Math 127C Homework 1 (first two parts), Spring 2021

Due: Friday, May 12

First Part

(1) (Triangle Inequality) [Exercise 1.1.(b)] Prove that

$$
\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\| .
$$

[Hint: Compute $\langle\vec{x}+\vec{y}, \vec{x}+\vec{y}\rangle$ and apply the CauchySchwarz inequality which says that $\langle\vec{x}, \vec{y}\rangle \leq\|\vec{x}\|\|\vec{y}\|$.]
(2) (Matrix supremum norm)[Exercise 1.2] If A is an r by m matrix and B is an m by c matrix show that

$$
|A B| \leq m|A||B| .
$$

(3) (Theorem 18.3) Find a shortest sequence of type (2) and type (3) elementary row operations which have the effect of switching the first two rows of a matrix. Show that there is no such sequence using only type (2) operations.
(4) (Theorem 1.6) Prove that if B is the matrix obtained by applying an elementary row operation to A, then

$$
\operatorname{rank} B=\operatorname{rank} A .
$$

Second Part

(5) (Inverse via Row Operations)[Exercise 1.2.ab]
(a) Let A be an n by n matrix of rank n. By applying elementary row operations to A, one can reduce A to the identity matrix. Show that by applying the same operations in the same order to the identity matrix one obtains the matrix A^{-1}.
(b) Calculate A^{-1} by the above method if

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

(6) (Block Determinant) [Exercise 1.2.6] Show that if

$$
M=\left[\begin{array}{cc}
A & 0 \\
C & D
\end{array}\right]
$$

is a block matrix for which A, D and M are square then $\operatorname{det} M=$ $(\operatorname{det} A)(\operatorname{det} D)$.
Hint: First show that

$$
\left[\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C & D
\end{array}\right]=M .
$$

(7) removed. It was the same as problem 4.

