulation

P (n) set of subsets of [n] = {1, 2, . . . , n}, multiplication is union

This semigroup forms a left regular band

u · v · u = u · v, u · u = u, ∀u, v ∈ P (n)

Right Cayley graph Cay(P (n), [n])

1

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

1 2 3

2
3

1
2

3

1

3
2 1

1 2 3

1, 2 1, 3 2, 3

1, 2, 3
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Tsetlin library: Karnofsky–Rhodes expansion

1

1 2 3

12 13 21 23 31 32

123 132 213 231 312 321

1 2 3

2 3 1 3 1 2

3 2 3 1 2 1

1 2 3

1, 2 1, 3 1, 2 2, 3 1, 3 2, 3

1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

Minimal ideal: K = permutations of n letters

Random walk on K by left multiplication = Tsetlin library

Remark (Take away)
Left versus right is important!
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Tsetlin library: Karnofsky–Rhodes expansion

1

1 2 3

12 13 21 23 31 32

123 132 213 231 312 321

1 2 3

2 3 1 3 1 2

3 2 3 1 2 1

1 2 3

1, 2 1, 3 1, 2 2, 3 1, 3 2, 3

1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

Property: unique simple path to permutation π = π1π2 · · ·πn

All paths to π: π1π
⋆
1π2{π1, π2}⋆ · · ·πi{π1, . . . , πi}⋆ · · ·πn

Remark (Intuition, see Brown and Diaconis 1998)
Stationary distribution Ψs for s ∈ K

= probability of starting at 1 and reaching s

Extended to all finite Markov chains with Rhodes in 2019
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Tsetlin library: stationary distribution

All paths to π: π1π
⋆
1π2{π1, π2}⋆ · · ·πi{π1, . . . , πi}⋆ · · ·πn

Question: How do we compute the stationary distribution from this?

Geometric series:
∑
s∈a⋆

xs =

∞∑
ℓ=0

xℓa =
1

1− xa
where xs =

∏
i∈s

xi

∑
s∈{a,b}⋆

xs =
1

1− (xa + xb)

Theorem
Stationary distribution for Tsetlin library

Ψπ =
∑

s∈π1π
⋆
1π2{π1,π2}⋆···πn

xs =

n∏
i=1

xπi

1−
∑i−1

j=1 xπj

Rederivation of result of Hendricks 1972.
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Eigenvalues

Phatarfod 1991

dn := n!
∑n

k=0
(−1)k

k!
= number of derangements of Sn

Theorem
For every subset S = {i1, . . . , ik} ⊆ [n], there is an eigenvalue
xi1 + · · ·+ xik which occurs with multiplicity dn−k.

9



q-deformations



q-deformations

Recall: Tsetlin library as action of symmetric group Sn on permutations:

T (x) =
n∑

i=1

si−1 · · · s1X (x)

Hecke algebra Hn(q):

TiTj = TjTi if |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 for 1 ⩽ i ⩽ n− 2

(Ti + 1)(Ti − q) = 0 for 1 ⩽ i ⩽ n− 1

The q-analogue of the random-to-top shuffle becomes
(Lusztig 2006 and Axelrod-Freed, Brauner, Chiang, Commins, Lang 2024)

T (q) =

n∑
i=1

Ti−1 · · ·T1

Question: How to introduce probabilities X (x)?

10
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q-deformations

We define three q-deformations of the Tsetlin library:

T (q, x) =
n∑

i=1

Ti−1 · · ·T1 X (x)

1. Actions of Hecke algebra on permutations: TSn(q, x)

2. Action of Hecke algebra on words of content m where m = (m1, . . . ,mℓ)

is a composition of n: TWm(q, x)

3. Action of Hecke algebra on flags: TG/B(q, x)

Remark

• Only TG/B(q, x) is related to a left-regular band.

• We obtain TSn(q, x) and TWm(q, x) by lumping.
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Results

• Definition of the Markov chains TSn(q, x), TWm(q, x), TG/B(q, x)

• Stationary distribution

• Eigenvalues and multiplicities
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q-Tsetlin library on permutations



q-Tsetlin library on permutations

Action of Hecke generator Ti on permutations:

πTi =

qπsi πi+1 < πi

πsi + (q − 1)π πi+1 > πi

Remark

Action of q−1Ti acquires a probabilistic meaning if 0 < q−1 < 1.

Definition (ABGS2026)
q-Tsetlin library

T (q, x) =
n∑

i=1

Ti−1 · · ·T1 X (q, x)

with

π · X (q, x) =
xπ1

qn−π1
π,

n∑
i=1

xi = 1.
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q-Tsetlin library on permutations

Various specializations

q-Tsetlin library

T (q, x)

q-random-to-top

T (q)

T (x)

Tsetlin library

T

random-to-top

xi = qn−i/[n]q

q = 1 q = 1

xi = 1/n

q-integers:

[n]q =
qn − 1

q − 1
= 1 + q + · · ·+ qn−1
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Example

Example (q-Tsetlin library for n = 3)

T (q, x) =



(q2−q+1)x1

q2
(q−1)x1

q2
x2 0 x3 0

(q−1)x1
q

x1
q

x2 0 x3 0

x1 0 x2
q

(q−1)x2
q

0 x3

x1 0 0 x2 0 x3

0 x1 0 x2 x3 0

0 x1 0 x2 0 x3



Stationary distribution: left eigenvector

Ψ(q, x) · T (q, x) = (x1 + x2 + · · ·+ xn)Ψ(q, x)

Example (n = 3 continued)

Ψ(q, x) =

(
qx1

x1 − q(x1 + x2)

x1 − q2
, x1

x1 − qx1 − q2x3
x1 − q2

,
qx1x2

−x2 + q
,

x2
x2 − q(x2 + x3)

x2 − q
,
x1x3
x1 + x2

,
x2x3
x1 + x2

)
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Example

Example (q-Tsetlin library for n = 3 continued)
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Eigenvalues of T (q, x): 0, 0, q−2x1, q
−1x2, x3, x1 + x2 + x3
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Example

Example (q-Tsetlin library for n = 3 continued)
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Stationary distribution

κ(b; x) :=
k∑

i=1

xbiq
i+bi−k−1 for b = (b1, . . . , bk) weakly decreasing

κ(b; x) := κ(b>; x) for b> reordering of b in weakly decreasing order

Definition

• Left-to-right minimum of π ∈ Sn is πj such that πi > πj for all 1 ⩽ i < j.

• LRM(π) = set of positions of left-to-right minima of π

Theorem (ABGS2026)

Ψ(q, x)π =
q
− inv(π)

n−1∏
k=1

(
1 − q

k−n−1
κ(π1, . . . , πk−1; x)

)

×


n−1∏
k=1

k∈LRM(π)

κ(πk; x)

n−1∏
k=1

k/∈LRM(π)

(κ(πpk
, . . . , πk; x) − q

−1
κ(πpk

, . . . , πk−1; x))


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Eigenvalues

Theorem (ABGS2026)
For every S = {i1 > i2 > · · · > ik} ⊆ [n], there is an eigenvalue of T (q, x)

λS(q, x) =
k∑

j=1

xij
qn−ij−j+1

which occurs with multiplicity dn−k.
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q-Tsetlin library on words



q-Tsetlin library on words

Wm set of words in alphabet {1, 2, . . . , ℓ}

with content m = (m1, . . . ,mℓ) composition of n

Action of Hecke algebra

w · Ti :=

q(w1 . . . wi+1 wi . . . wn) if wi+1 ⩽ wi

(w1 . . . wi+1wi . . . wn) + (q − 1)w if wi+1 > wi

Probabilities
w · XWm(q, x) :=

xw1

qmw1+1+···+mℓ [mw1 ]q
w

q-Tsetlin library on words

TWm(q, x) :=
n∑

i=1

Ti−1 · · ·T1 XWm(q, x)
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q-Tsetlin library on flags



Flags

The semigroup formed by union of sets is replaced by an action on flags over
finite fields.

Fq finite field with q elements

G = GLn(Fq)

B upper triangular matrices

A flag is a sequence f = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) of subspaces of Fn
q .

The set of all flags is

G/B = {F• = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) | dim(Vi) = i}

The standard flag is given by

E• = (0, ⟨e1⟩, ⟨e1, e2⟩, . . . , ⟨e1, e2, . . . , en⟩)

20



Flags

The semigroup formed by union of sets is replaced by an action on flags over
finite fields.

Fq finite field with q elements

G = GLn(Fq)

B upper triangular matrices

A flag is a sequence f = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) of subspaces of Fn
q .

The set of all flags is

G/B = {F• = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) | dim(Vi) = i}

The standard flag is given by

E• = (0, ⟨e1⟩, ⟨e1, e2⟩, . . . , ⟨e1, e2, . . . , en⟩)

20



Flags

The semigroup formed by union of sets is replaced by an action on flags over
finite fields.

Fq finite field with q elements

G = GLn(Fq)

B upper triangular matrices

A flag is a sequence f = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) of subspaces of Fn
q .

The set of all flags is

G/B = {F• = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) | dim(Vi) = i}

The standard flag is given by

E• = (0, ⟨e1⟩, ⟨e1, e2⟩, . . . , ⟨e1, e2, . . . , en⟩)

20



Flags

The semigroup formed by union of sets is replaced by an action on flags over
finite fields.

Fq finite field with q elements

G = GLn(Fq)

B upper triangular matrices

A flag is a sequence f = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) of subspaces of Fn
q .

The set of all flags is

G/B = {F• = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) | dim(Vi) = i}

The standard flag is given by

E• = (0, ⟨e1⟩, ⟨e1, e2⟩, . . . , ⟨e1, e2, . . . , en⟩)

20



Flags

The semigroup formed by union of sets is replaced by an action on flags over
finite fields.

Fq finite field with q elements

G = GLn(Fq)

B upper triangular matrices

A flag is a sequence f = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) of subspaces of Fn
q .

The set of all flags is

G/B = {F• = (V0 ⊆ V1 ⊆ · · · ⊆ Vn) | dim(Vi) = i}

The standard flag is given by

E• = (0, ⟨e1⟩, ⟨e1, e2⟩, . . . , ⟨e1, e2, . . . , en⟩)

20



Number of flags

The number of lines in Fn
q is

[n]q =
1− qn

1− q

The number of flags in Fn
q is [n]q!

Example (n = 2 and q = 2)

F2
2 has [2]2 = 3 lines:

⟨e1⟩, ⟨e2⟩ and ⟨e1 + e2⟩

There are [2]2! = 3 flags in F2
2:

{0} ⊆ ⟨e1⟩ ⊆ ⟨e1, e2⟩
{0} ⊆ ⟨e1 + e2⟩ ⊆ ⟨e1, e2⟩

(
1 0

α 1

)
(α ∈ F2)

{0} ⊆ ⟨e2⟩ ⊆ ⟨e1, e2⟩

(
0 1

1 0

)

21



Number of flags

The number of lines in Fn
q is

[n]q =
1− qn

1− q

The number of flags in Fn
q is [n]q!

Example (n = 2 and q = 2)

F2
2 has [2]2 = 3 lines:

⟨e1⟩, ⟨e2⟩ and ⟨e1 + e2⟩

There are [2]2! = 3 flags in F2
2:

{0} ⊆ ⟨e1⟩ ⊆ ⟨e1, e2⟩
{0} ⊆ ⟨e1 + e2⟩ ⊆ ⟨e1, e2⟩

(
1 0

α 1

)
(α ∈ F2)

{0} ⊆ ⟨e2⟩ ⊆ ⟨e1, e2⟩

(
0 1

1 0

)

21



Number of flags

The number of lines in Fn
q is

[n]q =
1− qn

1− q

The number of flags in Fn
q is [n]q!

Example (n = 2 and q = 2)

F2
2 has [2]2 = 3 lines:

⟨e1⟩, ⟨e2⟩ and ⟨e1 + e2⟩

There are [2]2! = 3 flags in F2
2:

{0} ⊆ ⟨e1⟩ ⊆ ⟨e1, e2⟩
{0} ⊆ ⟨e1 + e2⟩ ⊆ ⟨e1, e2⟩

(
1 0

α 1

)
(α ∈ F2)

{0} ⊆ ⟨e2⟩ ⊆ ⟨e1, e2⟩

(
0 1

1 0

)

21



Equivalence classes

Because of the action of GLn(Fq), flags can be represented by equivalence
classes [π] = [(0, ⟨v1⟩, ⟨v1, v2⟩, . . . , ⟨v1, v2, . . . , vn⟩)] labeled by permutations.

Example (GL3(Fq))

[123] =


1 0 0

α 1 0

β γ 1


∣∣∣∣∣∣∣α, β, γ ∈ Fq


[213] =


0 1 0

1 0 0

α β 1


∣∣∣∣∣∣∣α, β ∈ Fq

 , [132] =


1 0 0

α 0 1

β 1 0


∣∣∣∣∣∣∣α, β ∈ Fq


[312] =


0 1 0

0 α 1

1 0 0


∣∣∣∣∣∣∣α ∈ Fq

 , [231] =


0 0 1

1 0 0

α 1 0


∣∣∣∣∣∣∣α ∈ Fq


[321] =

0 0 1

0 1 0

1 0 0



22
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∣∣∣∣∣∣∣α, β, γ ∈ Fq


[213] =


0 1 0

1 0 0

α β 1


∣∣∣∣∣∣∣α, β ∈ Fq

 , [132] =


1 0 0

α 0 1

β 1 0


∣∣∣∣∣∣∣α, β ∈ Fq


[312] =


0 1 0

0 α 1

1 0 0


∣∣∣∣∣∣∣α ∈ Fq

 , [231] =


0 0 1

1 0 0

α 1 0


∣∣∣∣∣∣∣α ∈ Fq


[321] =

0 0 1

0 1 0

1 0 0


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Hecke action on flags

The action of the Hecke generator Ti on a flag is given by

(V0 ⊆ · · · ⊆ Vn)Ti =
∑

W ̸=Vi

(V0 ⊆ · · · ⊆ Vi−1 ⊆W ⊆ Vi+1 ⊆ · · · ⊆ Vn),

where the sum is over all subspaces Vi−1 ⊆W ⊆ Vi+1 such that dim(W ) = i

and W ̸= Vi. (Ram–Halverson and Iwahori)

Example
On the flag ⟨(0, 0, 1)⟩ ⊆ ⟨(0, 0, 1), (0, 1, 0)⟩ ∈ [321]0 0 1

0 1 0

1 0 0

T1 =

0 0 1

1 0 0

0 1 0

+
∑
t̸=0

0 0 1

t 1 0

1 0 0


∼=
∑
α∈Fq

0 0 1

1 0 0

α 1 0

 ∈ [231]

The last sum gives rise to q terms (or flags) related to the permutation 231.

This corresponds to Hecke action [321]T1 = q[231].
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Hecke action on flags

The action of the Hecke generator Ti on a flag is given by

(V0 ⊆ · · · ⊆ Vn)Ti =
∑

W ̸=Vi

(V0 ⊆ · · · ⊆ Vi−1 ⊆W ⊆ Vi+1 ⊆ · · · ⊆ Vn)

Example
Another example for a flag of the form

⟨(0, 1, α)⟩ ⊆ ⟨(0, 1, α), (1, 0, β)⟩ ∈ [213]

0 1 0

1 0 0

α β 1

T2
∼=

0 0 1

1 0 0

α 1 0

+
∑
t̸=0

0 1 0

1 0 0

α β + t 1


∼=

0 0 1

1 0 0

α 1 0

+
∑
γ∈Fq
γ ̸=β

0 1 0

1 0 0

α γ 1

 .

This corresponds to [213]T2 = [231] + (q − 1)[213].
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q-Tsetlin library on flags

q-Tsetlin library on flags is implemented by adding lines and variables
associated to the topmost nonzero entry in line Li

(V0 ⊆ · · · ⊆ Vn)TG/B(q, x) =

[n]q∑
j=1

X (Lj)(V0 ⊆ Lj ⊆ V1 + Lj ⊆ · · · ⊆ Vn−1 + Lj ⊆ Vn)̂

where X (Lj) =
xi

qn−i if Lj = ⟨ei +
∑n

k=i+1 ckek⟩.

• The generators of the left regular band are the [n]q lines in Fn
q .

• The line L = ⟨ei +
∑n

k=i+1 ckek⟩ has probability

yi =
xi
qn−i

because there are qn−i lines L with leading term ei since there are q
choices for each coefficient ck.
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Example n = 3 and q = 2

Partial KR-expanded Cayley graph

∅

⟨e1⟩ ⟨e1 + e2⟩ ⟨e1 + e3⟩

⟨e1, e2⟩ ⟨e1, e2 + e3⟩ ⟨e1, e3⟩

⟨e1, e2, e3⟩ ⟨e1, e3, e2⟩

⟨1⟩ [n]q = 7 lines

⟨2⟩, ⟨1 + 2⟩ ⟨2 + 3⟩,
⟨1 + 2 + 3⟩

⟨3⟩, ⟨1 + 3⟩

q2 lines q2 lines
⟨2⟩, ⟨2 + 3⟩,
⟨1 + 2⟩, ⟨1 + 2 + 3⟩

⟨1⟩

⟨2⟩, ⟨1⟩,
⟨1 + 2⟩

⟨3⟩, ⟨1⟩, ⟨1 + 3⟩

F• = ⟨e1⟩ ⊆ ⟨e1, e3⟩ ⊆ ⟨e1, e3, e2⟩

ψF• =
y1

1− y1
× y3 + (q − 1)y1

1− y3 − qy1
× (qy2 + q(q − 1)y1)

=
x1

q2 − x1

q2x3 + (q − 1)x1
q2

=
1

q2
Ψ[132]

26



Example n = 3 and q = 2

Partial KR-expanded Cayley graph

∅

⟨e1⟩ ⟨e1 + e2⟩ ⟨e1 + e3⟩

⟨e1, e2⟩ ⟨e1, e2 + e3⟩ ⟨e1, e3⟩

⟨e1, e2, e3⟩ ⟨e1, e3, e2⟩

⟨1⟩ [n]q = 7 lines

⟨2⟩, ⟨1 + 2⟩ ⟨2 + 3⟩,
⟨1 + 2 + 3⟩

⟨3⟩, ⟨1 + 3⟩

q2 lines q2 lines
⟨2⟩, ⟨2 + 3⟩,
⟨1 + 2⟩, ⟨1 + 2 + 3⟩

⟨1⟩

⟨2⟩, ⟨1⟩,
⟨1 + 2⟩

⟨3⟩, ⟨1⟩, ⟨1 + 3⟩

F• = ⟨e1⟩ ⊆ ⟨e1, e3⟩ ⊆ ⟨e1, e3, e2⟩

ψF• =
y1

1− y1
× y3 + (q − 1)y1

1− y3 − qy1
× (qy2 + q(q − 1)y1)

=
x1

q2 − x1

q2x3 + (q − 1)x1
q2

=
1

q2
Ψ[132]

26



Example n = 3 and q = 2

Partial KR-expanded Cayley graph

∅

⟨e1⟩ ⟨e1 + e2⟩ ⟨e1 + e3⟩

⟨e1, e2⟩ ⟨e1, e2 + e3⟩ ⟨e1, e3⟩

⟨e1, e2, e3⟩ ⟨e1, e3, e2⟩

⟨1⟩ [n]q = 7 lines

⟨2⟩, ⟨1 + 2⟩ ⟨2 + 3⟩,
⟨1 + 2 + 3⟩

⟨3⟩, ⟨1 + 3⟩

q2 lines q2 lines
⟨2⟩, ⟨2 + 3⟩,
⟨1 + 2⟩, ⟨1 + 2 + 3⟩

⟨1⟩

⟨2⟩, ⟨1⟩,
⟨1 + 2⟩

⟨3⟩, ⟨1⟩, ⟨1 + 3⟩

F• = ⟨e1⟩ ⊆ ⟨e1, e3⟩ ⊆ ⟨e1, e3, e2⟩

ψF• =
y1

1− y1
× y3 + (q − 1)y1

1− y3 − qy1
× (qy2 + q(q − 1)y1)

=
x1

q2 − x1

q2x3 + (q − 1)x1
q2

=
1

q2
Ψ[132]

26



General stationary distribution

Fix permutation π ∈ Sn.

Define bk(s) = #{t ∈ {π1, . . . , πk−1} | t > s}.

Define χ(s < πk) = 1 if s < πk and 0 else.

Theorem (ABGS2026)
The stationary distribution for a flag associated to the permutation
π = π1π2 . . . πn for a general prime power q is given by

ψπ =

∏n
k=1 f(π1 . . . πk)∏n−1

k=1

(
1−

∑
s∈{π1,...,πk}

xs

q
n−s−bk+1(s)

)
where

f(π1 . . . πk) =
∑

s∈{π1,...,πk}
s⩽πk

xs
qn−s−bk(s)

(q − 1)χ(s<πk).
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Eigenvalues

q-derangement numbers (Wachs 1989)

dn(q) = [n]q!
n∑

k=0

(−1)k

[k]q!
q(

k
2)

Theorem (ABGS2026)
Eigenvalues of TG/B(x, q):

For every subset S = {i1 > i2 > · · · > ik} ⊆ [n], there is an eigenvalue

λS(q, x) =
k∑

j=1

xij
qn−ij−j+1

Multiplicities:

λS(q, x) occurs with multiplicity dn−k(q)q
(n−i1)+(n−1−i2)+···+(n−k+1−ik)

when k ̸= n, and with multiplicity 1 when k = n.
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Conclusion

• Construction of stationary state of q-Tsetlin library via projection of a
geometric semigroup Markov chain on flags

• Proof directly in TSn(q, x) not known
• Application to other Markov chains

• multi-species ASEP
• type C analogue
• signed permutations
• linear extension analogues
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