Math 21C

Kouba

The Comparison Tests and Limit Comparison Tests

<u>COMPARISON TESTS</u>: Assume that sequences a_n and b_n satisfy $0 \le a_n \le b_n$. The following statements can now be made.

I.) If the series
$$\sum_{n=1}^{\infty} b_n$$
 converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.

II.) If the series
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then the series $\sum_{n=1}^{\infty} b_n$ diverges.

<u>LIMIT COMPARISON TESTS</u>: Assume that we know what the series $\sum_{n=1}^{\infty} b_n$ does (converge or diverge) and we are trying to determine what the series $\sum_{n=1}^{\infty} a_n$ does. Assume also that $a_n > 0$, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$, where L is a positive, finite number.

I.) If the series
$$\sum_{n=1}^{\infty} b_n$$
 converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.

II.) If the series
$$\sum_{n=1}^{\infty} b_n$$
 diverges, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

THE FOLLOWING ARE SPECIAL CASES FOR THE LIMIT COMPARISON TEST.

III.) a.) If
$$L=0$$
 and the series $\sum_{n=1}^{\infty} b_n$ converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.

b.) If
$$L=0$$
 and the series $\sum_{n=1}^{\infty}b_n$ diverges, then NO CONCLUSION can be made about the series $\sum_{n=1}^{\infty}a_n$ using this test.

IV.) a.) If
$$L = \infty$$
 and the series $\sum_{n=1}^{\infty} b_n$ diverges, then the series $\sum_{n=1}^{\infty} a_n$ converges.

b.) If
$$L=\infty$$
 and the series $\sum_{n=1}^{\infty}b_n$ converges, then NO CONCLUSION can be

made about the series $\sum_{n=1}^{\infty} a_n$ using this test.