Math 21C

Kouba

Alternating Series Test (For Convergence Only)

DEFINITION: A series of the form

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - \cdots,$$

where $a_n > 0$ for all values of $n = 1, 2, 3, 4, \dots$, is called an *alternating series*. How can we test this series for convergence? We will need the following fact, which is given without proof.

FACT A: Assume that the sequence $\{b_n\}$ satisfies the following two conditions:

1.) $b_1 < b_2 < b_3 < b_4 < \cdots$, i.e., $b_n < b_{n+1}$ for $n=1,2,3,4,\cdots$ (The sequence is strictly increasing.) and

2.) $b_n < C$, a fixed constant, for $n = 1, 2, 3, 4, \cdots$ (The sequence is bounded.).

Then $\lim_{n\to\infty} b_n = L$ for some finite number L.

Alternating Series Test: Consider the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$. If the sequence $\{a_n\}$ is posi-

tive (+), decreasing (\downarrow), and $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

<u>Proof</u>: Use the sequence of partial sums (even and odd separately). Since $\{a_n\}$ is positive and decreasing, the following must be true:

$$s_2 = a_1 + (-a_2) < a_1 ,$$

$$s_4 = a_1 + \underbrace{(-a_2) + a_3}_{(-1)} + \underbrace{(-a_4)}_{(-1)} < a_1 ,$$

$$s_6 = a_1 + (-a_2) + a_2 + (-a_4) + a_5 + (-a_6)$$

 $s_6 = a_1 + \underbrace{(-a_2) + a_3}_{\text{(-)}} + \underbrace{(-a_4) + a_5}_{\text{(-)}} + \underbrace{(-a_6)}_{\text{(-)}} < a_1 , \cdots$

$$s_{2n} = a_1 + \underbrace{(-a_2) + a_3}_{(-)} + \underbrace{(-a_4) + a_5}_{(-)} + \cdots + \underbrace{(-a_{2n-2}) + a_{2n-1}}_{(-)} + \underbrace{(-a_{2n})}_{(-)} < a_1, \cdots;$$

also

$$s_{2} = \underbrace{(a_{1} - a_{2})}_{(+)},$$

$$s_{4} = (a_{1} - a_{2}) + (a_{3} - a_{4}) = s_{2} + \underbrace{(a_{3} - a_{4})}_{(+)} > s_{2},$$

$$s_{6} = (a_{1} - a_{2}) + (a_{3} - a_{4}) + (a_{5} - a_{6}) = s_{4} + \underbrace{(a_{5} - a_{6})}_{(+)} > s_{4}, \cdots$$

and

$$s_{2n} = (a_1 - a_2) + (a_3 - a_4) + \cdots + (a_{2n-1} - a_{2n}) = s_{2n-2} + \underbrace{(a_{2n-1} - a_{2n})}_{(+)} > s_{2n-2}$$
, ...

thus, the sequence of even partial sums $\{s_{2n}\}=\{s_2,s_4,s_6,s_8,\cdots\}$ is increasing and bounded above by a_1 . It follows from FACT A that

$$\lim_{n\to\infty} s_{2n} = L$$
, for some finite number L .

Now consider the sequence of odd partial sums $\{s_{2n-1}\}=\{s_1,s_3,s_5,s_7,\cdots\}$. Note that

$$s_{2n} = a_1 - a_2 + a_3 - a_4 + \dots + a_{2n-1} - a_{2n}$$

= $(a_1 - a_2 + a_3 - a_4 + \dots + a_{2n-1}) - a_{2n}$
= $s_{2n-1} - a_{2n}$,

i.e.,

$$s_{2n-1} = s_{2n} + a_{2n} .$$

Taking the limit of both sides we get

$$\lim_{n \to \infty} s_{2n-1} = \lim_{n \to \infty} s_{2n} + \lim_{n \to \infty} a_{2n} = L + 0 = L.$$

Now the sequence of all partial sums $\{s_n\} = \{s_1, s_2, s_3, s_4, s_5, \cdots\}$ satisfies $\lim_{n \to \infty} s_n = L$.

Thus,

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = \lim_{n \to \infty} s_n = L$$

and the alternating series converges by the sequence of partial sums test.

Analysis of the Error (Remainder), R_n, for a Convergent Alternating Series

Begin by separating the nth partial sum, s_n , and the error (remainder), R_n , for a convergent alternating series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = \underbrace{a_1 - a_2 + a_3 - \dots + (-1)^n a_n}_{\text{partial sum, } s_n} + \underbrace{(-1)^{n+1} a_{n+1} + (-1)^{n+2} a_{n+2} + \dots}_{\text{error (remainder), } R_n}$$

It follows that the error satisfies

$$R_n = \begin{cases} a_{n+1} - a_{n+2} + a_{n+3} - a_{n+4} + \cdots, & \text{if } n \text{ is even} \\ -a_{n+1} + a_{n+2} - a_{n+3} + a_{n+4} - \cdots, & \text{if } n \text{ is odd} \end{cases}.$$

Using the same (+)/(-) analysis as in the proof of the Alternating Series Test, we can conclude that ...

- 1.) If n is even, then $0 < R_n < a_{n+1}$.
- 2.) If *n* is odd, then $-a_{n+1} < R_n < 0$.

In general, it is then true that

$$-a_{n+1} < R_n < a_{n+1} ,$$

i.e.,

$$|R_n| < a_{n+1}$$

for $n = 1, 2, 3, 4, \cdots$.