The Ubiquity of Crystal Bases

Anne Schilling

Department of Mathematics, UC Davis

Noether Lecture
Joint Meetings San Francisco January 4, 2024

Crystal bases

Ten reasons why the combinatorial theory of crystal bases which originated in statistical mechanics and quantum groups is ubiquitous in representation theory,combinatorics, geometry, and beyond.

Crystal bases

Ten reasons why the combinatorial theory of crystal bases which originated in statistical mechanics and quantum groups is ubiquitous in representation theory,combinatorics, geometry, and beyond.
(Kashiwara, Lusztig, Littelmann, ... 1990s)

Crystal bases

Ten reasons why the combinatorial theory of crystal bases which originated in statistical mechanics and quantum groups is ubiquitous in representation theory,combinatorics, geometry, and beyond.
(Kashiwara, Lusztig, Littelmann, ... 1990s)

Based on work with my many collaborators over the years: Assaf, Bandlow, Benkart, Bump, Colmenarejo, Deka, Fourier, Gillespie, Harris, Hawkes, Hersh, Jones, Kirillov, Lam, Lenart, Morse, Naito, Okado, Orellana, Pan, Panova, Pappe, Paramonov, Paul, Pfannerer, Poh, Sagaki, Sakamoto, Saliola, Scrimshaw, Shimozono, Simone, Sternberg, Thiéry, Tingley, Wang, Warnaar, Yip, Zabrocki

Outline

(1) Origins
(2) Representation Theory
(3) Symmetric functions

4 Statistical mechanics and affine crystals

Lie algebras

Lie algebra $\mathfrak{s l}_{2}$

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Lie algebras

Lie algebra $\mathfrak{s l}_{2}$

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Relations

$$
[h, e]=2 e \quad[h, f]=-2 f \quad[e, f]=h
$$

Lie algebras

Lie algebra $\mathfrak{s l}_{2}$

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Relations

$$
[h, e]=2 e \quad[h, f]=-2 f \quad[e, f]=h \quad \text { roots }
$$

Lie algebras

Lie algebra $\mathfrak{s l}_{2}$

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Relations

$$
[h, e]=2 e \quad[h, f]=-2 f \quad[e, f]=h \quad \text { roots }
$$

Weight space decomposition

$$
V=\bigoplus_{\lambda} V(\lambda) \quad \text { where } \quad V(\lambda)=\{v \in V \mid h v=\lambda v\}
$$

Lie algebras

Lie algebra $\mathfrak{s l}_{2}$

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Relations

$$
[h, e]=2 e \quad[h, f]=-2 f \quad[e, f]=h \quad \text { roots }
$$

Weight space decomposition

$$
\begin{gathered}
V=\bigoplus_{\lambda} V(\lambda) \quad \text { where } \quad V(\lambda)=\{v \in V \mid h v=\lambda v\} \\
e V(\lambda) \subset V(\lambda+2) \quad f V(\lambda) \subset V(\lambda-2)
\end{gathered}
$$

Quantum groups

Quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$
generated by $e, f, K^{ \pm 1}$

Quantum groups

Quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$

$$
\text { generated by } e, f, K^{ \pm 1}
$$

Relations

$$
K e K^{-1}=q^{2} e \quad K f K^{-1}=q^{-2} f \quad[e, f]=\frac{K-K^{-1}}{q-q^{-1}}
$$

Quantum groups

Quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$

$$
\text { generated by } e, f, K^{ \pm 1}
$$

Relations

$$
K e K^{-1}=q^{2} e \quad K f K^{-1}=q^{-2} f \quad[e, f]=\frac{K-K^{-1}}{q-q^{-1}}
$$

Representations
$(m+1)$-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation

$$
V_{(m)}=\left\{u, f^{(1)} u, \ldots, f^{(m)} u\right\}
$$

where $\quad e u=0 \quad K u=q^{m} u \quad f^{(k)} u=\frac{1}{[k]_{q}!} f^{k} u \quad[k]_{q}=\frac{q^{m}-q^{-m}}{q-q^{-1}}$

Motivation for crystal bases

2-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation $V_{(1)}$

$$
e u=0 \quad u=e v, f u=v \quad f v=0
$$

Motivation for crystal bases

2-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation $V_{(1)}$

$$
e u=0 \quad u=e v, f u=v \quad f v=0
$$

$\mathrm{u} \underset{e}{\stackrel{f}{\leftrightarrows}} \mathrm{~V}$

Motivation for crystal bases

2-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation $V_{(1)}$

$$
\begin{gathered}
e u=0 \quad u=e v, f u=v \quad f v=0 \\
u \xrightarrow{f} v
\end{gathered}
$$

Motivation for crystal bases

2-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation $V_{(1)}$

$$
\begin{gathered}
e u=0 \quad u=e v, f u=v \quad f v=0 \\
u \xrightarrow{f} v
\end{gathered}
$$

Tensor product
Basis for $V_{(1)} \otimes V_{(1)}$ is $u \otimes u, v \otimes u, u \otimes v, v \otimes v$

Motivation for crystal bases

2-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation $V_{(1)}$

$$
\begin{gathered}
e u=0 \quad u=e v, f u=v \quad f v=0 \\
u \xrightarrow{f} v
\end{gathered}
$$

Tensor product
Basis for $V_{(1)} \otimes V_{(1)}$ is $u \otimes u, v \otimes u, u \otimes v, v \otimes v$

$$
\begin{aligned}
V_{(1)} \otimes V_{(1)} \cong V_{(2)} \oplus V_{(0)} \quad V_{(2)} & =\{u \otimes u, u \otimes v+q v \otimes u, v \otimes v\} \\
V_{(0)} & =\{v \otimes u-q u \otimes v\}
\end{aligned}
$$

Motivation for crystal bases

2-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation $V_{(1)}$

$$
\begin{gathered}
e u=0 \quad u=e v, f u=v \quad f v=0 \\
u \xrightarrow{f} v
\end{gathered}
$$

Tensor product
Basis for $V_{(1)} \otimes V_{(1)}$ is $u \otimes u, v \otimes u, u \otimes v, v \otimes v$

$$
\begin{aligned}
V_{(1)} \otimes V_{(1)} \cong V_{(2)} \oplus V_{(0)} \quad V_{(2)} & =\{u \otimes u, u \otimes v+q v \otimes u, v \otimes v\} \\
V_{(0)} & =\{v \otimes u-q u \otimes v\}
\end{aligned}
$$

Crystal basis
Pick leading term $(q \rightarrow 0)$

$$
\begin{aligned}
B_{(1)} \otimes B_{(1)} \cong B_{(2)} \oplus B_{(0)} \quad & B_{(2)}
\end{aligned}=\{u \otimes u, u \otimes v, v \otimes v\},
$$

Motivation for crystal bases

$$
u=1 \quad v=2
$$

Motivation for crystal bases

$$
u=1 \quad v=2
$$

Reason 1
Crystal bases are combinatorial skeletons of representation theory.

Outline

(2) Representation Theory

$U_{q}\left(\mathfrak{s l}_{3}\right)$-crystals

Axiomatic Crystals

A $U_{q}(\mathfrak{g})$-crystal is a nonempty set B with maps

$$
\begin{aligned}
\mathrm{wt}: B & \rightarrow P \\
e_{i}, f_{i}: B & \rightarrow B \cup\{\emptyset\} \quad \text { for all } i \in I
\end{aligned}
$$

satisfying

$$
\begin{aligned}
& f_{i}(b)=b^{\prime} \Leftrightarrow e_{i}\left(b^{\prime}\right)=b \\
& \mathrm{wt}\left(f_{i}(b)\right)=\mathrm{wt}(b)-\alpha_{i} \\
& \left\langle h_{i}, \mathrm{wt}(b)\right\rangle=\varphi_{i}(b)-\varepsilon_{i}(b)
\end{aligned}
$$

if $b, b^{\prime} \in B$
if $f_{i}(b) \in B$

Write

Local characterization

Local characterization of simply-laced crystals associated to representations (Stembridge 2003)

Local characterization

Local characterization of simply-laced crystals associated to representations (Stembridge 2003)

Combinatorial theory of crystals without quantum groups:

Local characterization

Local characterization of simply-laced crystals associated to representations (Stembridge 2003)

Combinatorial theory of crystals without quantum groups:

Reason 2

Crystal graphs can be characterized by local combinatorial rules.

Tensor product decomposition

$$
{ }^{B} \square \otimes{ }^{B} \square
$$

Tensor products of crystals

Definition

B, B^{\prime} crystals
$B \otimes B^{\prime}$ is $B \times B^{\prime}$ as sets with

$$
\begin{aligned}
\operatorname{wt}\left(b \otimes b^{\prime}\right) & =\operatorname{wt}(b)+\operatorname{wt}\left(b^{\prime}\right) \\
f_{i}\left(b \otimes b^{\prime}\right) & = \begin{cases}f_{i}(b) \otimes b^{\prime} & \text { if } \varepsilon_{i}(b) \geqslant \varphi_{i}\left(b^{\prime}\right) \\
b \otimes f_{i}\left(b^{\prime}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Tensor products of crystals

Definition

B, B^{\prime} crystals
$B \otimes B^{\prime}$ is $B \times B^{\prime}$ as sets with

$$
\begin{aligned}
\operatorname{wt}\left(b \otimes b^{\prime}\right) & =\operatorname{wt}(b)+\operatorname{wt}\left(b^{\prime}\right) \\
f_{i}\left(b \otimes b^{\prime}\right) & = \begin{cases}f_{i}(b) \otimes b^{\prime} & \text { if } \varepsilon_{i}(b) \geqslant \varphi_{i}\left(b^{\prime}\right) \\
b \otimes f_{i}\left(b^{\prime}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

b^{\prime}

Tensor products of crystals

Definition

B, B^{\prime} crystals
$B \otimes B^{\prime}$ is $B \times B^{\prime}$ as sets with

$$
\begin{aligned}
\operatorname{wt}\left(b \otimes b^{\prime}\right) & =\operatorname{wt}(b)+\operatorname{wt}\left(b^{\prime}\right) \\
f_{i}\left(b \otimes b^{\prime}\right) & = \begin{cases}f_{i}(b) \otimes b^{\prime} & \text { if } \varepsilon_{i}(b) \geqslant \varphi_{i}\left(b^{\prime}\right) \\
b \otimes f_{i}\left(b^{\prime}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

b^{\prime}

Tensor products of crystals

Definition

B, B^{\prime} crystals
$B \otimes B^{\prime}$ is $B \times B^{\prime}$ as sets with

$$
\begin{aligned}
\operatorname{wt}\left(b \otimes b^{\prime}\right) & =\operatorname{wt}(b)+\operatorname{wt}\left(b^{\prime}\right) \\
f_{i}\left(b \otimes b^{\prime}\right) & = \begin{cases}f_{i}(b) \otimes b^{\prime} & \text { if } \varepsilon_{i}(b) \geqslant \varphi_{i}\left(b^{\prime}\right) \\
b \otimes f_{i}\left(b^{\prime}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Tensor products of crystals

Definition

B, B^{\prime} crystals
$B \otimes B^{\prime}$ is $B \times B^{\prime}$ as sets with

$$
\begin{aligned}
\operatorname{wt}\left(b \otimes b^{\prime}\right) & =\operatorname{wt}(b)+\operatorname{wt}\left(b^{\prime}\right) \\
f_{i}\left(b \otimes b^{\prime}\right) & = \begin{cases}f_{i}(b) \otimes b^{\prime} & \text { if } \varepsilon_{i}(b) \geqslant \varphi_{i}\left(b^{\prime}\right) \\
b \otimes f_{i}\left(b^{\prime}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Reason 3

Crystals are well behaved with respect to tensor products.

Tensor product multiplicities

- Irreducible $\mathfrak{s l}_{n}$-representation

$$
V_{\lambda}
$$

Tensor product multiplicities

- Irreducible $\mathfrak{s l}_{n}$-representation

$$
V_{\lambda}
$$

Indexed by partitions:

Tensor product multiplicities

- Irreducible $\mathfrak{s l}_{n}$-representation

$$
V_{\lambda}
$$

Indexed by partitions:

- Tensor product multiplicities

$$
V_{\lambda} \otimes V_{\mu}=\bigoplus_{\nu} c_{\lambda \mu}^{\nu} V_{\nu}
$$

Tensor product multiplicities

- Irreducible $\mathfrak{s l}_{n}$-representation

$$
V_{\lambda}
$$

Indexed by partitions:

- Tensor product multiplicities

$$
V_{\lambda} \otimes V_{\mu}=\bigoplus_{\nu} c_{\lambda \mu}^{\nu} V_{\nu}
$$

Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$

Combinatorial description

Littlewood-Richardson rule

$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Combinatorial description

Littlewood-Richardson rule $c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

$$
V_{\square} \otimes V_{\square}=\cdots \oplus ? V_{\square}^{\square} \oplus \cdots
$$

Combinatorial description

Littlewood-Richardson rule
$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

$$
V_{\square} \otimes V_{\square}=\cdots \oplus ? V_{\square}^{\square} \oplus \cdots
$$

$\nabla_{11} 211$	$\overleftarrow{10}^{2} 121$	1112

Combinatorial description

Littlewood-Richardson rule
$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

$$
V_{\square} \otimes V_{\square}=\cdots \oplus ? V_{\square}^{\square} \oplus \cdots
$$

$\stackrel{2}{\sqrt{1}} 211$	$\stackrel{1}{1}_{1}^{2} \quad 121$	$\frac{1}{1}_{1} 112$	$\Rightarrow c_{21,21}^{321}=2$
\checkmark	\checkmark	X	

Combinatorial description

Littlewood-Richardson rule
$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

Gordon James (1987) on the Littlewood-Richardson rule:
"Unfortunately the Littlewood-Richardson rule is much harder to prove than was at first suspected. The author was once told that the Littlewood-Richardson rule helped to get men on the moon but was not proved until after they got there."

Crystal graph

Action of crystal operators e_{i}, f_{i} on tableaux:
(1) Consider letters i and $i+1$ in row reading word of the tableau
(2) Successively "bracket" pairs of the form $(i+1, i)$
(3) Left with word of the form $i^{r}(i+1)^{s}$

Crystal graph

Action of crystal operators e_{i}, f_{i} on tableaux:
(1) Consider letters i and $i+1$ in row reading word of the tableau
(2) Successively "bracket" pairs of the form $(i+1, i)$
(3) Left with word of the form $i^{r}(i+1)^{s}$

$$
\begin{aligned}
e_{i}\left(i^{r}(i+1)^{s}\right) & = \begin{cases}i^{r+1}(i+1)^{s-1} & \text { if } s>0 \\
0 & \text { else }\end{cases} \\
f_{i}\left(i^{r}(i+1)^{s}\right) & = \begin{cases}i^{r-1}(i+1)^{s+1} & \text { if } r>0 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Crystal reformulation

3					
1	2	2	3		
	1	1	2	3	3
				3	

Crystal reformulation

3					
	1	2	3		
	1	1	2		

Crystal reformulation

e_{2} : change leftmost unpaired 3 into 2
f_{2} : change rightmost unpaired 2 into 3

Crystal reformulation

e_{2} : change leftmost unpaired 3 into 2
f_{2} : change rightmost unpaired 2 into 3
Theorem
b where all $e_{i}(b)=0$ (highest weight)
\leftrightarrow connected component
\leftrightarrow irreducible

Crystal reformulation

e_{2} : change leftmost unpaired 3 into 2
f_{2} : change rightmost unpaired 2 into 3
Theorem
b where all $e_{i}(b)=0$ (highest weight)
\leftrightarrow connected component
\leftrightarrow irreducible
Reformulation of LR rule
$c_{\lambda \mu}^{\nu}$ counts tableaux of shape ν / λ and weight μ which are highest weight.

Crystal reformulation

e_{2} : change leftmost unpaired 3 into 2
f_{2} : change rightmost unpaired 2 into 3
Theorem
b where all $e_{i}(b)=0$ (highest weight)
\leftrightarrow connected component
\leftrightarrow irreducible

Reason 4

Crystal operators explain/match the Littlewood-Richardson rule.

Outline

(2) Representation Theory
(3) Symmetric functions

Schur functions

$B_{\lambda}=$ set of semi-standard Young tableaux of partition shape λ over alphabet $\{1,2, \ldots, n\}$

Schur functions

$B_{\lambda}=$ set of semi-standard Young tableaux of partition shape λ over alphabet $\{1,2, \ldots, n\}$

Definition

Schur polynomial

$$
s_{\lambda}(x)=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in B_{\lambda}} x_{1}^{\operatorname{wt}(T)_{1}} \cdots x_{n}^{\mathrm{wt}(T)_{n}}
$$

Schur functions

$B_{\lambda}=$ set of semi-standard Young tableaux of partition shape λ over alphabet $\{1,2, \ldots, n\}$

Definition

Schur polynomial

$$
s_{\lambda}(x)=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in B_{\lambda}} x_{1}^{\operatorname{wt}(T)_{1}} \cdots x_{n}^{\mathrm{wt}(T)_{n}}
$$

Example

Semi-standard Young tableaux of shape $(2,1)$ over the alphabet $\{1,2,3\}$

Schur functions

$B_{\lambda}=$ set of semi-standard Young tableaux of partition shape λ over alphabet $\{1,2, \ldots, n\}$

Definition

Schur polynomial

$$
s_{\lambda}(x)=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in B_{\lambda}} x_{1}^{\mathrm{wt}(T)_{1}} \cdots x_{n}^{\mathrm{wt}(T)_{n}}
$$

Example

Semi-standard Young tableaux of shape $(2,1)$ over the alphabet $\{1,2,3\}$

$$
\begin{aligned}
& s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+2 x_{1} x_{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}
\end{aligned}
$$

Crystal structure

Crystal structure

Crystal ${ }^{B} \square_{\square}$ with edges $f_{1} \downarrow$ and $f_{2} \downarrow$

Reason 5

Schur polynomials are characters of type A crystals.

Tensor product decomposition

$$
{ }^{B} \square^{\otimes}{ }^{B} \square
$$

Tensor product decomposition

Symmetric functions

Reformulation of LR rule

$c_{\lambda \mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric functions

Reformulation of LR rule

$c_{\lambda \mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$
s_{\nu / \mu}=\sum_{\lambda} c_{\lambda \mu}^{\nu} s_{\lambda} \quad \text { and } \quad s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}
$$

Symmetric functions

Reformulation of LR rule

$c_{\lambda \mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$
s_{\nu / \mu}=\sum_{\lambda} c_{\lambda \mu}^{\nu} s_{\lambda} \quad \text { and } \quad s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}
$$

Symmetric functions

Reformulation of LR rule

$c_{\lambda \mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$
s_{\nu / \mu}=\sum_{\lambda} c_{\lambda \mu}^{\nu} s_{\lambda} \quad \text { and } \quad s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}
$$

Mechanism to get Schur expansion

$$
s_{\nu / \lambda}=\sum_{T \in B_{\nu / \lambda}} x^{\text {weight }(T)}=\sum_{Y T=h i g h e s t ~ w e i g h t s} s_{\text {weight }(Y T)}
$$

Symmetric functions

Reformulation of LR rule

$c_{\lambda \mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$
s_{\nu / \mu}=\sum_{\lambda} c_{\lambda \mu}^{\nu} s_{\lambda} \quad \text { and } \quad s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}
$$

Reason 6
Crystals can help to understand symmetric functions.

Super Lie algebras

- Lie superalgebras:

Super Lie algebras

- Lie superalgebras:
- A superalgebra is a \mathbb{Z}_{2}-graded algebra $G_{0} \oplus G_{1}$.

Super Lie algebras

- Lie superalgebras:
- A superalgebra is a \mathbb{Z}_{2}-graded algebra $G_{0} \oplus G_{1}$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.

Super Lie algebras

- Lie superalgebras:
- A superalgebra is a \mathbb{Z}_{2}-graded algebra $G_{0} \oplus G_{1}$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1 . Setting $G_{1}=0$ recovers the definition of Lie algebra.

Super Lie algebras

- Lie superalgebras:
- A superalgebra is a \mathbb{Z}_{2}-graded algebra $G_{0} \oplus G_{1}$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1 . Setting $G_{1}=0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group

Super Lie algebras

- Lie superalgebras:
- A superalgebra is a \mathbb{Z}_{2}-graded algebra $G_{0} \oplus G_{1}$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1 . Setting $G_{1}=0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group
- Queer super Lie algebra

Super Lie algebras

- Lie superalgebras:
- A superalgebra is a \mathbb{Z}_{2}-graded algebra $G_{0} \oplus G_{1}$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1 . Setting $G_{1}=0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group
- Queer super Lie algebra
- The Lie superalgebra $\mathfrak{q}(n)=\mathfrak{s l}(n) \oplus \mathfrak{s l}(n)$ is the natural analog to the Lie algebra $A_{n-1}=\mathfrak{s l}(n)$.

Super Lie algebras

- Lie superalgebras:
- A superalgebra is a \mathbb{Z}_{2}-graded algebra $G_{0} \oplus G_{1}$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1 . Setting $G_{1}=0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group
- Queer super Lie algebra
- The Lie superalgebra $\mathfrak{q}(n)=\mathfrak{s l}(n) \oplus \mathfrak{s l}(n)$ is the natural analog to the Lie algebra $A_{n-1}=\mathfrak{s l}(n)$.
- Highest weight crystals for queer super Lie algebras (Grantcharov, Jung, Kang, Kashiwara, Kim, '10)

Standard crystal and tensor product

Example

Standard queer crystal \mathcal{B} for $\mathfrak{q}(n+1)$

$$
1 \underset{--1}{1}-2 \xrightarrow{2} \xrightarrow{3} \cdots \xrightarrow{n} \xrightarrow{n+1}
$$

Standard crystal and tensor product

Example

Standard queer crystal \mathcal{B} for $\mathfrak{q}(n+1)$

$$
1 \underset{--1}{1}-2 \xrightarrow{2} \xrightarrow{3} \cdots \xrightarrow{n+1}
$$

Tensor product: $b \otimes c \in B \otimes C$

$$
\begin{aligned}
& f_{-1}(b \otimes c)= \begin{cases}b \otimes f_{-1}(c) & \text { if } \operatorname{wt}(b)_{1}=\mathrm{wt}(b)_{2}=0 \\
f_{-1}(b) \otimes c & \text { otherwise }\end{cases} \\
& e_{-1}(b \otimes c)= \begin{cases}b \otimes e_{-1}(c) & \text { if wt }(b)_{1}=\mathrm{wt}(b)_{2}=0 \\
e_{-1}(b) \otimes c & \text { otherwise }\end{cases}
\end{aligned}
$$

Queer crystal: Example

One connected component of $\mathcal{B}^{\otimes 4}$ for $\mathfrak{q}(3)$:

Motivation

Why are queer crystals interesting?

- Characters: character of highest weight crystal B_{λ} (λ strict partition) is Schur P function P_{λ}

Motivation

Why are queer crystals interesting?

- Characters: character of highest weight crystal B_{λ} (λ strict partition) is Schur P function P_{λ}
- Littlewood-Richardson rule:

$$
P_{\lambda} P_{\mu}=\sum_{\nu} g_{\lambda \mu}^{\nu} P_{\nu}
$$

$g_{\lambda \mu}^{\nu}=$ number of highest weights of weight ν in $B_{\lambda} \otimes B_{\mu}$

Characterizations

Characterization of crystals:

- Local characterization of simply-laced crystals (Stembridge 2003)

Characterizations

Characterization of crystals:

- Local characterization of simply-laced crystals (Stembridge 2003)

- Characterization of queer supercrystals [Gillespie, Graham, Poh, S. 2019]

Characterizations

Characterization of crystals:

- Local characterization of simply-laced crystals (Stembridge 2003)

- Characterization of queer supercrystals [Gillespie, Graham, Poh, S. 2019]

Reason 7

Crystals provide combinatorial analysis of super Lie algebras.

Outline

(1) Origins

(2) Representation Theory
(3) Symmetric functions
(4) Statistical mechanics and affine crystals

Affine crystals

$2 \otimes 2 \otimes 2$

One dimensional configuration sums

Why affine crystals?

One dimensional configuration sums

Why affine crystals?

- energy function $E: B_{N} \otimes \cdots \otimes B_{1} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& E\left(e_{i}(b)\right)=E(b) \quad \text { for } 1 \leqslant i \leqslant n \\
& E\left(e_{0}(b)\right)=E(b)-1
\end{aligned}
$$

if e_{0} does not act on leftmost step in $b=b_{N} \otimes \cdots \otimes b_{1}$.

One dimensional configuration sums

Why affine crystals?

- energy function $E: B_{N} \otimes \cdots \otimes B_{1} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& E\left(e_{i}(b)\right)=E(b) \quad \text { for } 1 \leqslant i \leqslant n \\
& E\left(e_{0}(b)\right)=E(b)-1
\end{aligned}
$$

if e_{0} does not act on leftmost step in $b=b_{N} \otimes \cdots \otimes b_{1}$.

- one-dimensional sums for $B=B_{N} \otimes \cdots \otimes B_{1}$

$$
X(\lambda, B)=\sum_{b \in \mathcal{P}(\lambda, B)} q^{E(b)}
$$

One dimensional configuration sums

Why affine crystals?

- energy function $E: B_{N} \otimes \cdots \otimes B_{1} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& E\left(e_{i}(b)\right)=E(b) \quad \text { for } 1 \leqslant i \leqslant n \\
& E\left(e_{0}(b)\right)=E(b)-1
\end{aligned}
$$

if e_{0} does not act on leftmost step in $b=b_{N} \otimes \cdots \otimes b_{1}$.

- one-dimensional sums for $B=B_{N} \otimes \cdots \otimes B_{1}$

$$
X(\lambda, B)=\sum_{b \in \mathcal{P}(\lambda, B)} q^{E(b)}
$$

- characters of conformal field theories as limits of $X(\lambda, B)$

Energy function

Energy function

$2 \otimes 2 \otimes 2$ 0

1
2

$$
X((2,1), B)=1+q+q^{2}
$$

Energy function

$2 \otimes 2 \otimes 2$
0
1
2
$X((2,1), B)=1+q+q^{2}$

Reason 8

Affine crystals give the energy function and one-dimensional configuration sums.

Promotion

Crystal commutor: (Henriquez, Kamnitzer 2006)

$$
\begin{aligned}
\sigma_{B, C}: B & \otimes C
\end{aligned} \rightarrow C \otimes B,
$$

Promotion

Crystal commutor: (Henriquez, Kamnitzer 2006)

$$
\begin{aligned}
\sigma_{B, C}: B \otimes C & \rightarrow C \otimes B \\
b \otimes c & \mapsto \eta(\eta(c) \otimes \eta(b))
\end{aligned}
$$

Lusztig involution:

$$
\eta: B \rightarrow B
$$

η maps highest weight to lowest weight and maps e_{i} to $f_{i^{\prime}}$ with $\omega_{0}\left(\alpha_{i}\right)=-\alpha_{i^{\prime}}$

Promotion

Crystal commutor: (Henriquez, Kamnitzer 2006)

$$
\left.\begin{array}{rl}
\sigma_{B, C}: B & \otimes C
\end{array}\right) C \otimes B+1(\eta(c) \otimes \eta(b))
$$

Lusztig involution:

$$
\eta: B \rightarrow B
$$

η maps highest weight to lowest weight and maps e_{i} to $f_{i^{\prime}}$ with $\omega_{0}\left(\alpha_{i}\right)=-\alpha_{i^{\prime}}$

Definition (Promotion)
$u \in B^{\otimes n}$ highest weight

$$
\operatorname{pr}(u)=\sigma_{C^{\otimes n-1}, C}(u)
$$

cyclic action on highest weight elements

Promotion - example

Cyclic sieving phenomenon

Theorem (Fontaine, Kamnitzer 2016, Westbury 2016, Pappe, Pfannerer, S., Simone 2023)
Highest weight elements in $B^{\otimes n}$ of weight zero, promotion, one-dimensional configuration sums gives rise to cyclic sieving phenomenon.

Cyclic sieving phenomenon

Theorem (Fontaine, Kamnitzer 2016, Westbury 2016, Pappe, Pfannerer, S., Simone 2023)
Highest weight elements in $B^{\otimes n}$ of weight zero, promotion, one-dimensional configuration sums gives rise to cyclic sieving phenomenon.

Cyclic sieving phenomenon: polynomials evaluated at roots of unity related to sizes of orbits under cyclic action

Reason 9
Crystals gives rise to cyclic sieving phenomena and promotion gives a cyclic action.

Thank you!

Thank you!

Reason 10
Crystals are beautiful!

