The Ubiquity of Crystal Bases

Anne Schilling

Department of Mathematics, UC Davis

Noether Lecture Joint Meetings San Francisco January 4, 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Crystal bases

Ten reasons why the combinatorial theory of crystal bases which originated in statistical mechanics and quantum groups is ubiquitous in representation theory, combinatorics, geometry, and beyond.

Crystal bases

Ten reasons why the combinatorial theory of crystal bases which originated in statistical mechanics and quantum groups is ubiquitous in representation theory, combinatorics, geometry, and beyond.

(Kashiwara, Lusztig, Littelmann, ... 1990s)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Crystal bases

Ten reasons why the combinatorial theory of crystal bases which originated in statistical mechanics and quantum groups is ubiquitous in representation theory, combinatorics, geometry, and beyond.

(Kashiwara, Lusztig, Littelmann, ... 1990s)

Based on work with my many collaborators over the years: Assaf, Bandlow, Benkart, Bump, Colmenarejo, Deka, Fourier, Gillespie, Harris, Hawkes, Hersh, Jones, Kirillov, Lam, Lenart, Morse, Naito, Okado, Orellana, Pan, Panova, Pappe, Paramonov, Paul, Pfannerer, Poh, Sagaki, Sakamoto, Saliola, Scrimshaw, Shimozono, Simone, Sternberg, Thiéry, Tingley, Wang, Warnaar, Yip, Zabrocki

・ロト ・日子・ ・ ヨア・ æ

Outline

2 Representation Theory

3 Symmetric functions

4 Statistical mechanics and affine crystals

Lie algebras

Lie algebra \mathfrak{sl}_2

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Lie algebras

Lie algebra \mathfrak{sl}_2

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Relations

$$[h, e] = 2e$$
 $[h, f] = -2f$ $[e, f] = h$

Lie algebras

Lie algebra \mathfrak{sl}_2

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Relations

$$[h, e] = 2e$$
 $[h, f] = -2f$ $[e, f] = h$ roots

Lie algebras

Lie algebra \mathfrak{sl}_2

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Relations

$$[h, e] = 2e$$
 $[h, f] = -2f$ $[e, f] = h$ roots

Weight space decomposition

$$V = \bigoplus_{\lambda} V(\lambda)$$
 where $V(\lambda) = \{v \in V \mid hv = \lambda v\}$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Lie algebras

Lie algebra \mathfrak{sl}_2

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Relations

$$[h, e] = 2e$$
 $[h, f] = -2f$ $[e, f] = h$ roots

Weight space decomposition

$$V = \bigoplus_{\lambda} V(\lambda)$$
 where $V(\lambda) = \{ v \in V \mid hv = \lambda v \}$

$$eV(\lambda) \subset V(\lambda+2)$$
 $fV(\lambda) \subset V(\lambda-2)$

Quantum groups

Quantum group $U_q(\mathfrak{sl}_2)$

generated by $e, f, K^{\pm 1}$

Quantum groups

Quantum group $U_q(\mathfrak{sl}_2)$

generated by $e, f, K^{\pm 1}$

Relations

$$KeK^{-1} = q^2 e$$
 $KfK^{-1} = q^{-2}f$ $[e, f] = \frac{K - K^{-1}}{q - q^{-1}}$

Quantum groups

Quantum group $U_q(\mathfrak{sl}_2)$

generated by $e, f, K^{\pm 1}$

Relations

$$KeK^{-1} = q^2 e$$
 $KfK^{-1} = q^{-2}f$ $[e, f] = \frac{K - K^{-1}}{q - q^{-1}}$

Representations

(m+1)-dimensional irreducible $U_q(\mathfrak{sl}_2)$ -representation

$$V_{(m)} = \{u, f^{(1)}u, \dots, f^{(m)}u\}$$

where eu = 0 $Ku = q^m u$ $f^{(k)}u = \frac{1}{[k]_q!}f^k u$ $[k]_q = \frac{q^m - q^{-m}}{q - q^{-1}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Motivation for crystal bases

2-dimensional $U_q(\mathfrak{sl}_2)$ -representation $V_{(1)}$

$$eu = 0$$
 $u = ev, fu = v$ $fv = 0$

・ロト・日本・モト・モート ヨー うへで

Motivation for crystal bases

2-dimensional $U_q(\mathfrak{sl}_2)$ -representation $V_{(1)}$

$$eu = 0$$
 $u = ev, fu = v$ $fv = 0$

Motivation for crystal bases

2-dimensional $U_q(\mathfrak{sl}_2)$ -representation $V_{(1)}$

$$eu = 0$$
 $u = ev, fu = v$ $fv = 0$

$$u \stackrel{f}{\longrightarrow} v$$

Origins

Motivation for crystal bases

2-dimensional $U_q(\mathfrak{sl}_2)$ -representation $V_{(1)}$

$$eu = 0$$
 $u = ev, fu = v$ $fv = 0$

$$u \xrightarrow{f} v$$

Tensor product Basis for $V_{(1)} \otimes V_{(1)}$ is $u \otimes u, v \otimes u, u \otimes v, v \otimes v$ Origins

Motivation for crystal bases

2-dimensional $U_q(\mathfrak{sl}_2)$ -representation $V_{(1)}$

$$eu = 0$$
 $u = ev, fu = v$ $fv = 0$

$$u \stackrel{f}{\longrightarrow} v$$

Tensor product Basis for $V_{(1)} \otimes V_{(1)}$ is $u \otimes u, v \otimes u, u \otimes v, v \otimes v$ $V_{(1)} \otimes V_{(1)} \cong V_{(2)} \oplus V_{(0)}$ $V_{(2)} = \{u \otimes u, u \otimes v + qv \otimes u, v \otimes v\}$ $V_{(0)} = \{v \otimes u - qu \otimes v\}$

Motivation for crystal bases

2-dimensional $U_q(\mathfrak{sl}_2)$ -representation $V_{(1)}$

$$eu = 0$$
 $u = ev, fu = v$ $fv = 0$

$$u \stackrel{f}{\longrightarrow} v$$

Tensor product
Basis for
$$V_{(1)} \otimes V_{(1)}$$
 is $u \otimes u, v \otimes u, u \otimes v, v \otimes v$
 $V_{(1)} \otimes V_{(1)} \cong V_{(2)} \oplus V_{(0)}$ $V_{(2)} = \{u \otimes u, u \otimes v + qv \otimes u, v \otimes v\}$
 $V_{(0)} = \{v \otimes u - qu \otimes v\}$

Crystal basis

Pick leading term $(q \rightarrow 0)$

$$B_{(1)}\otimes B_{(1)}\cong B_{(2)}\oplus B_{(0)}$$

$$B_{(2)} = \{ u \otimes u, u \otimes v, v \otimes v \}$$
$$B_{(0)} = \{ v \otimes u \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation for crystal bases

Statistical mechanics and affine crystals

Motivation for crystal bases

Crystal bases are combinatorial skeletons of representation theory.

Outline

Origins

2 Representation Theory

3 Symmetric functions

4 Statistical mechanics and affine crystals

 B_{\square}

1

2

3

$U_q(\mathfrak{sl}_3)$ -crystals

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Axiomatic Crystals

A $U_q(\mathfrak{g})$ -crystal is a nonempty set B with maps

wt : $B \to P$ $e_i, f_i : B \to B \cup \{\emptyset\}$ for all $i \in I$

satisfying

$$f_{i}(b) = b' \Leftrightarrow e_{i}(b') = b \qquad \text{if } b, b' \in B$$
$$wt(f_{i}(b)) = wt(b) - \alpha_{i} \qquad \text{if } f_{i}(b) \in B$$
$$\langle h_{i}, wt(b) \rangle = \varphi_{i}(b) - \varepsilon_{i}(b)$$
Write
$$b \qquad i \qquad b' \qquad \text{for } b' = f_{i}(b)$$

Local characterization

Local characterization of simply-laced crystals associated to representations (Stembridge 2003)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local characterization

Local characterization of simply-laced crystals associated to representations (Stembridge 2003)

Combinatorial theory of crystals

without quantum groups:

Local characterization

Local characterization of simply-laced crystals associated to representations (Stembridge 2003)

Combinatorial theory of crystals

イロト イポト イヨト イヨト

without quantum groups:

Reason 2

Crystal graphs can be characterized by local combinatorial rules.

Statistical mechanics and affine crystals

・ロト ・聞ト ・ヨト ・ヨト

æ

Tensor product decomposition

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Tensor products of crystals

Definition

B, B' crystals

$$egin{aligned} &\mathrm{wt}(b\otimes b') = \mathrm{wt}(b) + \mathrm{wt}(b') \ &f_i(b\otimes b') = egin{cases} f_i(b)\otimes b' & \mathrm{if} \ arepsilon_i(b) \geqslant arphi_i(b') \ &b\otimes f_i(b') & \mathrm{otherwise} \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Tensor products of crystals

Definition

B, B' crystals

$$egin{aligned} &\mathrm{wt}(b\otimes b') = \mathrm{wt}(b) + \mathrm{wt}(b') \ &f_i(b\otimes b') = egin{cases} f_i(b)\otimes b' & \mathrm{if} \ arepsilon_i(b) \geqslant arphi_i(b') \ &b\otimes f_i(b') & \mathrm{otherwise} \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Tensor products of crystals

Definition

B, B' crystals

$$egin{aligned} &\mathrm{wt}(b\otimes b') = \mathrm{wt}(b) + \mathrm{wt}(b') \ &f_i(b\otimes b') = egin{cases} f_i(b)\otimes b' &\mathrm{if} \ arepsilon_i(b) \geqslant arphi_i(b') \ &b\otimes f_i(b') &\mathrm{otherwise} \end{aligned}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Tensor products of crystals

Definition

B, B' crystals

$$egin{aligned} &\mathrm{wt}(b\otimes b') = \mathrm{wt}(b) + \mathrm{wt}(b') \ &f_i(b\otimes b') = egin{cases} f_i(b)\otimes b' &\mathrm{if} \ arepsilon_i(b) \geqslant arphi_i(b') \ &b\otimes f_i(b') &\mathrm{otherwise} \end{aligned}$$

Tensor products of crystals

Definition

- B, B' crystals
- $B\otimes B'$ is B imes B' as sets with

$$\operatorname{wt}(b\otimes b') = \operatorname{wt}(b) + \operatorname{wt}(b')$$
 $f_i(b\otimes b') = egin{cases} f_i(b)\otimes b' & ext{if } arepsilon_i(b) \geqslant arphi_i(b') \ b\otimes f_i(b') & ext{otherwise} \end{cases}$

Reason 3

Crystals are well behaved with respect to tensor products.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tensor product multiplicities

• Irreducible \mathfrak{sl}_n -representation

 V_{λ}

Tensor product multiplicities

• Irreducible sl_n-representation

Tensor product multiplicities

• Irreducible sl_n-representation

 V_{λ}

• Tensor product multiplicities

$$V_\lambda \otimes V_\mu = igoplus_
u c^
u_{\lambda\mu} \, V_
u$$

Tensor product multiplicities

• Irreducible sl_n-representation

• Tensor product multiplicities

$$V_\lambda \otimes V_\mu = igoplus_
u c^
u_{\lambda\mu} \, V_
u$$

Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Combinatorial description

Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Combinatorial description

Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that row(t) is a reverse lattice word.

Combinatorial description

Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that row(t) is a reverse lattice word.

Combinatorial description

Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that row(t) is a reverse lattice word.

Combinatorial description

Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that row(t) is a reverse lattice word.

Gordon James (1987) on the Littlewood-Richardson rule:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Crystal graph

Action of crystal operators e_i , f_i on tableaux:

- **(**) Consider letters i and i + 1 in row reading word of the tableau
- 2 Successively "bracket" pairs of the form (i + 1, i)
- Left with word of the form $i^r(i+1)^s$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Crystal graph

Action of crystal operators e_i , f_i on tableaux:

- **(**) Consider letters i and i + 1 in row reading word of the tableau
- 2 Successively "bracket" pairs of the form (i + 1, i)
- **③** Left with word of the form $i^r(i+1)^s$

$$e_i(i^r(i+1)^s) = \begin{cases} i^{r+1}(i+1)^{s-1} & \text{if } s > 0\\ 0 & \text{else} \end{cases}$$
$$f_i(i^r(i+1)^s) = \begin{cases} i^{r-1}(i+1)^{s+1} & \text{if } r > 0\\ 0 & \text{else} \end{cases}$$

Origins

Crystal reformulation

Origins

Crystal reformulation

Symmetric functions

Statistical mechanics and affine crystals

Crystal reformulation

e₂: change leftmost unpaired 3 into 2f₂: change rightmost unpaired 2 into 3

◆□> ◆□> ◆豆> ◆豆> □豆

Crystal reformulation

- e_2 : change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3

Theorem

b where all $e_i(b) = 0$ (highest weight)

- $\leftrightarrow \textit{ connected component}$
- \leftrightarrow irreducible

Crystal reformulation

- e_2 : change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3

Theorem

- b where all $e_i(b) = 0$ (highest weight)
- \leftrightarrow connected component
- \leftrightarrow irreducible

Reformulation of LR rule

 $c_{\lambda\mu}^{
u}$ counts tableaux of shape u/λ and weight μ which are highest weight.

Symmetric functions

Statistical mechanics and affine crystals

・ロト ・ 一 ト ・ モト ・ モト

э

Crystal reformulation

 e_2 : change leftmost unpaired 3 into 2

 f_2 : change rightmost unpaired 2 into 3

Theorem

b where all $e_i(b) = 0$ (highest weight)

 \leftrightarrow connected component

 \leftrightarrow irreducible

Reason 4

Crystal operators explain/match the Littlewood-Richardson rule.

Outline

2 Representation Theory

3 Symmetric functions

4 Statistical mechanics and affine crystals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Schur functions

 B_{λ} = set of semi-standard Young tableaux of partition shape λ over alphabet $\{1, 2, ..., n\}$

Schur functions

 B_{λ} = set of semi-standard Young tableaux of partition shape λ over alphabet $\{1, 2, ..., n\}$

Definition

Schur polynomial

$$s_{\lambda}(x) = s_{\lambda}(x_1, \ldots, x_n) = \sum_{T \in B_{\lambda}} x_1^{\operatorname{wt}(T)_1} \cdots x_n^{\operatorname{wt}(T)_n}$$

Schur functions

 B_{λ} = set of semi-standard Young tableaux of partition shape λ over alphabet $\{1, 2, ..., n\}$

Definition

Schur polynomial

$$s_{\lambda}(x) = s_{\lambda}(x_1, \dots, x_n) = \sum_{T \in B_{\lambda}} x_1^{\operatorname{wt}(T)_1} \cdots x_n^{\operatorname{wt}(T)_n}$$

Example

Semi-standard Young tableaux of shape (2,1) over the alphabet $\{1,2,3\}$

Schur functions

 B_{λ} = set of semi-standard Young tableaux of partition shape λ over alphabet $\{1, 2, ..., n\}$

Definition

Schur polynomial

$$s_{\lambda}(x) = s_{\lambda}(x_1, \dots, x_n) = \sum_{T \in B_{\lambda}} x_1^{\operatorname{wt}(T)_1} \cdots x_n^{\operatorname{wt}(T)_n}$$

Example

S

Semi-standard Young tableaux of shape (2,1) over the alphabet $\{1,2,3\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Crystal structure

Crystal
$$B_{\square}$$
 with edges $f_1 \downarrow$ and $f_2 \downarrow$

2

2

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Crystal structure

Reason 5

Schur polynomials are characters of type A crystals.

Representation Theory

Symmetric functions

Statistical mechanics and affine crystals

・ロト ・聞ト ・ヨト ・ヨト

æ

Tensor product decomposition

Representation Theory

Symmetric functions

Statistical mechanics and affine crystals

Tensor product decomposition

・ロト ・聞ト ・ヨト ・ヨト

æ 👘

Symmetric functions

Reformulation of LR rule

$\mathbf{c}_{\lambda\mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Symmetric functions

Reformulation of LR rule

 $\mathbf{c}_{\lambda\mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$s_{
u/\mu} = \sum_{\lambda} c_{\lambda\mu}^{
u} s_{\lambda}$$
 and $s_{\lambda} s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{
u} s_{\nu}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Symmetric functions

Reformulation of LR rule

 $\mathbf{c}_{\lambda\mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$s_{
u/\mu} = \sum_{\lambda} c_{\lambda\mu}^{
u} s_{\lambda}$$
 and $s_{\lambda} s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{
u} s_{\nu}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric functions

Reformulation of LR rule

 $\mathbf{c}_{\lambda\mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$s_{
u/\mu} = \sum_{\lambda} c^{
u}_{\lambda\mu} s_{\lambda}$$
 and $s_{\lambda} s_{\mu} = \sum_{
u} c^{
u}_{\lambda\mu} s_{
u}$

Mechanism to get Schur expansion

$$s_{
u/\lambda} = \sum_{T \in B_{
u/\lambda}} x^{weight(T)} = \sum_{YT = highest \ weights} s_{weight(YT)}$$

Symmetric functions

Reformulation of LR rule

 $\mathbf{c}_{\lambda\mu}^{\nu}$ counts pairs of tableaux of shape λ and μ of weight ν which are highest weight.

Symmetric function coefficients

$$s_{
u/\mu} \;=\; \sum_{\lambda} c^{
u}_{\lambda\mu} \, s_{\lambda} \qquad ext{and} \qquad s_{\lambda} \, s_{\mu} \;=\; \sum_{
u} c^{
u}_{\lambda\mu} \, s_{
u}$$

Reason 6

Crystals can help to understand symmetric functions.

Super Lie algebras

• Lie superalgebras:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少へぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Super Lie algebras

• Lie superalgebras:

• A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Super Lie algebras

- A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.

Super Lie algebras

- A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.

Super Lie algebras

- A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group

Super Lie algebras

- A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group
- Queer super Lie algebra

Super Lie algebras

• Lie superalgebras:

- A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group

• Queer super Lie algebra

The Lie superalgebra q(n) = sl(n) ⊕ sl(n) is the natural analog to the Lie algebra A_{n-1} = sl(n).
Super Lie algebras

• Lie superalgebras:

- A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
- A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
- In physics: unification of bosons and fermions
- In mathematics: projective representations of the symmetric group

• Queer super Lie algebra

- The Lie superalgebra q(n) = sl(n) ⊕ sl(n) is the natural analog to the Lie algebra A_{n-1} = sl(n).
- Highest weight crystals for queer super Lie algebras (Grantcharov, Jung, Kang, Kashiwara, Kim, '10)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Standard crystal and tensor product

Example

Standard queer crystal \mathcal{B} for $\mathfrak{q}(n+1)$

$$1 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n} n+1$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Standard crystal and tensor product

Example

Standard queer crystal \mathcal{B} for $\mathfrak{q}(n+1)$

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n + 1} n + 1$$

Tensor product: $b \otimes c \in B \otimes C$

$$f_{-1}(b \otimes c) = \begin{cases} b \otimes f_{-1}(c) & \text{if } \operatorname{wt}(b)_1 = \operatorname{wt}(b)_2 = 0\\ f_{-1}(b) \otimes c & \text{otherwise} \end{cases}$$
$$e_{-1}(b \otimes c) = \begin{cases} b \otimes e_{-1}(c) & \text{if } \operatorname{wt}(b)_1 = \operatorname{wt}(b)_2 = 0\\ e_{-1}(b) \otimes c & \text{otherwise} \end{cases}$$

Queer crystal: Example

One connected component of $\mathcal{B}^{\otimes 4}$ for q(3):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Motivation

Why are queer crystals interesting?

• Characters:

character of highest weight crystal B_{λ} (λ strict partition) is Schur *P* function P_{λ}

Motivation

Why are queer crystals interesting?

• Characters:

character of highest weight crystal B_{λ} (λ strict partition) is Schur *P* function P_{λ}

• Littlewood–Richardson rule:

$$P_\lambda P_\mu = \sum_
u g^
u_{\lambda\mu} P_
u$$

 $g_{\lambda\mu}^{
u} =$ number of highest weights of weight u in $B_{\lambda} \otimes B_{\mu}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Characterizations

Characterization of crystals:

• Local characterization of simply-laced crystals (Stembridge 2003)

Characterizations

Characterization of crystals:

• Local characterization of simply-laced crystals (Stembridge 2003)

• Characterization of queer supercrystals [Gillespie, Graham, Poh, S. 2019]

Characterizations

Characterization of crystals:

• Local characterization of simply-laced crystals (Stembridge 2003)

• Characterization of queer supercrystals [Gillespie, Graham, Poh, S. 2019]

Reason 7

Crystals provide combinatorial analysis of super Lie algebras.

Outline

2 Representation Theory

3 Symmetric functions

4 Statistical mechanics and affine crystals

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Affine crystals

One dimensional configuration sums

Why affine crystals?

One dimensional configuration sums

Why affine crystals?

• energy function $E: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$E(e_i(b)) = E(b)$$
 for $1 \le i \le n$
 $E(e_0(b)) = E(b) - 1$

if e_0 does not act on leftmost step in $b = b_N \otimes \cdots \otimes b_1$.

One dimensional configuration sums

Why affine crystals?

• energy function $E: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$E(e_i(b)) = E(b)$$
 for $1 \le i \le n$
 $E(e_0(b)) = E(b) - 1$

if e_0 does not act on leftmost step in $b = b_N \otimes \cdots \otimes b_1$.

• one-dimensional sums for $B = B_N \otimes \cdots \otimes B_1$

$$X(\lambda,B) = \sum_{b\in \mathcal{P}(\lambda,B)} q^{E(b)}$$

・ロト・西ト・西ト・西・ うらぐ

One dimensional configuration sums

Why affine crystals?

• energy function $E: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$E(e_i(b)) = E(b)$$
 for $1 \le i \le n$
 $E(e_0(b)) = E(b) - 1$

if e_0 does not act on leftmost step in $b = b_N \otimes \cdots \otimes b_1$.

• one-dimensional sums for $B = B_N \otimes \cdots \otimes B_1$

$$X(\lambda,B) = \sum_{b\in \mathcal{P}(\lambda,B)} q^{E(b)}$$

• characters of conformal field theories as limits of $X(\lambda, B)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Energy function

Energy function

 $X((2,1),B) = 1 + q + q^2$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Energy function

Reason 8

Affine crystals give the energy function and one-dimensional configuration sums.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Promotion

Crystal commutor: (Henriquez, Kamnitzer 2006)

 $\sigma_{B,C} \colon B \otimes C o C \otimes B$ $b \otimes c \mapsto \eta(\eta(c) \otimes \eta(b))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Promotion

Crystal commutor: (Henriquez, Kamnitzer 2006)

$$\sigma_{B,C} \colon B \otimes C o C \otimes B$$

 $b \otimes c \mapsto \eta(\eta(c) \otimes \eta(b))$

Lusztig involution:

 $\eta\colon B\to B$

 η maps highest weight to lowest weight and maps e_i to $f_{i'}$ with $\omega_0(\alpha_i)=-\alpha_{i'}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Promotion

Crystal commutor: (Henriquez, Kamnitzer 2006)

$$\sigma_{B,C} \colon B \otimes C o C \otimes B$$

 $b \otimes c \mapsto \eta(\eta(c) \otimes \eta(b))$

Lusztig involution:

 $\eta\colon B\to B$

 η maps highest weight to lowest weight and maps e_i to $f_{i'}$ with $\omega_0(\alpha_i) = -\alpha_{i'}$

Definition (Promotion)

 $u \in B^{\otimes n}$ highest weight

$$\mathsf{pr}(u) = \sigma_{C^{\otimes n-1},C}(u)$$

cyclic action on highest weight elements

Promotion – example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Cyclic sieving phenomenon

Theorem (Fontaine, Kamnitzer 2016, Westbury 2016, Pappe, Pfannerer, S., Simone 2023)

Highest weight elements in $B^{\otimes n}$ of weight zero, promotion, one-dimensional configuration sums gives rise to cyclic sieving phenomenon.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cyclic sieving phenomenon

Theorem (Fontaine, Kamnitzer 2016, Westbury 2016, Pappe, Pfannerer, S., Simone 2023)

Highest weight elements in $B^{\otimes n}$ of weight zero, promotion, one-dimensional configuration sums gives rise to cyclic sieving phenomenon.

Cyclic sieving phenomenon: polynomials evaluated at roots of unity related to sizes of orbits under cyclic action

Reason 9

Crystals gives rise to cyclic sieving phenomena and promotion gives a cyclic action.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you !

ヘロト ヘ週ト ヘヨト ヘヨト

æ

Thank you !

Reason 10 Crystals are beautiful!