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Crystal skeletons: Combinatorics and axioms
Crystals and their contractions
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Motivation

Crystal theoretic interpretation of the following identities:

sλ =
∑

T∈SYT(λ)

FDes(T )

sλ Schur function indexed by partition λ

Fα Gessel’s quasisymmetric function indexed by composition α

sλ =
∑

α∈Sℓ·λ
YQSα and YQSα =

∑
β

dα,βFβ

YQSα Young quasisymmetric Schur function
indexed by composition α
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Motivation

Tiling and contraction

Crystal B(λ)

charB(λ) = sλ

⊆

Quasicrystal Qβ

charQβ = Fβ

Crystal skeleton CS(λ)

charCS(λ) = sλ

⊆

Quasicrystal skeleton QCSα

charQCSα = YQSα

Bruhat order
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Motivation

Quasisymmetric expansions are known in various settings,
where Schur expansions are still elusive:

LLT polynomials

modified Macdonald polynomials

plethysm of Schur functions

characters of higher Lie modules (Thrall’s problem)

(Young) quasisymmetric Schur expansion implies Schur expansion
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Crystals

Combinatorial representation theory of sln (Kashiwara – Abel prize!!!)

Crystal: B(2, 1)

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

2 2
3

1 3
3

2 3
3

1

2

1

2 2

1

2

1



Crystals Quasicrystals Crystal skeletons Quasicrystal skeletons

Crystals

Vertices: semistandard Young tableaux SSYT(λ)

Edges: fi (T ) = T ′

▶ Row reading word row(T )
▶ Successively pair i + 1 before i
▶

fi (i
r (i + 1)s) =

{
i r−1(i + 1)s+1 if r > 0

0 else
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Crystals

Character of crystal chB(λ) = sλ =
∑

T∈SSYT(λ)

xwt(T )

Crystal: B(2, 1)
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Quasicrystals

Group tableaux by standardization – labeled by descent composition

Crystal: B(2, 1)

α
=
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, 1
)

α
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, 2
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Quasicrystals

2017 → Cain, Gray, Guilherme, Malheiro, Ribeiro, Rodrigues, Rodrigues
quasicrystals and hypoplactic monoids

2023 Maas-Gariépy

Quasicrystal: QT indexed by standard Young tableaux T ∈ SYT(λ)

Vertices:
QT = {b ∈ B(λ) | std(b) = T}

Edges: fi (T ) = T ′ in crystal is quasicrystal edge
if and only if no i + 1 is paired with i
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Quasicrystals

Theorem

QT
∼= QT ′ if Des(T ) = Des(T ′)

SYT(λ) set of standard Young tableaux of shape λ
T ∈ SYT(λ) (French notation), λ ⊢ n

Definition

i is a descent in T if i + 1 is in higher row of the tableau
d1 < d2 < · · · < dk descents in T

Des(T ) = (d1, d2 − d1, . . . , dk − dk−1, n − dk)

Example

T =
7
3 5
1 2 4 6

descents {2, 4, 6} Des(T ) = (2, 2, 2, 1)
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Quasicrystals

Character of quasicrystal: chQT = FDes(T )

Crystal: B(2, 1)

α
=
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, 1
)

α
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, 2
)
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Schur function s(2,1) = F(2,1) + F(1,2)
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Gessel’s quasisymmetric functions

Gessel’s quasisymmetric functions (1984)

Fα =
∑
β≼α

refinement

Mβ with Mβ =
∑

i1<i2<···<iℓ

xβ1

i1
xβ2

i2
· · · xβℓ

iℓ

Example

F(1,2,1) =M(1,2,1) +M(1,1,1,1)

=x1x
2
2x3 + x1x

2
2x4 + x2x

2
3x4 + · · ·

+ x1x2x3x4 + x1x2x3x5 + · · ·
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Schur functions

Theorem (Gessel 1984)

sλ =
∑

T∈SYT(λ)

FDes(T )

Example

s(4,2) = F(4,2) + F(3,3) + F(3,2,1) + F(2,4) + F(2,3,1) + F(2,2,2)

5 6
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+F(1,4,1) + F(1,3,2) + F(1,2,3)
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1 3 4 6

2 4
1 3 5 6
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Motivation

Tiling and contraction

Crystal B(λ)

charB(λ) = sλ

⊆

Quasicrystal Qβ

charQβ = Fβ

Crystal skeleton CS(λ)

charCS(λ) = sλ

⊆

Quasicrystal skeleton QCSα

charQCSα = YQSα

Bruhat order
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Crystal skeletons

2023 Maas-Gariépy: Contract quasicrystals to a point

Crystal: B(2, 1) Crystal skeleton: CS(2, 1)

α
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, 1
)
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I = [1, 3]

Schur function s(2,1) = F(2,1) + F(1,2)



Crystals Quasicrystals Crystal skeletons Quasicrystal skeletons

Results: Combinatorics of crystal skeleton

2025 Brauner, Corteel, Daugherty, S.

Crystal skeleton CS(λ)

Vertices
1 Standard tableaux T
2 Descent compositions α

Edges
1 Dyck pattern intervals: odd length intervals I with |I | ⩾ 3
2 Cycles
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Results: Combinatorics of crystal skeleton
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Edges: Dyck pattern intervals

Definition

π ∈ Sn permutation

I = [i , i + 2m] ⊆ [n] interval of length 2m + 1 ⩾ 3

The interval I is a Dyck pattern interval of π if

P(π|I ) =
i i + 1 . . . i +m − 1 i +m

i +m + 1 i +m + 2 . . . i + 2m

Example

π = 524136. The interval I = [2, 4] is a Dyck pattern interval since
π|[2,4] = 243 and

P(π|[2,4]) = 2 3
4
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Edges: Cycles

Definition

cycle(π|I ) := (m + πp,m + πp − 1, . . . , πp)

πp is letter where fi acts in destandardization and I = [i , i + 2m]

Example

I = [1, 5] T =
1 2 3
4 5
6

destand(T ) =
1 1 1
2 2
6

π = 645123

Crystal operator f1 acts on rightmost 1 and hence πp = 3
Dyck pattern interval I = [1, 5]
Cycle cycle(π|I ) = (5, 4, 3)

(5, 4, 3) · T = T ′
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Length of descent composition

Theorem (BCDS’25)

Edge in CS(λ) (
T , α

) I−−−→
(
T ′, β

)
α of length ℓ ⇒ β of length ℓ− 1, ℓ or ℓ+ 1
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Properties: Sn-branching

Theorem (BCDS’25)
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Properties: Subcrystal

Theorem (BCDS’25)

CS(λ) contains crystal B(λ) as a subgraph.
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Properties: Dual equivalence subgraph

Theorem (BCDS’25 proving conjecture of Maas-Gariépy)

The dual equivalence graph DE(λ) is a subgraph of CS(λ).
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of length
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Properties: Lusztig involution

Theorem (BCDS’25)

CS(λ) is symmetric under Lusztig involution: CS(λ) ∼= Ln(CS(λ)).
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Properties: Lusztig involution
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Properties: Fans

Fans for length increasing edges:

1 2 3 4 8
5 6 7 9

1 2 3 4 7
5 6 8 9

1 2 3 4 6
5 7 8 9

1 2 3 4 5
6 7 8 9

[2, 8] [3, 7] [4, 6]

[7, 9] [6, 8]

[3, 5]

Nested intervals up

Length 3 intervals across

Length 3 loop on the right

Similarly for length decreasing edges.
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Axiomatic description

1 GLn-axioms:
▶ Strong Lusztig involution: G ∼= Ln(G ) and G[1,n−1]

∼= Ln−1(G[1,n−1])
▶ Subcrystal
▶ Fans

2 Sn-axioms:
▶ Lusztig involution: G ∼= Ln(G )
▶ Sn-branching
▶ Connectivity
▶ Fans

3 Local axioms:
▶ Commutation relations (à la Stembridge):

triangles, squares, pentagons, octagons + fans
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Local characterization of crystals

Local characterization of simply-laced crystals associated to
representations (Stembridge 2003)

Combinatorial theory of crystals
without quantum groups:
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Local characterization of crystal skeletons

+ fans
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Local characterization of crystal skeletons

+ fans
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Outline

1 Crystals

2 Quasicrystals

3 Crystal skeletons

4 Quasicrystal skeletons
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Motivation

Tiling and contraction

Crystal B(λ)

charB(λ) = sλ

⊆

Quasicrystal Qβ

charQβ = Fβ

Crystal skeleton CS(λ)

charCS(λ) = sλ

⊆

Quasicrystal skeleton QCSα

charQCSα = YQSα

Bruhat order
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Young quasisymmetric Schur function

2011 Haglund, Luoto, Mason, van Willigenburg
2013 Luoto, Mykytiuk, van Willigenburg

Young quasisymmetric Schur function

YQSα =
∑

T∈SSYCT(α)

xT

Definition

Semistandard Young composition tableau (SSYCT) of shape α:
Filling T of the cells of α such that

1 Rows are weakly increasing.

2 Leftmost column is strictly increasing.

3 Triple condition: If a ⩾ b then a > c .
a

b c
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Bijection

Example

Standard Young composition tableau

C =
1 2 5
3
4 6

T =
1 2 5
3 6
4

Definition

Bijection

φ : SYCT(α) → SYT(λ)

C 7→ T

φ reorder columns of C

φ−1: first column of T , place subsequent letters as high as possible
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Quasicrystal skeleton

1 2 3
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3 4 5
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1 5
2 3 4
6

1 2 4
3
5 6

1 2
3 4 6
5

1 4
2 3 5
6

1 2 5
3
4 6

1
2 3 4
5 6

1 2
3
4 5 6

1 4
2 3 6
5

1
2 3 5
4 6

1
2 3
4 5 6

1
2 6
3 4 5

1
2 5
3 4 6

[2, 4]

[3, 5]
(34)

[4, 6]

(56)

[1, 5]

(543)

[1, 3]

(23)

[2, 4]
(34)

[4, 6]
(56)

[1, 3]

[2, 4]
(23)

[3, 5]

(45)

[3, 5]

[4, 6]
(45)

[1, 3]

(23)

[3, 5]

(45)

[1, 3]

[2, 4]
(23)

[4, 6]
(56)

[1, 3]

(23)

[3, 5]

[4, 6]
(45)

[1, 3]

(23)

[2, 6](654)
[2, 4]

(34)

[2, 4]

[3, 5]
(34) [4, 6]

(56)
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Properties of quasicrystal skeleton

Definition

Quasicrystal skeleton QCSα is induced subgraph of CS(λ) consisting of all
vertices T ∈ SYT(λ) such that φ−1(T ) has shape α.

Character
charQCSα = YQSα

Theorem (BDMS2025)

Characterization of edges T
I−→ T ′ in crystal skeleton CS(λ) which

change quasicrystal skeleton components:

T ∈ QCSα and T ′ ∈ QCSβ with α ̸= β
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Applications

Stanley symmetric functions (Brauner, Daugherty, Mason)

LLT polynomials (Brauner, Corteel, Daugherty)

Thrall’s problem (Pappe, Simone)

plethysm, Kronecker, Macdonald, ....

Thank you!
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