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Motivation

Crystal theoretic interpretation of the following identities:

S\ = Z FDes( T)

TESYT())

@ s\ Schur function indexed by partition A

o F, Gessel's quasisymmetric function indexed by composition «
> Y05, and YOS, = dasFs
a€Sp-\ B

e YOS, Young quasisymmetric Schur function
indexed by composition «



Motivation

Tiling and contraction

Crystal B(\) Crystal skeleton CS(X)
charB(\) = sy charCS(\) = sy
Ul —_— ul —> Bruhat order
Quasicrystal Qg Quasicrystal skeleton QCS,,

charQs = F3 charQCS, = YOS,
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Motivation

Quasisymmetric expansions are known in various settings,
where Schur expansions are still elusive:

@ LLT polynomials

@ modified Macdonald polynomials

@ plethysm of Schur functions

@ characters of higher Lie modules (Thrall's problem)

(Young) quasisymmetric Schur expansion implies Schur expansion
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Crystals

Combinatorial representation theory of sl, (Kashiwara — Abel prize!!!)
Crystal: B(2,1)
3 3 3
iz E
/ \,
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Crystals

@ Vertices: semistandard Young tableaux SSYT(A)
e Edges: f;(T)=T'
» Row reading word row(T)

» Successively pair i + 1 before i
>

i’*l(i + 1)S+1 if r>0
0 else

f(i7(i +1)°) = {
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Crystals

Character of crystal chB(X) = sy = Z xWe(T)

TESSYT(A)
Crystal: B(2,1)
3 3 3
Tt R
/ AN
2 2
N
AN /
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1
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Schur function s 1)
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Quasicrystals
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Quasicrystals

Group tableaux by standardization — labeled by descent composition

Crystal: B(2,1)
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Quasicrystals

2017 — Cain, Gray, Guilherme, Malheiro, Ribeiro, Rodrigues, Rodrigues
quasicrystals and hypoplactic monoids

2023 Maas-Gariépy

e Quasicrystal: Q1 indexed by standard Young tableaux T € SYT(A)

@ Vertices:
Qr ={be B(\)|std(b) =T}



Quasicrystals
[e]e] lelele]e]

Quasicrystals

2017 — Cain, Gray, Guilherme, Malheiro, Ribeiro, Rodrigues, Rodrigues
quasicrystals and hypoplactic monoids

2023 Maas-Gariépy

e Quasicrystal: Q1 indexed by standard Young tableaux T € SYT(A)

@ Vertices:
Qr ={be B(\)|std(b) =T}

e Edges: f;(T) = T’ in crystal is quasicrystal edge
if and only if no i + 1 is paired with /
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Q1 = Q7 if Des(T) = Des(T")
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Quasicrystals

Theorem
QT = Q7+ if Des(T) = Des(T")

SYT(\) set of standard Young tableaux of shape A
T € SYT(X) (French notation), A n

Definition
i is a descent in T if i + 1 is in higher row of the tableau
di < dr < --- < dg descentsin T

Des(T) = (di,d> — d1,...,dx — dk—1,n — di)
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Quasicrystals

Theorem
QT = Q7+ if Des(T) = Des(T")

SYT()) set of standard Young tableaux of shape A
T € SYT(X) (French notation), A n

Definition
i is a descent in T if i + 1 is in higher row of the tableau
di < dr < --- < dg descentsin T

Des(T) = (di,do — d1,...,dx — dk—1,n— di)

Example

I
T=3H descents {2,4,6} Des(T)=(2,2,2,1)
[1[2]4]6]
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Quasicrystals

Character of quasicrystal: chQt = FDes(T)

Crystal: B(2,1)

1 e v
—2;»72% O
| e

Schur function 521y = F2.1) + F1,2)
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Gessel's quasisymmetric functions (1984)

F, = g Mp with Mg = E xflxif2 . -x,-f"'
B<a N<ip<-<lip
refinement
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Gessel's quasisymmetric functions

Gessel's quasisymmetric functions (1984)

_ , : _ B1 B2 Be
Fo = Z Mpg with Mg = E Xi Xpt X,
B=<a N<ip<-<lip
refinement
Example

Faz1 =Ma2y) + M)
:X1X22X3 + X1X22X4 + x2x3ZX4 =

+ X1X2X3X4 + X1 X0X3X5 + - - -
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Schur functions

Theorem (Gessel 1984)

S\ = Z FDes( T)

TESYT())
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Schur functions

Theorem (Gessel 1984)

S\ = Z FDes( T)

TeSYT(A

Example |

su2) = Fuz)y +Fa3) +Fz21y +Fee +Fe31y +Fpe22

3 316
3[6] [1]2]3]5] 5[6] [1[2[4[5] [1[2]4]@

+Faa1 +Faz2 + Fu2g)

26 2[5 24
1[3[4[5] [1[3[4@ [1[3]E0@

5]6 3
1]2[3]4] [1

N| o1
IS

N
fuy
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Motivation

Tiling and contraction

Crystal B(\) Crystal skeleton CS(X)
charB(\) = sy charCS(\) = sy
Ul —_— ul —> Bruhat order
Quasicrystal Qg Quasicrystal skeleton QCS,,

charQs = F3 charQCS, = YOS,
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Crystal skeletons

2023 Maas-Gariépy: Contract quasicrystals to a point

Crystal: B(2,1) Crystal skeleton: CS(2,1)

N : _
S — af LB

U L L _s 2

7 . ¥ 1[2]
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BBl Hy
; s

Schur function 521y = F2,1) + F1,2)
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Results: Combinatorics of crystal skeleton

2025 Brauner, Corteel, Daugherty, S.

Crystal skeleton CS(\)
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Results: Combinatorics of crystal skeleton

2025 Brauner, Corteel, Daugherty, S.

Crystal skeleton CS(\)
o Vertices

@ Standard tableaux T
@ Descent compositions «
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Results: Combinatorics of crystal skeleton

2025 Brauner, Corteel, Daugherty, S.

Crystal skeleton CS(\)
o Vertices

@ Standard tableaux T
@ Descent compositions «

o Edges

@ Dyck pattern intervals: odd length intervals | with |/| >3
@ Cycles
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Results: Combinatorics of crystal skeleton

2, [g]
(23)

3
T3

|
[4,6] [4,6]

lmm l(au; | |
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Edges: Dyck pattern intervals

Definition
@ m € S, permutation
o | =[i,i+2m] C [n] interval of length 2m+1 > 3

The interval I is a Dyck pattern interval of 7 if

i+m+1i+m+2 .- i+2m

P(xlr) =
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Edges: Dyck pattern intervals

Definition

@ m € S, permutation

o | =[i,i+2m] C [n] interval of length 2m+1 > 3
The interval I is a Dyck pattern interval of 7 if

i+m+1i+m+2 .- i+2m

P(xlr) =

Example

m = 524136. The interval | = [2,4] is a Dyck pattern interval since
7T‘[274] = 243 and

7
P(rl2.4) =5

3]
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Edges: Dyck pattern intervals

/[3“3]\‘
(45)

3
e —
I



Edges: Cycles
Definition
cycle(m|;) = (m+mp,m+7mp—1,...,mp)

Tp is letter where f; acts in destandardization and / = [i,i + 2m)]
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Crystal skeletons
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Edges: Cycles

Definition
cycle(m|;) = (m+mp,m+7mp—1,...,mp)

Tp is letter where f; acts in destandardization and / = [i,i + 2m)]

Example |

I =[1,5] T= destand(T) = ™ = 645123

|—I-I>O\‘
o1

I—ll\)O\‘
N

2[3] 1[1]
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Edges: Cycles
Definition

cycle(m|;) = (m+mp,m+7mp—1,...,mp)

Tp is letter where f; acts in destandardization and / = [i,i + 2m)]

Example

I =[1,5] T= destand(T) = ™ = 645123

|—I-I>O\‘
o1

I—ll\)O\‘
N

2[3]

1[1]

Crystal operator f; acts on rightmost 1 and hence 7, = 3
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Edges: Cycles
Definition

cycle(m|;) = (m+mp,m+7mp—1,...,mp)

Tp is letter where f; acts in destandardization and / = [i,i + 2m)]

Example

I=[1,5] T= ™ = 645123

|—I-I>O\‘
I—ll\)O\‘
N

5 destand(T) =
2[3]

1[1]

Crystal operator f; acts on rightmost 1 and hence 7, = 3
Dyck pattern interval / = [1,5]
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Edges: Cycles
Definition

cycle(m|;) = (m+mp,m+7mp—1,...,mp)

Tp is letter where f; acts in destandardization and / = [i,i + 2m)]

Example

I =[1,5] T =145 destand(T) =

T = 645123
2[3]

|—I-I>O\‘

I—ll\)O\‘
N

1[1]

Crystal operator f; acts on rightmost 1 and hence 7, = 3
Dyck pattern interval / = [1,5]
Cycle cycle(n|;) = (5,4,3)

(5,4,3)- T=T
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Edges: Cycles




Length of descent composition

Theorem (BCDS'25)
Edge in CS()\)

(T,a) —— (T',8)
« of length £ = 3 of length £ — 1,0 or £ + 1
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Properties: S,-branching

Theorem (BCDS'25)

CS(\en-1 = P CS(A7)
L
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Properties: S,-branching

Theorem (BCDS'25)

ExamMPLE:

CeysTAL
SKELEToN

<32,
isomorphic [1.3] s A
1 50D /W (BRANCHING)
A
2 31 .
—na— To BraNcH J

(45)
~ (3.5 ——

+ vemove

[4.6] EATS with |

ndervals m.,mj A 1,3 1somerghic

B 23) o €S (310)
2 x remove hox

T3 [12[G]

contaming  Trom

TesNTN

~N

somerphic 1o

cs(2,2,D

6 51— [
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Properties: Subcrystal

Theorem (BCDS'25)
CS(\) contains crystal B(\) as a subgraph.
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Properties: Subcrystal

Theorem (BCDS'25)
CS(\) contains crystal B(\) as a subgraph.

ExAmeLE:

CeysTAL
SKELETON
s A (32D

(598~ CRYSTAL)

LseMoRPHIC
o B(320;
L inclode
TesITOD
with
2 (Des (N
u.ln] = (N
(45) | (e mimimal \.jm

(4,6

2,6]

>

e
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Properties: Dual equivalence subgraph

Theorem (BCDS'25 proving conjecture of Maas-Gariépy)
The dual equivalence graph DE(X) is a subgraph of CS(A).
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Properties: Dual equivalence subgraph

Theorem (BCDS'25 proving conjecture of Maas-Gariépy)
The dual equivalence graph DE(X) is a subgraph of CS(A). {

ExAMPLE:
CeysTAL
SKELETON
S A= 32D)

(duaL EauivALENCE
GRAPH)

— A 34)
2 (23)
A3 “——m3— [2

TSoMoRPHIC

1
& DEG2Y) M
23)
Ly e ey 1
labdled hl nleevals
oF g 3,

Fnr3(§ 131L seienddion
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Properties: Lusztig involution

Theorem (BCDS'25)
CS(A) is symmetric under Lusztig involution: CS(A) 22 L,(CS(N)).
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Properties: Lusztig involution

Theorem (BCDS'25)
CS(A) is symmetric under Lusztig involution: CS(A) 22 L,(CS(N)).
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Properties: Fans

Fans for length increasing edges:

3 — 19— ESfE —e0—— B

e
[2,8] [3,7] [4,6]
I

(671891
[112[3[415]
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Fans for length increasing edges:

3 — 19— ESfE —e0—— B

e
[2,8] [3,7] [4,6]
I

(671891
[112[3[415]

@ Nested intervals up
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[2,8] [3,7] [4,6]
I

(671891
[112[3[415]

@ Nested intervals up

@ Length 3 intervals across
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Properties: Fans

Fans for length increasing edges:

3 — 19— ESfE —e0—— B

e
[2,8] [3,7] [4,6]
I

(671891
[112[3[415]

@ Nested intervals up
@ Length 3 intervals across

@ Length 3 loop on the right
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Properties: Fans

Fans for length increasing edges:

3 — 19— ESfE —e0—— B

e
[2,8] [3,7] [4,6]
I

(671891
[112[3[415]

@ Nested intervals up
@ Length 3 intervals across
@ Length 3 loop on the right

Similarly for length decreasing edges.
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Axiomatic description

Q@ GL,-axioms:
» Strong Lusztig involution: G = L,(G) and Gpy p—1) = Ly-1(G[1,n-1)
» Subcrystal
» Fans
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» Subcrystal
» Fans
@ S,-axioms:
» Lusztig involution: G = L,(G)
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Axiomatic description

@ GL,-axioms:
» Strong Lusztig involution: G = L,(G) and Gpy p—1) = Ly-1(G[1,n-1)
» Subcrystal
» Fans
@ S,-axioms:
» Lusztig involution: G = L,(G)
» S,-branching
» Connectivity
» Fans
© Local axioms:
» Commutation relations (a la Stembridge):
triangles, squares, pentagons, octagons + fans



Crystal skeletons
000000000000 0000e0

Local characterization of crystals

Local characterization of simply-laced crystals associated to
representations (Stembridge 2003)
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Local characterization of crystals

Local characterization of simply-laced crystals associated to
representations (Stembridge 2003)
Combinatorial theory of crystals
without quantum groups:

YSTHL BASES

ations and Comhmatonc;
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Local characterization of crystal skeletons

PN
Y Y
PN Y oy
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Local characterization of crystal skeletons

PR
v v e
v\ y Y y + fans

N v A V4
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@ Quasicrystal skeletons
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Motivation

Tiling and contraction

Crystal B(\) Crystal skeleton CS(X)
charB(\) = sy charCS(\) = sy
Ul —_— ul —> Bruhat order
Quasicrystal Qg Quasicrystal skeleton QCS,,

charQs = F3 charQCS, = YOS,




Young quasisymmetric Schur function
2011 Haglund, Luoto, Mason, van Willigenburg
2013 Luoto, Mykytiuk, van Willigenburg
Young quasisymmetric Schur function

YQSu= > X

TESSYCT(a)



Quasicrystal skeletons
[e]e] lelele]e]

Young quasisymmetric Schur function

2011 Haglund, Luoto, Mason, van Willigenburg
2013 Luoto, Mykytiuk, van Willigenburg

Young quasisymmetric Schur function

Yos, = Z XT

TESSYCT(a)

Definition
Semistandard Young composition tableau (SSYCT) of shape a:
Filling T of the cells of a such that

© Rows are weakly increasing.

@ Leftmost column is strictly increasing.

© Triple condition: If a > b then a > c.

o[ ]
El
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Bijection

Example

Standard Young composition tableau

N
(@)}

w

C =
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Bijection

Example

Standard Young composition tableau

N
(@)}

C =

w
\i
Il
»—Aw-b‘
(@)

Definition

Bijection

©: SYCT(a) — SYT(N)
C—T

[e]e]e] le]ee)
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Bijection

Example

Standard Young composition tableau

N
(@)}

C =

w
\i
Il
»—Aw-b‘
(@)

Definition
Bijection
©: SYCT(a) — SYT(N)
C—T

@ ¢ reorder columns of C

e oL first column of T, place subsequent letters as high as possible



Quasicrystal skeletons
0000e00

Quasicrystal skeleton

6] (23) 6] _3,5 _
213[4] <1, 3] —[3[5] [ ]<W [4]5] (56)
5] 1 214]"[2,4]7 23] [476]\
| S E] ’
3.5) [1,5] %E
<43>l _ /543) 1[2]3]
N R [2:4]
EE e B (304
A4 1,3 [1[2] g .
I(56) I(s6) [5]6] . [4, 6](F %E
[4l6] [4"6] 1[2[4) ~[3,5]— [1]2[5)
[5] 2,4], [5] ¥
2 3[61/(21;)[ ] 3[4]6] 8l ,,[1’3]
4] T3 [1]2] Q*)l (2.;)i
[3,'5] ‘BI6l I [4]6]
i) a[3[4) " (15) " [o[3[5]
e 10 iy
§ s (654) [2,6] ‘ (2. 4]
13 6]
[1,3] 4516) (2, 4], [3]4]6] 3[4[5) ;
o> 203 (34) 2[5] <[4,6]—[2]6
(23) _—] ~ 3,511 (56) T_]




Properties of quasicrystal skeleton

Definition

Quasicrystal skeleton QCS,, is induced subgraph of CS(\) consisting of all
vertices T € SYT()) such that ¢ ~(T) has shape a.
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Properties of quasicrystal skeleton

Definition |
Quasicrystal skeleton QCS,, is induced subgraph of CS(\) consisting of all
vertices T € SYT()) such that ¢ ~(T) has shape a.

Character

charQCS, = YOS,
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Properties of quasicrystal skeleton

Definition |
Quasicrystal skeleton QCS,, is induced subgraph of CS(\) consisting of all
vertices T € SYT()) such that ¢ ~(T) has shape a.

Character

charQCS, = YOS,

Theorem (BDMS2025)

Characterization of edges T L T in crystal skeleton CS(\) which
change quasicrystal skeleton components:

o T €QCS, and T" € QCSg with o # 3
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Applications
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LLT polynomials (Brauner, Corteel, Daugherty)
Thrall's problem (Pappe, Simone)

plethysm, Kronecker, Macdonald, ....
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