rinding Local Extrema

Find all the local maxima, local minima, and saddle points of the
finctions in Exercises 1-30,

7 L. N =xX+xy+y +3x -3 +4

2 fny) =20 — 522 -2 + 4x + 4y — 4
8. f(x,y) = 2+ xy+3x+2p+5

4 flx,y) =5xy — T + 3x — 6y + 2

5 fny) =2y —x -2y + 3x + 4

6 f(r.y) =X = dry + 3! + 6y + 2

7. fay) = 20 + 3xy + 4y - 5y + 2y

18, f(x,y) =x* — 2y + 2y — 2 + 2y + 1
9, fx,y) = x* - y:— 2+ 4y + 6

10. f(x,y) = x* + 2xy

1. flx,y) = V56x2 — 8y — 16x - 3] ] = 8x
2. f(vy) = 1 - Vit ¥ 2

B, f.) =2 -y -2y +6

fly) =x* + 3xy +

L flry) = 6x2 — 23 + 3y + 6xy

16. fr,y) =X+ +32 - 32 -8

17. fr,y) = 2 + 32 — 15x + y? — 15y

18. f(x.y) =20 + 2)° — 92 4 32 — 12y
19, f(x,y) = dxy — x* - y

LGy =2+ yt 4 4y

3 22. f(x,y) % +xy + %

24. f(x,y) = e*cos y
26. f(x,y) = e — ye*
21 f(x.y) = e(x® +y?) 28. f(x,y) = e'(x? — y})
29, f(,y) =2Inx + In ¥ =4x— y

fley) =In(x +y) + 22 - y

inding Absolute Extrema

. Exercises 31-38, find the absolute maxima and minima of the func-
1005 on the given domains,

PL f(x,y) = 202 - 4x + ¥* = 4y + 1 on the closed triangular plate
bounded by the lines x = 0, ¥ =2,y = 2x in the first quadrant

P2 Dix,y) = x2 — xy + y* + 1 on the closed triangular plate in the
first quadrant bounded by the lines x = 0,y = 4,y =

3 ;

% f, y) = x* + y? on the closed triangular plate bounded by the
lines x = 0,y = 0, ¥ + 2x = 2 in the first quadrant
B T y) = 2 + xy + y? — 6xon the rectangular plate
0=sx=<5-3<y=<3
"Tlty) =22 + xy + y — 6x + 2 onthe rectangular plate
Osy=5-3<y=<o
* [l y) = 48xy — 320 - 24y” on the rectangular plate

Osx<10=sy=<]

* flx,y) = (4x - 2) cos y on the rectangular plate 1 < x = 3,
T4 =y = 7/4(see accompanying figure)

e —————
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38. flx,y) = 4x — 8xy + 2y + 1 on the triangular plate bounded by
the lines x = 0,y = 0, x + Y = L in the first quadrant

39. Find two numbers a and b with ¢ < b such that

b
/ (6 — x — x?) dx

has its largest value.

40. Find two numbers a and b with ¢ < b such that

b
/ (24 — 2x — x2)Bgx

has its largest value.

41. Temperatures A flat circular plate has the shape of the region

X4+y <1 The plate, including the boundary where
x* + y? = 1, is heated so that the temperature at the point (x, y) is

I IA

T(x,y) = x* + 2y? — x,

Find the temperatures at the hottest and coldest points on the plate.
42. Find the critical point of

fx,y) = xy + 2x = InxYy

in the open first quadrant (x > 0, y > 0) and show that f takes
on a minimum there,

Theory and Examples
43. Find the maxima, minima, and saddle points of f(x, v), if any,
given that

a f.=2x—4y and Iy =2y —dx
b. fi=2x-2 and f,=2y-4
¢ f=9%~9 and f =2y +4
Describe your reasoning in each case.

44, The discriminant Jufyy = f? is zero at the origin for each of the

following functions, so the Second Derivative Test fails there.
Determine whether the function has a maximum, a minimum, or
neither at the origin by imagining what the surface ; = flx, y)
looks like. Describe your reasoning in each case.

a. f(x,y) = x)? b. flx,y) =1 — x}?
¢ flxy) = n? d. f(x,y) = x%?
e f(x,y) = 2% £ f(x,y) = 2ty
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45. Show that (0, 0) is a critical point of f(x,y) = x + kxy + y* no
matter what value the constant k has. (Hint: Consider two cases:
k= 0andk # 0.)

46. For what values of the constant k does the Second Derivative Test
guarantee that f(x, y) = x* + kxy + y* will have a saddle point at
(0, 0)? A local minimum at (0, 0)? For what values of k is the Sec-
ond Derivative Test inconclusive? Give reasons for your answers.

4. 1f f.(a, b) = f,(a, b) = 0, must f have a local maximum or min-
imum value at (a, b)? Give reasons for your answer.

48. Can you conclude anything about f(a, b) if f and its first and sec-
ond partial derivatives are continuous throughout a disk centered
at the critical point (a, b) and f,(a, b) and f,(a, b) differ in sign?
Give reasons for your answer.

49. Among all the points on the graph of z = 10 — x* — y? that lie
above the plane x + 2y + 3z = 0, find the point farthest from
the plane.

50. Find the point on the graph of z = x? + y” + 10 nearest the planc
x+2y—-2z=0.

51. Find the point on the plane 3x + 2y + z = 6 that is nearest the
origin.

52. Find the minimum distance from the point (2, —1, 1) to the plane
x+y—z=2

53. Find three numbers whose sum is 9 and whose sum of squares is a
minimum.

54. Find three positive numbers whose sum is 3 and whose product is
a maximum.

55, Find the maximum value of s = xy + yz + xz where
x+y+z=6.

56. Find the minimum distance from the cone z = Vx> + y* to the
point (—6, 4, 0).

57. Find the dimensions of the rectangular box of maximum volume
that can be inscribed inside the sphere x* + y* + 2% = 4.

58. Among all closed rectangular boxes of volume 27 cm?, what is
the smallest surface area?

59. You are to construct an open rectangular box from 12 ft* of mate-
rial. What dimensions will result in a box of maximum volume?

60. Consider the function f(x,y) =x*+y*+ 2y —x—y+1
overthesquare 0 = x = land0 = y = .

a. Show that f has an absolute minimum along the line segment
2 + 2y = | in this square. What is the absolute minimum
value?

b. Find the absolute maximum value of f over the square.

Extreme Values on Parametrized Curves To find the extreme val-
ues of a function f(x, y) on a curve x = x(1), y = y(1), we treat f as a
function of the single variable 1 and use the Chain Rule to find where

df /dt is zero. As in any other single-variable case, the extreme values
of f are then found among the values at the

a. critical points (points where df /dt is zero or fails to exist), and
b. endpoints of the parameter domain,

Find .the absolute maximum and minimum values of the following
functions on the given curves.

61. Functions:

& fixN=x+y b gly)= xy ¢ h(x,y) = 2% + y2

. Functions:

. Function: f(x,y) = xy

. Functions:

Curves:
i) The semicircle x> + y* =4, y=0
ii) The quartercircle x> + > =4, x=0, y=0

Use the parametric equations x = 2 cost,y = 2sin .

a. f(x,y)=2x + 3y
b. g(x,y) = xy
c. hix,y) = x? + 1_"2
Curves:
i) The semiellipse (x*/9) + (y*/4) =1, y=0
i) The quarter ellipse (x?/9) + (y*/4) =1, x=0, y=

Use the parametric equations x = 3cost,y = 2sint.

Curves:
i) Thelinex =21, y=1+1
ii) The linesegment x =21, y=t+1, —-1=1=<0

iii) The line segmentx =21, y=t+1, 0=r=1

a f(x,y)=x*+)y
b. glx,y) = 1/(x* + y?)
Curves:
i) Thelinex=1 y=2-2
ii) The linesegmentx =1, y=2-2t, 0st=1

minimize the value of the function

welmg + b=yt d e+ +b-y @

(See the accompanying figure.) Show that the values of m and‘ b
that do this are

(S5)(x) - nSwn
(Sa) -nSwt

b= ;{(2», = mzxk),

with all sums running from k = 1 to k = n. Many scientific @ .
culators have these formulas built in, enabling you to find m #
b with only a few keystrokes after you have entered the data. 8

The line y = mx + b determined by these values of 7 &%
b is called the least squares line, regression line, or trend I
for the data under study. Finding a least squares line lets yoU

£

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried value
of x,

3. handle data analytically.
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¢ demonstrated these ideas with a variety of applications in Sec- c. Calculate the function’s first partial derivatives and use the CAS

equation solver to find the critical points. How do the critical
points relate to the level curves plotted in part (b)? Which critical

Po(xps yu) points, if any, appear to give a saddle point? Give reasons for your

answer.
d. Calculate the function's second partial derivatives and find the dis-
criminant f,.f,, — f,>.

e. Using the max-min tests, classify the critical points found in part (c).
Are your findings consistent with your discussion in part (c)?

=2,0), (0,2), (2,3)
g8. (0,0),(1,2),(2,3)

fOMPUTER EXPLORATIONS ; ; .
[n Exercises 6974, you will explore functions to identify their local . f(x,y) = {x In(x+ ),  (xy) #(0,0)
extrema. Use a CAS to perform the following steps:

a. Plot the function over the given rectangle.

b. Plot some level curves in the rectangle.

> x 6. fx,y)=x*+y -3, -Ssx=<5 -5=<y=<5
0. fe,y) =2 -3 +y}, -2sxs2 -2sy=<?

In Exercises 66-68, use Equations (2) and (3) to find the least squares 71 f(x,y) = x* + y* — 82> — 6y + 16, -3 = x < 3,

ine for each set of data points. Then use the linear equation you ~6=y=6

bbtain to predict the value of y that would correspond to x = 4, T2 fio,y) =2 +y' =22 =292 + 3, -3 [2<x<3)2
67. (-1,2), (0,1), (3,-4) —3/2=y=3/2

73. flx,y) = 5x° + 18 — 30x* + 30x% — 12023,

~4=x=3 -2=y=<2

0, (x,y) = (0,0)’
-2sys<2 -21sys2

HISTORICAL BIOGRAPHY

Joseph Louis Lagrange
(1736-1813)

Sometimes we need to find the extreme values of a function whose domain is constrained
to lie within some particular subset of the plane—for example, a disk, a closed triangular
region, or along a curve. We saw an instance of this situation in Example 6 of the previous
section. Here we explore a powerful method for finding extreme values of constrained
functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

To gain some insight, we first consider a problem where a constrained minimum can be
found by eliminating a variable.

EXAMPLE 1 Find the point p(x, y, z) on the plane 2x + y — z — 5 = 0 that is clos-
est to the origin.

Solution  The problem asks us to find the minimum value of the function

I

0P| = Vx =0 + (y = 0F + (z — O

=VZ2+y+ 2
subject to the constraint that
2x+y—2z—-5=0.
Since |(713| has a minimum value wherever the function

2
fx,y,2) = x2 + -‘-3 + 72
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or

& = 2Ax + p,
The scalar equations in Equations (5) yield
=2+ 2z=(1 — Ax =g
y=2ly+2z=(1 - Ay =12

Equations (6) are satisfied simultaneously if either A

x=y=z/(1 = A).

If z = 0, then solving Equations (3) and (4) simultaneously to find the LOITLgpondm
points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense whep Yo 3

look at Figure 14.59.

If x = y, then Equations (3) and (4) give

The corresponding points on the ellipse are
-
B= (%?] = \/5) and P = (—\—/—i -0 1+ VE).

Here we need to be careful, however. Although P; and P, both give local maxima of f of
the ellipse, P, is farther from the origin than P,.

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point o
the ellipse farthest from the origin is P,. (See Figure 14.59.) ]

Exercises

Two Independent Variables with One Constraint

1.

Extrema on an ellipse Find the points on the ellipse
x* + 2y? = | where f(x,y) = xy has its extreme values.

. Extrema on a circle Find the extreme values of fx,y) = xy

subject to the constraint g(x, y) = x* + y2 — 10 = 0.

b Maxxmum onaline Find the maximum value of f(x, y) = 49—

x2 =y onthelmer+3\ 10.

. Extremaonaline Find the local extreme values of f(x, y) = x?y

onthe line x + y = 3,

. Constrained minimum Find the points on the curve xy? = 54

nearest the origin,

Constrained minimum  Find the points on the curve xty =2
nearest the origin.

. Use the method of Lagrange multipliers to find

a. Minimum on a hyperbola The minimum value of x + A
subject to the constraints xy = 16,x > 0,y > 0

b. Maximum on aline The maximum value of Xy, subject to
the constraint x + y —= 16,

Comment on the geometry of each solution.

. Extrema on a curve Find the points on the curve x* + xy+

” = 1 in the xy-plane that are nearest to and farthest from the
ongm

. Minimum surface area with fixed volume Find the dimen-

sions of the closed right circular cylindrical can of smallest
surface area whose volume is 167 cm?,

o

2y = 2)y + pu,

Il
b=}
=]
a

2

|
o
]
"
>
R

-

1=0 Xz —A:=0
2x2 =1 z=1—-2x 2
1=i\/§ z=17%F V2.

10.

11.

12,

13,

14.

15.

16.

3 g

Cylinder in a sphere Find the radius and height of the opé
right circular cylinder of largest surface area that can be inscrib@
in a sphere of radius a. What is the largest surface area?

Rectangle of greatest area in an ellipse Use the method 8
Lagrange multipliers to find the dimensions of the rectangle@
greatest area that can be inscribed in the ellipse x2/16 + y*/9
with sides parallel to the coordinate axes.

Rectangle of longest perimeter in an ellipse Find the dl
sions of the rectangle of largest perimeter that can be inscribeG#
the ellipse x*/a* + y*/b* = | with sides parallel to the co0rd

nate axes, What is the largest perimeter?

Extrema on a circle Find the maximum and minimum Va
of x* + y? subject to the constraint x> — 2x + y? — 4y = 0-3
Extrema on a circle Find the maximum and minimum valt
of 3x — y + 6 subject to the constraint x*> + y? = 4.

Ant on a metal plate The temperature at a point (x, ¥) ’
metal plate is T(x,y) = 4x? — 4xy + y%. An ant on the P )
walks around the circle of radius 5 cemered at the origlﬂ-

storage tank for liquid petroleum gas. The customer’s 9P°c "‘
tions call for a cylmdmdl tank with hemispherical ends, ”’d‘
tank is to hold 8000 m® of gas. The customer also wants ©
the smallest amount of material possible in building ‘h“
What radius and height do you recommend for the cylin®
portion of the tank?
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47. Minimum distance to a point Find the point on the plane

x + 2y + 3z = 13 closest to the point (1, 1, 1).

Maximum distance to a point Find the point on the sphere
x* +y* + 22 = 4 farthest from the point (1, -1, 1).

Minimum distance to the origin Find the minimum distance
from the surface x> — y* — 22 = | to the origin.

Minimum distance to the origin Find the point on the surface
z = xy + | nearest the origin.

Minimum distance to the origin Find the points on the surface
22 = xy + 4 closest to the origin.

Minimum distance to the origin Find the point(s) on the sur-
face xyz = 1 closest to the origin.

Extrema on a sphere  Find the maximum and minimum values of
fooyn2)=x—2y+ 5z

on the sphere x* + y* + 72 = 30.

Extrema on a sphere Find the points on the sphere
x4y + 22 = 25 where f(x,y,2) = x + 2y + 3z has its max-
imum and minimum values.

. Minimizing a sum of squares Find three real numbers whose
sum is 9 and the sum of whose squares is as small as possible.

6. Maximizing a product Find the largest product the positive
numbers x, y, and z can have if x + y + 2% = 16.

Rectangular box of largest volume in a sphere Find the dimen-
sions of the closed rectangular box with maximum volume that can
be inscribed in the unit sphere.

8. Box with vertex on a plane Find the volume of the largest
closed rectangular box in the first octant having three faces in the
coordinate planes and a vertex onthe plane x/a + y/b + z/c = 1,
wherea > 0,5 > 0, and ¢ > 0.

. Hottest point on a space probe A space probe in the shape of
the ellipsoid

42+ y +4z22 =16

enters Earth’s atmosphere and its surface begins to heat. After
I hour, the temperature at the point (x, y, z) on the probe’s sur-
face is

T(x,y,2) = 8x% + 4yz — 16z + 600.

Find the hottest point on the probe’s surface.

. Extreme temperatures on a sphere Suppose that the Celsius
temperature at the point (x, y, z) on the sphere x> + y? + 72 = |
is T = 400xyz>. Locate the highest and lowest temperatures on
the sphere.

» Cobb-Douglas production function During the 1920s, Charles
Cobb and Paul Douglas modeled total production output P (of a
firm, industry, or entire economy) as a function of labor hours
involved x and capital invested y (which includes the monetary
Worth of all buildings and equipment). The Cobb-Douglas produc-

tion function is given by
P(ry) = by,

Where k and a are constants representative of a particular firm or
€conomy.

32.

33

35.
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a. Show that a doubling of both labor and capital results in a
doubling of production P.

b. Suppose a particular firm has the production function for k =
120 and o = 3/4. Assume that each unit of labor costs $250
and each unit of capital costs $400, and that the total expenses
for all costs cannot exceed $100,000. Find the maximum pro-
duction level for the firm.

(Continuation of Exercise 31.) If the cost of a unit of labor is a
and the cost of a unit of capital is c,, and if the firm can spend
only B dollars as its total budget, then production P is constrained
by ex + ¢,y = B. Show that the maximum production level
subject to the constraint occurs at the point
aB (1 —a)B
X = and y=‘fz ).
Maximizing a utility function: an example from economics
In economics, the usefulness or urility of amounts x and y of two
capital goods G, and G, is sometimes measured by a function
U(x, y). For example, G, and G, might be two chemicals a phar-
maceutical company needs to have on hand and U(x, y) the gain
from manufacturing a product whose synthesis requires different
amounts of the chemicals depending on the process used. If G,
costs a dollars per kilogram, G, costs b dollars per kilogram, and
the total amount allocated for the purchase of G, and G, together
is ¢ dollars, then the company’s managers want to maximize U(x, y)
given that ax + by = ¢. Thus, they need to solve a typical
Lagrange multiplier problem.
Suppose that

Ulx,y) = xy + 2x
and that the equation ax + by = ¢ simplifies to
2x +y = 30.

Find the maximum value of U and the corresponding values of x
and y subject to this latter constraint,

. Blood types Human blood types are classified by three gene

forms A, B, and 0. Blood types AA, BB, and 00 are homozygous,
and blood types AB, AO, and BO are heterozygous. If p, g, and r
represent the proportions of the three gene forms to the popula-
tion, respectively, then the Hardy-Weinberg Law asserts that the
proportion Q of heterozygous persons in any specific population
is modeled by

0P, q,1) = 2pq + pr + qn),
subjectto p + ¢ + r = 1. Find the maximum value of Q.

Length of a beam In Section 4.6, Exercise 39, we posed a
problem of finding the length L of the shortest beam that can
reach over a wall of height A to a tall building located k units from
the wall. Use Lagrange multipliers to show that

L= (hl 3 kl .l),l/2.

Locating a radio telescope  You are in charge of erecting a radio
telescope on a newly discovered planet. To minimize interference.,
you want to place it where the magnetic field of the planet is weak-
est. The planet is spherical, with a radius of 6 units. Based on a
coordinate system whose origin is at the center of the planet, the
strength of the magnetic field is given by M(x,y,z) = 6x—
y? 4+ xz + 60. Where should you locate the radio telescone?
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Extreme Values Subject to Two Constraints
37. Maximize the function f(x,y,z) = x* + 2y — 22 subject to the
constraints 2x — y = Qand y + z = 0.

38. Minimize the function f(x,y.z) = x* + y* + z* subject to the
constraints x + 2y + 3z = 6and x + 3y + 9z = 9.

39. Minimum distance to the origin Find the point closest to the
origin on the line of intersection of the planes y + 2z = 12 and
xX+y=6.

40. Maximum value on line of intersection Find the maximum
value that f(x, y,z) = ¥* + 2y — 22 can have on the line of inter-
section of the planes 2x =y = Oand y + z = (.

41. Extrema on a curve of intersection Find the extreme values of
flx,y,2) = x*yz + 1 on the intersection of the plane z = 1 with
the sphere x* + y? + 22 = 10,

42. a. Maximum on line of intersection Find the maximum value

of w = xyz on the line of intersection of the two planes
v+y+z=40andx +y—z = 0.

b. Give a geometric argument to support your claim that you
have found a maximum, and not a minimum, value of w.

43. Extrema on a circle of intersection Find the extreme values of
the function f(x, y,z) = xy + z2 on the circle in which the plane
¥ — x = 0 intersects the sphere x* + y? + 72 = 4,

44. Minimum distance to the origin Find the point closest to the

origin on the curve of intersection of the plane 2y + 4z = 5 and
the cone z2 = 4x + 4y,

Theory and Examples

45. The condition Vf = AVg is not sufficient Although
Vf = AVg is a necessary condition for the occurrence of an
extreme value of f(x, y) subject to the conditions g(x,y) = 0 and
Vg # 0, it does not in itself guarantee that one exists. As a case
in point, try using the method of Lagrange multipliers to find a
maximum value of f(x,y) = x + y subject to the constraint that
xy = 16. The method will identify the two points (4, 4) and
(=4, —4) as candidates for the location of extreme values. Yet the
sum (x + y) has no maximum value on the hyperbola xy = 16,
The farther you go from the origin on this hyperbola in the first
Quadrant, the larger the sum f(x, y) = x + y becomes.

46. A least squares plane The plane z = Ax + By + C is to be
“fitted” to the following points (x,, y;, z,):
0,0,0), (0,1,1),

(1;1,1), (&;0;=1)

1 4 9 Taylor's Formula for Two Variables

Find the values of A, B, and C that minimize

4
D (Axg + By + C = 3,2,
k=1

the sum of the squares of the deviations.

47. a. Maximum on a sphere Show that the maximum value of
a*b*c* on a sphere of radius r centered at the Origin of g Cgy.
tesian abc-coordinate system is (r2/3)°.

b. Geometric and arithmetic means Using part (a), shoy
that for nonnegative numbers a, b, and c,
atb+c

e Tam

that is, the geometric mean of three nonnegative numbers i Jegg

than or equal to their arithmetic mean.

48. Sum of products Leta,, a, . . ., @, be n positive numbers, Fipg.
the maximum of 2/, a;x; subject to the constraint Lixi=

COMPUTER EXPLORATIONS
In Exercises 49-54, use a CAS to perform the following steps implement.
ing the method of Lagrange multipliers for finding constrained extrema:

a. Form the function h = f — A,g, — A>g,, where f is the func-
tion to optimize subject to the constraints g = 0andg, =0,

(abe)'? =

b. Determine all the first partial derivatives of h, including the par- -
tials with respect to A, and A,, and set them equal to 0.

c. Solve the system of equations found in part (b) for all the
unknowns, including A; and A,.

d. Evaluate f at each of the solution points found in part (c) and select
the extreme value subject to the constraints asked for in the exercise,

49. Minimize f(x, , 2) = xy + yz subject to the constraints x> + :
2=0andx* + 2 -2 = 0.

50. Minimize f(x, y, z) = xyz subject to the constraints x* + »
l=0andx—z=0.

51. Maximize f(x,y,z) = x* + ® + 72 subject to the constrain g
2y t4z-5=0anddx’ + 4y* - 22 = (),

52. Minimize f(x,y,z) = x> + y* + 22 subject to the constraints
-yt -2-1 =0andx’ +y2 -1 =0,
53. Minimize f(x,y,z,w) = x2 + y? + 2% + w2 subject to the col
straints 2t —y+z-w-1=0 and x+y-27%
w—1=0,

54. Determine the distance from the line y = x + | to the parabolf
y* = x. (Hint: Let (x, y) be a point on the line and (w, 2) 32P°-

on the parabola. You want to minimize (x — w)* + (y — 2

1

In this section we use Taylor’s formula to derive the Second Derivative Test for 1008
extreme values (Section 14.7) and the error formula for linearizations of functions of_tW’
independent variables (Section 14.6). The use of Taylor's formula in these derivaflo
leads to an extension of the formula that provides polynomial approximations of all orde®
for functions of two independent variables. L

Derivation of the Second Derivative Test

Let f(x, y) have continuous partial derivatives in an open region R containing a point P(@
where f, = f, = 0 (Figure 14.60). Let h and k be increments small enonoh to put




