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Crystal bases

Ten reasons why the combinatorial theory of crystal bases
which originated in statistical mechanics and quantum groups
is ubiquitous in representation theory,combinatorics, geometry, and
beyond.

(Kashiwara, Lusztig, Littelmann, ... 1990s)

Based on work with my many collaborators over the years:
Assaf, Bandlow, Benkart, Bump, Colmenarejo, Deka, Fourier, Gillespie,
Harris, Hawkes, Hersh, Jones, Kirillov, Lam, Lenart, Morse, Naito, Okado,
Orellana, Pan, Panova, Pappe, Paramonov, Paul, Pfannerer, Poh, Sagaki,
Sakamoto, Saliola, Scrimshaw, Shimozono, Simone, Sternberg, Thiéry,
Tingley, Wang, Warnaar, Yip, Zabrocki
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Lie algebras

Lie algebra sl2

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)

Relations

[h, e] = 2e [h, f ] = −2f [e, f ] = h roots

Weight space decomposition

V =
⊕
λ

V (λ) where V (λ) = {v ∈ V | hv = λv}

eV (λ) ⊂ V (λ+ 2) fV (λ) ⊂ V (λ−2)
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Quantum groups

Quantum group Uq(sl2)

generated by e, f ,K±1

Relations

KeK−1 = q2e KfK−1 = q−2f [e, f ] =
K − K−1

q − q−1

Representations
(m + 1)-dimensional irreducible Uq(sl2)-representation

V(m) = {u, f (1)u, . . . , f (m)u}

where eu = 0 Ku = qmu f (k)u =
1

[k]q!
f ku [k]q =

qm − q−m

q − q−1
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Motivation for crystal bases

2-dimensional Uq(sl2)-representation V(1)

eu = 0 u = ev , fu = v fv = 0

u
f−→ v

Tensor product
Basis for V(1) ⊗ V(1) is u ⊗ u, v ⊗ u, u ⊗ v , v ⊗ v

V(1) ⊗ V(1)
∼= V(2) ⊕ V(0) V(2) = {u ⊗ u, u ⊗ v + qv ⊗ u, v ⊗ v}

V(0) = {v ⊗ u − qu ⊗ v}

Crystal basis
Pick leading term (q → 0)

B(1) ⊗ B(1)
∼= B(2) ⊕ B(0) B(2) = {u ⊗ u, u ⊗ v , v ⊗ v}

B(0) = {v ⊗ u}
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Motivation for crystal bases

u = 1 v = 2

B B ⊗ B

1

2

1

2 ⊗ 2

1 ⊗ 2

1 ⊗ 1 2 ⊗ 1

1

1

Reason 1

Crystal bases are combinatorial skeletons of representation theory.
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Uq(sl3)-crystals

B B

1
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2
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2

3
1 1

2
1 3

2
1 1

3
2 2

2
1 2

3
1 3

3
2 3
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Axiomatic Crystals

A Uq(g)-crystal is a nonempty set B with maps

wt : B → P

ei , fi : B → B ∪ {∅} for all i ∈ I

satisfying

fi (b) = b′ ⇔ ei (b
′) = b if b, b′ ∈ B

wt(fi (b)) = wt(b)− αi if fi (b) ∈ B

〈hi ,wt(b)〉 = ϕi (b)− εi (b)

Write -b b’ir r for b′ = fi (b)
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Local characterization

Local characterization of simply-laced crystals associated to
representations (Stembridge 2003)

Combinatorial theory of crystals
without quantum groups:

Reason 2

Crystal graphs can be characterized by local combinatorial rules.
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Tensor product decomposition

1 ⊗ 3
2 2

1 ⊗ 2
1 3

3 ⊗ 2
1 1

1 ⊗ 2
1 2

1 ⊗ 3
1 1

2 ⊗ 2
1 2

2 ⊗ 2
1 3

2 ⊗ 2
1 1

2 ⊗ 3
1 1

3 ⊗ 2
1 3

3 ⊗ 2
1 2

1 ⊗ 2
1 1

2 ⊗ 3
1 3

3 ⊗ 3
2 3

2 ⊗ 3
1 2

3 ⊗ 3
2 2

3 ⊗ 3
1 1

2 ⊗ 3
2 2

3 ⊗ 3
1 2

2 ⊗ 3
2 3

3 ⊗ 3
1 3

1 ⊗ 3
1 2

1 ⊗ 3
2 3

1 ⊗ 3
1 3

12

1 2

1

21 1

2

2
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1 2

2

2 1

2

1

21

1

1

1
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Tensor products of crystals

Definition

B,B ′ crystals

B ⊗ B ′ is B × B ′ as sets with

wt(b ⊗ b′) = wt(b) + wt(b′)

fi (b ⊗ b′) =

{
fi (b)⊗ b′ if εi (b) > ϕi (b

′)

b ⊗ fi (b
′) otherwise

b ⊗ b′

−−−︸ ︷︷ ︸
ϕi (b)

−−︸︷︷︸
ϕi (b′)

+ + ++︸ ︷︷ ︸
εi (b′)
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Tensor products of crystals

Definition

B,B ′ crystals

B ⊗ B ′ is B × B ′ as sets with

wt(b ⊗ b′) = wt(b) + wt(b′)
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Reason 3

Crystals are well behaved with respect to tensor products.



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Tensor product multiplicities

Irreducible sln-representation
Vλ

Indexed by partitions:

Tensor product multiplicities

Vλ ⊗ Vµ =
⊕
ν

cνλµ Vν

Littlewood-Richardson coefficients cνλµ
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Combinatorial description

Littlewood–Richardson rule
cνλµ = # skew tableaux t of shape ν/λ and weight µ such that row(t) is a
reverse lattice word.

Example

V ⊗ V = · · · ⊕?V ⊕ · · ·

2
1

1
211

1
2

1
121

1
1

2
112 ⇒ c321

21,21 = 2

X X X

Gordon James (1987) on the Littlewood-Richardson rule:

“Unfortunately the Littlewood-Richardson rule is much harder to
prove than was at first suspected. The author was once told that
the Littlewood-Richardson rule helped to get men on the moon
but was not proved until after they got there.”
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Crystal graph

Action of crystal operators ei , fi on tableaux:

1 Consider letters i and i + 1 in row reading word of the tableau

2 Successively “bracket” pairs of the form (i + 1, i)

3 Left with word of the form i r (i + 1)s

ei (i
r (i + 1)s) =

{
i r+1(i + 1)s−1 if s > 0

0 else

fi (i
r (i + 1)s) =

{
i r−1(i + 1)s+1 if r > 0

0 else
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Crystal reformulation

3
1 2 2 3

1 1 2 3 3 3

e2: change leftmost unpaired 3 into 2
f2: change rightmost unpaired 2 into 3

Theorem

b where all ei (b) = 0 (highest weight)
↔ connected component
↔ irreducible
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↔ connected component
↔ irreducible
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3
1 2 2 3

1 1 2 2 3 3
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b where all ei (b) = 0 (highest weight)
↔ connected component
↔ irreducible

Reformulation of LR rule

cνλµ counts tableaux of shape ν/λ and weight µ which are highest weight.
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Crystal reformulation

3
1 2 2 3

1 1 2 3 3 3

→ e2 →
← f2 ←

3
1 2 2 3

1 1 2 2 3 3

e2: change leftmost unpaired 3 into 2
f2: change rightmost unpaired 2 into 3

Theorem

b where all ei (b) = 0 (highest weight)
↔ connected component
↔ irreducible

Reason 4

Crystal operators explain/match the Littlewood–Richardson rule.
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Schur functions

Bλ = set of semi-standard Young tableaux of partition shape λ
over alphabet {1, 2, . . . , n}

Definition

Schur polynomial

sλ(x) = sλ(x1, . . . , xn) =
∑
T∈Bλ

x
wt(T )1

1 · · · xwt(T )n
n

Example

Semi-standard Young tableaux of shape (2, 1) over the alphabet {1, 2, 3}

2
1 1

3
1 1

3
2 2

3
1 2

2
1 3

2
1 2

3
1 3

3
2 3

s(2,1)(x1, x2, x3) = x2
1x2 + x2

1x3 + x2
2x3 + 2x1x2x3 + x1x

2
2 + x1x

2
3 + x2x

2
3
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Crystal structure

Crystal B with edges f1 ↓ and f2 ↓

3
1 1

2
1 3

2
1 1

3
2 2

2
1 2

3
1 3

3
2 3

3
1 2

1

2

2 1

2

2

1

1

Reason 5

Schur polynomials are characters of type A crystals.
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3
1 1

2
1 3

2
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3
2 2
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3
1 3

3
2 3

3
1 2

1

2

2 1

2

2

1

1

Reason 5

Schur polynomials are characters of type A crystals.
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Tensor product decomposition

1 ⊗ 3
2 2

1 ⊗ 2
1 3

3 ⊗ 2
1 1

1 ⊗ 2
1 2

1 ⊗ 3
1 1

2 ⊗ 2
1 2

2 ⊗ 2
1 3

2 ⊗ 2
1 1

2 ⊗ 3
1 1

3 ⊗ 2
1 3

3 ⊗ 2
1 2

1 ⊗ 2
1 1

2 ⊗ 3
1 3

3 ⊗ 3
2 3

2 ⊗ 3
1 2

3 ⊗ 3
2 2

3 ⊗ 3
1 1

2 ⊗ 3
2 2

3 ⊗ 3
1 2

2 ⊗ 3
2 3

3 ⊗ 3
1 3

1 ⊗ 3
1 2

1 ⊗ 3
2 3

1 ⊗ 3
1 3

12

1 2

1

21 1

2

2

2

212

1 2

2

2 1

2

1

21

1

1

1

B ⊗ B

= B ⊕ B ⊕ B
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Symmetric functions

Reformulation of LR rule

cνλµ counts pairs of tableaux of shape λ and µ of weight ν which are
highest weight.

Symmetric function coefficients

sν/µ =
∑
λ

cνλµ sλ and sλ sµ =
∑
ν

cνλµ sν
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Symmetric functions

Reformulation of LR rule

cνλµ counts pairs of tableaux of shape λ and µ of weight ν which are
highest weight.

Symmetric function coefficients

sν/µ =
∑
λ

cνλµ sλ and sλ sµ =
∑
ν

cνλµ sν

Mechanism to get Schur expansion

sν/λ =
∑

T∈Bν/λ

xweight(T ) =
∑

YT=highest weights

sweight(YT )
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Symmetric functions

Reformulation of LR rule

cνλµ counts pairs of tableaux of shape λ and µ of weight ν which are
highest weight.

Symmetric function coefficients

sν/µ =
∑
λ

cνλµ sλ and sλ sµ =
∑
ν

cνλµ sν

Reason 6

Crystals can help to understand symmetric functions.
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Super Lie algebras

Lie superalgebras:

I A superalgebra is a Z2-graded algebra G0 ⊕ G1.
I A Lie superalgebra comes with a bracket operation satisfying “super”

antisymmetry and the “super” Jacobi identity.
I These are identical to the usual ones up to a power of −1. Setting

G1 = 0 recovers the definition of Lie algebra.
I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra
I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the

Lie algebra An−1 = sl(n).
I Highest weight crystals for queer super Lie algebras

(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Super Lie algebras

Lie superalgebras:
I A superalgebra is a Z2-graded algebra G0 ⊕ G1.

I A Lie superalgebra comes with a bracket operation satisfying “super”
antisymmetry and the “super” Jacobi identity.

I These are identical to the usual ones up to a power of −1. Setting
G1 = 0 recovers the definition of Lie algebra.

I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra
I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the

Lie algebra An−1 = sl(n).
I Highest weight crystals for queer super Lie algebras

(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Super Lie algebras

Lie superalgebras:
I A superalgebra is a Z2-graded algebra G0 ⊕ G1.
I A Lie superalgebra comes with a bracket operation satisfying “super”

antisymmetry and the “super” Jacobi identity.

I These are identical to the usual ones up to a power of −1. Setting
G1 = 0 recovers the definition of Lie algebra.

I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra
I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the

Lie algebra An−1 = sl(n).
I Highest weight crystals for queer super Lie algebras

(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Super Lie algebras

Lie superalgebras:
I A superalgebra is a Z2-graded algebra G0 ⊕ G1.
I A Lie superalgebra comes with a bracket operation satisfying “super”

antisymmetry and the “super” Jacobi identity.
I These are identical to the usual ones up to a power of −1. Setting

G1 = 0 recovers the definition of Lie algebra.

I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra
I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the

Lie algebra An−1 = sl(n).
I Highest weight crystals for queer super Lie algebras

(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Super Lie algebras

Lie superalgebras:
I A superalgebra is a Z2-graded algebra G0 ⊕ G1.
I A Lie superalgebra comes with a bracket operation satisfying “super”

antisymmetry and the “super” Jacobi identity.
I These are identical to the usual ones up to a power of −1. Setting

G1 = 0 recovers the definition of Lie algebra.
I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra
I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the

Lie algebra An−1 = sl(n).
I Highest weight crystals for queer super Lie algebras

(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Super Lie algebras

Lie superalgebras:
I A superalgebra is a Z2-graded algebra G0 ⊕ G1.
I A Lie superalgebra comes with a bracket operation satisfying “super”

antisymmetry and the “super” Jacobi identity.
I These are identical to the usual ones up to a power of −1. Setting

G1 = 0 recovers the definition of Lie algebra.
I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra

I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the
Lie algebra An−1 = sl(n).

I Highest weight crystals for queer super Lie algebras
(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Super Lie algebras

Lie superalgebras:
I A superalgebra is a Z2-graded algebra G0 ⊕ G1.
I A Lie superalgebra comes with a bracket operation satisfying “super”

antisymmetry and the “super” Jacobi identity.
I These are identical to the usual ones up to a power of −1. Setting

G1 = 0 recovers the definition of Lie algebra.
I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra
I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the

Lie algebra An−1 = sl(n).

I Highest weight crystals for queer super Lie algebras
(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Super Lie algebras

Lie superalgebras:
I A superalgebra is a Z2-graded algebra G0 ⊕ G1.
I A Lie superalgebra comes with a bracket operation satisfying “super”

antisymmetry and the “super” Jacobi identity.
I These are identical to the usual ones up to a power of −1. Setting

G1 = 0 recovers the definition of Lie algebra.
I In physics: unification of bosons and fermions
I In mathematics: projective representations of the symmetric group

Queer super Lie algebra
I The Lie superalgebra q(n) = sl(n)⊕ sl(n) is the natural analog to the

Lie algebra An−1 = sl(n).
I Highest weight crystals for queer super Lie algebras

(Grantcharov, Jung, Kang, Kashiwara, Kim, ’10)



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Standard crystal and tensor product

Example

Standard queer crystal B for q(n + 1)

1 2 3 . . . n + 1
1

−1

2 3 n

Tensor product: b ⊗ c ∈ B ⊗ C

f−1(b ⊗ c) =

{
b ⊗ f−1(c) if wt(b)1 = wt(b)2 = 0

f−1(b)⊗ c otherwise

e−1(b ⊗ c) =

{
b ⊗ e−1(c) if wt(b)1 = wt(b)2 = 0

e−1(b)⊗ c otherwise
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Queer crystal: Example

One connected component of B⊗4 for q(3):

3⊗ 3⊗ 3⊗ 1

3⊗ 3⊗ 3⊗ 2

3⊗ 2⊗ 3⊗ 1

3⊗ 2⊗ 3⊗ 2

2⊗ 1⊗ 3⊗ 1

2⊗ 1⊗ 2⊗ 1

1⊗ 3⊗ 3⊗ 2

1⊗ 3⊗ 3⊗ 11⊗ 2⊗ 3⊗ 2

1⊗ 2⊗ 3⊗ 1

1⊗ 2⊗ 2⊗ 1

1⊗ 1⊗ 3⊗ 2

1⊗ 1⊗ 3⊗ 1

1⊗ 1⊗ 2⊗ 1

3⊗ 2⊗ 2⊗ 1

3⊗ 1⊗ 3⊗ 2

3⊗ 1⊗ 3⊗ 1

3⊗ 1⊗ 2⊗ 1

2⊗ 3⊗ 3⊗ 2

2⊗ 3⊗ 3⊗ 12⊗ 2⊗ 3⊗ 2

2⊗ 2⊗ 3⊗ 1

2⊗ 2⊗ 2⊗ 1

2⊗ 1⊗ 3⊗ 2

1 1

1

22

1

11

1

2

1 1

11

1 1

2

2

2

2

1

2

1 1

2

1

1

2

1

2

2

1 11

1 1

1

2
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Motivation

Why are queer crystals interesting?

Characters:
character of highest weight crystal Bλ (λ strict partition) is
Schur P function Pλ

Littlewood–Richardson rule:

PλPµ =
∑
ν

gνλµPν

gνλµ = number of highest weights of weight ν in Bλ ⊗ Bµ
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Characterizations

Characterization of crystals:

Local characterization of simply-laced crystals (Stembridge 2003)

Characterization of queer supercrystals
[Gillespie, Graham, Poh, S. 2019]

Reason 7

Crystals provide combinatorial analysis of super Lie algebras.
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Affine crystals

1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 2

1 ⊗ 2 ⊗ 2

2 ⊗ 2 ⊗ 2

1 ⊗ 2 ⊗ 1

2 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1

2 ⊗ 1 ⊗ 2

1

1

1

1 1

0

0
0 0

0
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One dimensional configuration sums

Why affine crystals?

energy function E : BN ⊗ · · · ⊗ B1 → Z

E (ei (b)) = E (b) for 1 6 i 6 n

E (e0(b)) = E (b)− 1

if e0 does not act on leftmost step in b = bN ⊗ · · · ⊗ b1.

one-dimensional sums for B = BN ⊗ · · · ⊗ B1

X (λ,B) =
∑

b∈P(λ,B)

qE(b)

characters of conformal field theories as limits of X (λ,B)
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Energy function

1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 2

1 ⊗ 2 ⊗ 2

2 ⊗ 2 ⊗ 2

1 ⊗ 2 ⊗ 1

2 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1

2 ⊗ 1 ⊗ 2

1

1

1

1 1

0

0
0 0

0

0 1 2

X ((2, 1),B) = 1 + q + q2

Reason 8

Affine crystals give the energy function and one-dimensional configuration
sums.
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Promotion

Crystal commutor: (Henriquez, Kamnitzer 2006)

σB,C : B ⊗ C → C ⊗ B

b ⊗ c 7→ η(η(c)⊗ η(b))

Lusztig involution:
η : B → B

η maps highest weight to lowest weight and maps ei to fi ′ with
ω0(αi ) = −αi ′

Definition (Promotion)

u ∈ B⊗n highest weight

pr(u) = σC⊗n−1,C (u)

cyclic action on highest weight elements
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Promotion – example
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Cyclic sieving phenomenon

Theorem (Fontaine, Kamnitzer 2016, Westbury 2016,
Pappe, Pfannerer, S., Simone 2023)

Highest weight elements in B⊗n of weight zero, promotion,
one-dimensional configuration sums gives rise to cyclic sieving
phenomenon.

Cyclic sieving phenomenon: polynomials evaluated at roots of unity related
to sizes of orbits under cyclic action

Reason 9

Crystals gives rise to cyclic sieving phenomena and promotion gives a
cyclic action.



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Cyclic sieving phenomenon

Theorem (Fontaine, Kamnitzer 2016, Westbury 2016,
Pappe, Pfannerer, S., Simone 2023)

Highest weight elements in B⊗n of weight zero, promotion,
one-dimensional configuration sums gives rise to cyclic sieving
phenomenon.

Cyclic sieving phenomenon: polynomials evaluated at roots of unity related
to sizes of orbits under cyclic action

Reason 9

Crystals gives rise to cyclic sieving phenomena and promotion gives a
cyclic action.



Origins Representation Theory Symmetric functions Statistical mechanics and affine crystals

Thank you !

Reason 10

Crystals are beautiful!
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