
Math 21C Midterm I Friday, April 19 Spring 2024

Name:

Student ID:

You may not use a calculator.
You may use one page of notes.
You may not use the textbook.
Please do not simplify answers.
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1. (9 pts each: Series)
Determine for each part whether the series converges or diverges.
Write clear and complete solutions including the name of the series test
you use and what your answer is.
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2. (10 pts: Story)
A redwood tree increases in diameter each spring. Each spring its diameter
grows 99 percent as much as it did the previous spring. During its first
spring its diameter grows to one foot.
What will be the eventual diameter of the tree if it lives forever?

6

a = 1
,
r=. 99

.

Let Didiameter .

D = 1(99)" = an
= 100

n=&

nu
geometric,v=.c+

The tree will grow to a diameter of lift .



3. (9 pts: Integral Errors)
The series
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∞
∑

n=1

ne
−n

2

converges rapidly.

(a) Find any upper and lower bounds for T .

(b) Find upper and lower bounds for T which differ by at most 1

2
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4. (9 pts: Alternating Errors)
The alternating series
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∞
∑
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(a) Find any upper and lower bounds for S.
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5. (10 pts: Extra Credit... you may skip this problem)
You know that
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