QUESTION: What connection do ordinary functions, \(y = f(x) \), have to power series centered at \(x = a \) of the form \(\sum_{n=0}^{\infty} a_n(x - a)^n \)?

ANSWER: Assume that \(y = f(x) \) is a given function and constant "\(a \)" is known. Determine a sequence of real numbers \(\{a_n\} \) so that

\[
(T) \quad f(x) = \sum_{n=0}^{\infty} a_n(x - a)^n = a_0 + a_1(x - a) + a_2(x - a)^2 + a_3(x - a)^3 + \cdots.
\]

If we substitute \(x = a \) in equation (T), we get

\[
f(a) = a_0 + a_1(0) + a_2(0)^2 + a_3(0)^3 + \cdots = a_0,
\]
i.e.,

\[
a_0 = f(a).
\]

Now differentiate equation (T) term by term getting

\[
f'(x) = a_1 + 2a_2(x - a) + 3a_3(x - a)^2 + 4a_4(x - a)^3 + \cdots.
\]

If we substitute \(x = a \) in this equation, we get

\[
f'(a) = a_1 + 2a_2(0) + 3a_3(0)^2 + 4a_4(0)^3 + \cdots = a_1,
\]
i.e.,

\[
a_1 = f'(a).
\]

Now differentiate again term by term getting

\[
f''(x) = 2a_2 + 3 \cdot 2a_3(x - a) + 4 \cdot 3a_4(x - a)^2 + 5 \cdot 4a_5(x - a)^3 + \cdots.
\]

If we substitute \(x = a \) in this equation, we get

\[
f''(a) = 2a_2 + 3 \cdot 2a_3(0) + 4 \cdot 3a_4(0)^2 + 5 \cdot 4a_5(0)^3 + \cdots = 2a_2,
\]
i.e.,

\[
a_2 = \frac{f''(a)}{2!}.
\]

Now differentiate again term by term getting

\[
f'''(x) = 3 \cdot 2a_3 + 4 \cdot 3 \cdot 2a_4(x - a) + 5 \cdot 4 \cdot 3a_5(x - a)^2 + 6 \cdot 5 \cdot 4a_6(x - a)^3 + \cdots.
\]

If we substitute \(x = a \) in this equation, we get

\[
f'''(a) = 3 \cdot 2a_3 + 4 \cdot 3 \cdot 2a_4(0) + 5 \cdot 4 \cdot 3a_5(0)^2 + 6 \cdot 5 \cdot 4a_6(0)^3 + \cdots = 3 \cdot 2a_3,
\]
i.e.,

\[
a_3 = \frac{f'''(a)}{3!}.
\]
Continuing this term by term differentiation and substitution process results in the fact that

\(a_n = \frac{f^{(n)}(a)}{n!} \) \quad for \(n = 0, 1, 2, 3, 4, \ldots \).

DEFINITION: Equations (T) and (S) together are called the *Taylor Series* for function \(y = f(x) \) centered at \(x = a \). For the special case of \(a = 0 \), we call the series a *Maclaurin Series*.

DEFINITION: The *Taylor Polynomial of degree* \(n \) centered at \(x = a \) for function \(y = f(x) \) is given by

\[
P_n(x; a) = \sum_{k=0}^{n} a_k (x - a)^k = a_0 + a_1 (x - a) + a_2 (x - a)^2 + \cdots + a_n (x - a)^n
\]

and

\[
a_k = \frac{f^{(k)}(a)}{k!} \quad \text{for} \quad k = 0, 1, 2, 3, \ldots, n.
\]

REMARK: The *Taylor Polynomial of degree* \(n \) centered at \(x = a \) for function \(y = f(x) \) is the *Taylor Series* centered at \(x = a \) terminated at the \(n \)th power of \((x - a) \). It is NOT defined to be the first \(n \) or \(n + 1 \) terms of the Taylor Series.

QUESTION: For what \(x \)-values is an ordinary function \(y = f(x) \) equal to its Taylor series centered at \(x = a \), i.e., for what \(x \)-values is \(y = f(x) \) equal to

\[
f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \frac{f^{(4)}(a)}{4!}(x - a)^4 + \cdots
\]

ANSWER: Let \(P_n(x; a) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n \) be the *Taylor Polynomial of degree* \(n \) centered at \(x = a \) and let

\[
R_n(x; a) = \frac{f^{(n+1)}(a)}{(n+1)!}(x - a)^{n+1} + \frac{f^{(n+2)}(a)}{(n+2)!}(x - a)^{n+2} + \cdots,
\]

which is simply the remaining infinite tail of the Taylor Series centered at \(x = a \). It can be shown that

\[
R_n(x; a) = \frac{f^{(n+1)}(c_n)}{(n+1)!}(x - a)^{n+1},
\]

where \(c_n \) is between numbers \(a \) and \(x \). This is called the Lagrange form of the Taylor remainder. Those \(x \)-values for which \(y = f(x) \) is equal to its Taylor series are precisely those \(x \)-values for which

\[
\lim_{n \to \infty} R_n(x; a) = 0.
\]