Math 21C Midterm I Friday, April 19 Spring 2024

You may not use a calculator.
You may use one page of notes.
You may not use the textbook.
Please do not simplify answers.

1. (9 pts each: Series)

Determine for each part whether the series converges or diverges.
Write clear and complete solutions including the name of the series test you use and what your answer is.
(a)

$$
\sum_{n=1}^{\infty} \frac{3 n^{2}+1}{n^{2}+n}
$$

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+1}{n^{2}+n}=3,80 \quad \sum_{n=1}^{\infty} \frac{3 n^{2}+1}{n^{2}+n}
$$

diverges by with teen tout
(b)

$$
\sum_{n=1}^{\infty}\left(\frac{-3}{2}\right)^{n}
$$

$$
\left|-\frac{3}{2}\right|=\frac{3}{2}>\left[\text { so } \sum_{n=1}^{\infty}\left(\frac{-3}{2}\right)^{n}\right. \text { diverges }
$$

by geanotic series test.

$$
\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^{3}+5}} \approx \sum_{n=1}^{\infty} \frac{1}{n}
$$

Using $L C T$,

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{n+1}{n^{3}+5}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{n^{3}+5}} \sqrt{n^{2}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n^{3}+n^{2}}{n^{3}+5}}=1
$$

$k \infty \infty$, so by LCT as $\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent p-sevices, then $\sum_{n=1}^{n} \sqrt{\frac{n+1}{n^{3}+5}}$ diverges.
(d)

$$
\sum_{n=1}^{\infty}(-1)^{n} \sqrt{\frac{n+1}{n^{3}+5}}
$$

Atternating Sevies Test:
Positiovit: $\sqrt{\frac{n+1}{n^{3}+5}}>0$ for all $n \geqslant 1$.
Decreasing: Consider $f(x)=\sqrt{\frac{x+1}{x^{3}+5}} \cdot f^{\prime}(x)=\frac{1}{2}\left(\frac{x+1}{x^{3}+5}\right)^{-1 / 2}\left(\frac{x^{3}+5-3 x^{2}(x+1)}{\left(x^{3}+5\right)^{2}}\right)$

Limitsto Q :

$$
\begin{array}{r}
=\underbrace{\frac{1}{2} \sqrt{\frac{x^{3}+5}{x+1}}(}_{70} \frac{(\underbrace{\left(x^{3}+5\right)^{2}}_{30}}{20}) \\
-2 x^{3}-3 x^{2}+5<0 \\
\text { if } x \geqslant 2,90
\end{array}
$$ deusing whon $n \geqslant 2$.

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{n^{3}+5}}=0
$$

Thes, hy Aft sevies test, $\sum_{n=1}^{\infty}(-1)^{n} \sqrt{\frac{n-1}{n^{3}+5}}$ canverges.

Positivity:

$$
n e^{-n^{2}}>0 \quad \forall n
$$

Dearersing: V
$f(x)=x e^{-x^{2}}$

$$
\begin{aligned}
f^{\prime}(x) & =e^{-x^{2}}-2 x^{2} e^{-x^{2}} \\
& =(\underbrace{1-2 x^{2}}_{<0 \forall x \cdot(f)}) e^{-x^{2}}
\end{aligned}
$$

Absolute convergence

$$
\begin{gathered}
\frac{-1}{n^{2}} \leq \frac{\sin (n)}{n^{2}} \leq \frac{1}{n^{2}}, \text { so } \\
\left|\frac{\sin (n)}{n^{2}}\right| \leq \frac{1}{n^{2}}
\end{gathered}
$$

Iutegrd $\sum_{\infty}^{\infty} \sum_{n=1}^{\infty} e^{-n^{2}}$ Test i $\quad u=-x^{2}, d u=-2 x d x$

$$
\begin{aligned}
\int_{1}^{\infty} x e^{-x^{2}} d x & =\frac{-1}{2} \int e^{a} d u \\
& =-\left.\frac{1}{2} e^{-x^{2}}\right|_{1} ^{\infty}=\frac{1}{2 e}
\end{aligned}
$$

As $\int_{1}^{\infty} x e^{-x^{2}} d_{x}$ converges, by the integral test, $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges.
$\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$ \& Note $\sin (n) \ngtr 0 \forall n$.
Thus, As $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a
Convergent p-series with $p=2$, $\sum_{n=1}^{\infty}\left|\frac{\sin (n)}{n^{2}}\right|$ converges. Thus, $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$ converges absolutely. (ie it converges)

$$
\sum_{n=1}^{\infty}\left(e^{\frac{1}{n}}-e^{\frac{1}{n+1}}\right)
$$

This is a felescaping sum. Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} e^{1 / n}-e^{\frac{1}{n+1}} & =e-\lim _{n \rightarrow \infty} e^{\frac{1}{n+1}} \\
& =e-e^{0} \\
& =e-1
\end{aligned}
$$

(h)

Recall $\lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n}=e^{k}$.

$$
\Rightarrow \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1}, \text { so }
$$

$\sum_{n=1}^{\infty}(1-1 / n)^{n}$ diwerges by wth term test.
2. ($10 \mathrm{pts}:$ Story)

A redwood tree increases in diameter each spring. Each spring its diameter grows 99 percent as much as it did the previous spring. During its first spring its diameter grows to one foot.
What will be the eventual diameter of the tree if it lives forever?

$$
a=1, r=.99 \text {. Let } D=\text { diameter. }
$$

The free will grow fo a diameter of toft.
3. (9 pts: Integral Errors)

The series
$T=\sum_{n=1}^{\infty} n$
converges rapidly
(a) Find any upper and lower bounds for T.

$$
\frac{1}{e} \leq \sum_{n=1}^{\infty} n e^{-n^{2}} \leq \frac{1}{e}+\frac{1}{2 e}
$$

Proven in part b.
 ie, ne want $\int_{n}^{\infty} x e^{-x^{2}} d x \leqslant \frac{1}{2}$, solving for n.

$$
\begin{array}{r}
\int_{n}^{\infty} x e^{-x^{2}} d x=\left.\frac{-1}{2} e^{-x^{2}}\right|_{n} ^{\infty}=\frac{1}{2 e^{n}} \leq 1 / 2 \\
\frac{1}{e^{n}} \leqslant 1
\end{array}
$$

$1 \leq e^{n}$, so $0 \leq n$, but notutsat 1, so $\mathrm{l} \leq \mathrm{n}$.
So, $\quad \frac{1}{e} \leq \sum_{n=1}^{\infty} n e^{-n^{2}} \leq \frac{1}{e}+\int_{1}^{\infty} x e^{-x^{2}} d x=\frac{1}{e}+\frac{1}{2 e}$
4. (9 pts: Alternating Errors)

The alternating series

$$
S=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}
$$

(a) Find any upper and lower bounds for S.

$$
\begin{aligned}
& S_{2}=\frac{(-1)^{2}}{\ln (2)}=\frac{1}{\ln (2)} \\
& S_{3}=\frac{1}{\ln (2)}-\frac{1}{\ln (3)}
\end{aligned} \Rightarrow S_{3} \leq S \leq S_{2}
$$

Obsome the for oven n,

$$
S_{n} \geq S_{n+1} .
$$

(b) Find upper and lower bounds for S which differ by at most $\frac{1}{2}$.

$$
\begin{aligned}
& \left|a_{n+1}\right| \leq \text { error, so }\left|\frac{(-1)^{n+1}}{\ln (n+1)}\right| \leq 1 / 2 \\
& \Rightarrow \frac{1}{\ln (n+1)} \leq \frac{1}{2} \Rightarrow 2 \leq \ln (n+1) \\
& \Rightarrow e^{2} \leq n+1 \\
& \Rightarrow e^{2}-1 \leq n \text { so not netrual \#, } \\
& \Rightarrow 3^{2}-1=8 \leq n \text {. }
\end{aligned}
$$

So, 9

$$
\sum_{n=2}^{9} \frac{(-1)^{n}}{\ln (n)} \leq \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)} \leq \sum_{n=2}^{8} \frac{(-1)^{n}}{\ln (n)}
$$

5. (10 pts: Extra Credit... you may skip this problem) You know that $\sum_{m=0}^{\infty} 7 r^{m}=8$. Find the exact value of

$$
\underbrace{\sum_{m=0}^{\infty} z^{m}}=8
$$

geometric,

$$
\begin{aligned}
\Rightarrow \frac{7}{1-r} & =8 \\
\frac{7}{8} & =1-r \\
r & =1-\frac{7}{8}=1 / 8
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m=0}^{\infty} 7 \sqrt[3]{r^{m}} \\
& \sum_{m}^{m} \sqrt[3]{r^{m}}=\sum_{m=0}^{\infty} 7 \sqrt[3]{\left(\frac{1}{8}\right)^{m}} \\
&=\sum_{m=0}^{\infty} 7\left(\sqrt[3]{\frac{1}{8}}\right)^{m} \\
&=\sum_{m=0}^{\infty} 7\left(\frac{1}{2}\right)^{m} \\
& \left\lvert\, \begin{array}{|l|}
\mid 1 / 2
\end{array}\right.<1,50 \\
&=\frac{1-1 / 2}{1-14}
\end{aligned}
$$

