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The survival-of-the-fhittest effect postulates that under high nmutation rates natural selection does not nec-
essarily favor the faster replicators. Under such conditions, genotypes which are robust against deleterious
mutational effects may be favored instead, even at the cost of a slower replication. This tantalizing hypothesis
has been recently proved using digital organisms, subviral RNA plant pathogens (viroids), and an animal RNA
virus. In this work we study a simple theoretical system composed by two competing quasispecies which are
located at two widely different fitness landscapes that represent, respectively, a fit and a flat quasispecies. The
fit quasispecies is characterized by high replication rate and low mutational robustness whereas the flat quasis-
peies is characterized by low replication rate but high mutational robustness. By using a mean field model,
in silico simulations with digital replicons and a two-dimensional spatial model given by a stochastic cellular
automata (CA), we predict the presence of an absorbing first-order phase transition with critical slowing down
between selection for replication speed and selection for mutational robustness, where the surpassing of a criti-
cal mutation rate involves the outcompetition of the fit quasispecies by the flat one. Furthenmore, it is shown that
space, which irwolves alower critical mutation rate, broadens the conditions at which the survival-of-the-flattest
may OCCur:

Keywords: survival-of-the-flattest, quasispecies spatial dynamics, robustness, virus evolution, critical phenomena, absorhing

first-order phase transitions.

I. INTRODUCTION

The quasispecies theory of molecular evolution, originally
developed by M. Figen and collaborators (Eigen et al. 1988,
Figen and Schuster 1979) has become the standard theoret-
ical framework used to model the evolution of RNA viruses
(Domingo 2002, Domingo and Holland 1997). Ore of the
keystones of theoretical quasispecies, shared by RNA viruses,
is that replication fidelity is so low that the mumber of mutant
offspring generated in a population may exceed the number
of offspring identical to the parental genotype. This gives rise
to highly polymorphic populations in which the frequency of
the wildtype and of each mutant genotype not only depends
on their replication rates but also on their constant genesis by
mutation from genotypes which are close in genotypic space.
In a constant environment and in the absence of other extermal
perturbations, this distribution of genotypes is known as the
quasispecies (Eigen et al. 1988).

The existence of a population structure in quasispecies
strongly affects the way selection acts, because the evolu-
tionary success of individual genomes does not depend any-
more on their own replication rate but also on the average
growth rate of the quasispecies they belong to. Fast replicating
genomes that produce low-fitness offspring can be outcom+
peted by slow replicating genomes provided the latter inhab-
its a region of sequence space characterized by high neutral-
ity and comnectivity (Schuster and Swetina 1988, van Ninmwe-
gen et al. 1999, Wilke 2001b). This phenomenon has been
dubbed as the quasispecies effect (van Nimwegen et al. 1999,
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Wilke 2001a) or more recently as the survival-of-the-fhttest
(Wilke et al. 2001) in clear reference to Darwin’s survival-of-
the-fittest concept. Indeed, authors who have casted doubts
about the relevance of the quasispecies model to real viruses
based their criticism in the fact that the quasispecies effect
was never observed in vivo (Holmes and Moya 2002, Jenk-
ins et al. 2001). However; two recent experiments give strong
support to the validity of the quasispecies effect for real viral
populations. In the first experiment, two viroids (small circu
lar RNA s that infect plants and do not encode for any protein)
populations were allowed to compete at increasing mutation
rates (Codorier et al. 2006). Atlow mutation rate the faster but
genetically homogeneous replicator outcompeted the slower
but highly polymorphic one, as expected from the survival-
of-the-fittest effect. However; the result of the competition
was reversed at high mutation rate and the slower replicator
won the competition by taking advantage of its larger muta
tional robustness. In the second study (Sanjudn et al. 2007),
two populations of Vesicular stonmtitis virus (VSV) that dif-
fered in their replication rates and robustness competed at in
creasing concentrations of chemical mutagens. Below a cer
tain concentration of nutagens, the fittest VSV outcompeted
the flattest one. Above this critical concentration, the compe-
tition result was reverted and the flattest VSV systematically
displaced the fittest one.

One peculiarity of viral infections that is usually ignored
by most quasispecies models is the existence of a spatial pop-
ulation structure. Only a few studies have analyzed the enor
threshold transition in a spatial context (Altemeyer and Mc-
Caskill 2001, Toyabe and Sano 2005). It is well known that
spatial dynamics can deeply change the outcome of competi-
tion even under the absence of selection (Solé and Bascompte
2006). Within infected hosts, viruses do not behave as a single
well-stinred population but as a collection of subpopulations
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FIG. 1: Spatial distribution of two PPV variants infecting the same leaf of N benthaniana. Each variant was labeled with a different fluorescent
protein (red and green). Coinfected shall appear as yellow fluorescent. The right panel is a 5-fold magnification of the left one, and shows that
only the line of cells at the confluence edge can be infected by the two PPV variants (taken from Dietrich and Maiss (2003)).

that colonize and reproduce on different compartments con-
stituted by different tissues and organs. For example, it has
been extensively shown that after infection, the Hunman imx
mumodeficiency virustype 1 (HIV-1) is able to establish well-
differentiated populations which are organ-specific and show
limited gene flow among them (Bordena et al. 2007, Sanjudn
et al. 2004). In these cases, organ-specificity appears not as a
consequence of founder events but as a consequence of differ-
ences in the adaptive constraints imposed by heterogeneous
cell types and the existence of finess tradeoffs across organs.
In the case of plant viruses, spatial structure appears at two
different levels. First, it has been shown that different leaves
can be infected with different viral subpopulations, which, for
the case of perennial plants, may further differentiate into dif-
ferent branches and sub-branches, as it has been shown, for
example, for Plum pox virus (PPV) (Jridi et al. 2006). In
this case, population structure likely arises as a consequence
of the strong bottlenecks associated with the systemic move-
ment of viruses from source to sink leaves (Hall et al. 2001,
Li and Roossinck 2004, Sacristén et al. 2003). Second, within
a given infected leaf, that for the sake of simplicity can be
considered as a two dimensional space, populations initiated
at different infectious foci do not overap after confluence but
exclude each other; generating a patched distribution of geno-
types (Dietrich and Maiss 2003) (see Fg. 1).

In the present report we analyze the dynamics of two com+
peting quasispecies by using a simple mean field model, in sil-
icosimulations with digital replicons, and a stochastic cellular
automata (CA) model, which allows to sinuilate the competi-
tion process explicitly considering the potential effect of phys-
ical space. In all these approaches, the fit quasispecies has a
fast replication rate but is surmounded by genotypes which are
strongly deleterious and thus mutations always have a strong
negative effect on the average population fitness. On the con-
trary, the flat one has a lower replication rate but is located at
aneutral and highly connected region of sequence space, and
thus mutations exert a mild impact on viral fitness. In par
ticular; we are interested in studying the effect of increasing
mutation rate on the outcome of the competition process, pay-
ing special attention to the role of spatial structure. In short,

our results suggest the existence of a critical mutation rate at
which an absorhing first-order phase transition with slowing
down between selection for fast replication and selection for
mutational robustness takes place. Beyond the critical muta-
tion rate, the flat quasispecies outcompetes the fit one. In the
vicinity of this transition both quasispecies can coexist during
an extremely long time. Moreover; space is shown to broaden
the conditions at which the survival-of-the-flattest can be ob-
served. The results of the in silico simulations are in complete
agreement with the mean field analysis.

II. QUASISPECIES MFAN FIELD MODEL

As a first approach to the analysis of the competition dy-
namics between two quasispecies located at two different fit-
ness landscapes, amean field model has beenused. The model
considers a perfectly mixed system with a fit quasispecies, =,
and a flat one, y. Underthe assumption ", (z; + y;) = 1, the
model is defined by the following set of ODEs:

d
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.
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wheretheterm @ (x, y) = 30, 1 [(£1” — )i+ (£ — )y,
indicates the outflow (i.e., excess production) defining a con-
stant population (CP) constraint. Here z( denotes the relative
concentration of the master sequence and x; the concentration
of all the mutant sequences, which are grouped in an average
sequence different form the master one. The self-replication
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FIG. 2: The fit (1) and the flat (2) quasispecies are located at two
different fimess landscapes. At low mutation rate (A) populations
are centered on the peak; at high mutation rate (B) populations drift
on the landscape away from the peak. The lower diagram provides a
schematic representation of the quasispecies competition model (sec-
tion IT). Dashed anmows indicate the competition among both quasis-
pecies.

rate for the master sequence is given by fﬁo), while the self-
replication constant for the other sequences (grouped in x;)
isfz(l). Here, as a consequence of the assumed fitness land-
scape, the master sequence x replicates faster than the pool
of mutants z; and thus £{” > f{". Both variables y, and
11 indicate the relative concentration of the flat quasispecies,
which is a densely connected one because is located in a flat
fitness landscape and thus backward mutations are allowed to
happen (see Fig. 2). Finally, ¢ denotes the decay rate for the
replicators, which is defined to be the same for both quasis-
pecies. Note that our model allows us to study two differ
ent scenarios considering both no decay (¢ = 0) and decay
(e #0).

Hereafter we will assume that /" = i = f, < .
In dll the equations @) denotes the average quality factor of
self-replication, which we assume to be the same forall the se-
quences, thus being the mutationrate, 11, definedas . = 1-Q.
The qualitative behaviorof Egs. (1-4) can be studied by means
of linear stahility analysis of the equilibrium points. Note
that the concentration equilibrium for both flat quasispecies
isthe samei.e, yi = y;, because we have assumed that their
self-replication rates are equal, thus becoming both Eqs. (3-
4) symmetric. Hence, in order to simplify our model we can
reduce the system (1-4) to a three-dimensional dynamical sys-
tembyoomldermgzz ¥; = y andyg + y1 = y, thus having
¥ = fyy — y®(x,y) — ey. It can be shown that this reduced
system has four fixed points, given by: P*(0), P*(0,0,1),
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FIG. 3: (A) Equilibrium concentrations at increasing mutation rate
with /9 = 1, Y = 0.05, £ = Y = 0.3, ande = 0. The
inset shows an enlarged view of the sharp transition point indicated
with the amow. Here zo, 71, yo and y; are represented as open cir-
cles, closed cirdles, filled and open triangles, respectively. Here the
initial conditions were: z4(0) = 0.35, z1(0) = 0.2, yo(0) = 0.15,
y1(0) = 0.3. The time dynamics associated to the survival-of-the-
fittest and to the-survival-of-the-flattest are shown in (B) and (C) (zo:
thick solid line; 1 : thinsolidline; yo: thick dashed line; andy; : thin
dashed line), with same parametervalues asin (A) with@ = 0.4 (B),
and Q = 0.25 (C). Here, for both scenarios, we use: z(0) = 0.5,
21(0) =0, yo(0) = y1(0) = 0.25.

P*(0,1,0) and P*(z, 1 — 3, 0), with:

199 - ftM
O _ g

For the sake of simplicity, linear stahility analysis is done by
setting e = 0. Itis easy to show that the fixed point P*(0)
is always unstable when self-replication rates are higher than
zero, since the eigenvalues obtained from the Jacobi matrix,
L(0), are XV = f0Q, @ = fV and \®) = f,.
Thus all these eigenvalues will be positive or zero (when self-
replications rates are zero). Let us now analyze the mostinter
esting case, that is, the survival-of-the-flattest scenario, corre-
sponding to the fixed point P*(0,0,1). The stahility of this
point is obtained from the eigenvalues of L (0, 0, 1), which are
givenby: A\© = £9Q — £, A® = £ _ r and by
A®) = —f,. Note that \(>*) < 0, since it is assumed that
fy > Y From A\() we can dexive the critical mutation rate
which makes this fixed point becoming stablei.e., AV < 0,
thus indicating that the flat quasispecies will be the surviving
one. Such a critical condition is defined to be:
fy

o

©)

—
IO—

(6)

[LC:1—

Hence, the survival-of-the-flattest will take place provided
u > pe. The stability properties for the third fixed point
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FIG. 4: Normalized equilibrium concentrations (in linear-log plot) as a function of per-bit mutation probability, 1, with 7, = 10~ % and
ry = 0.1 (after discarding 5000 generations and averaging over 10 independent runs). The curves below the master sequence correspond
(from top to bottom) to the mutant sequences of the fit quasispecies differing up to five bits from the master sequence. Note that beyond
uy = 0.072, the flat quasispecies (thick line) is able to outcompete the fit one. The anows indicate the perbit mutation probahilities used
to display the time dynamics of both quasispeces: (A) survival-of-the-fittest-scenario with 1, = 0.023; (B) very near the critical mutation
with 5, = 0.07; and (C) survival-of-the-flattest scenario with i, = 0.078. In all the time plots: master sequence (solid thick line), mutants
differing up to five bits from the master sequence (solid thin lines), and the nommalized sum of the sequences belonging to the flat quasispecies

(dashed thick line).

P*(0,1,0), are obtained from the eigenvalues of (0, 1,0),
which are givenby AV = V@ — £V, A® = —fM), and
by A®) = f, — V. Note that A\(?) is always negative, and
A®) is always positive because f, > f", being such a point
a saddle (since A\(® irwolves an unstable subspace). More-
over; \() is positive when Q > £/ £9. As £V > Y,
A will also be tipically positive. The stability of the last
fixed point is analyzed from L(z§, 1 — x5, 0). The eigerval-
ves forthis case are: A1) = — f{Q, \® = 1, — 119, and
A3 = V¢ Notethat AV isalways negative. Hence,
this point will bestableif £ Q > f, and f{VQ > f{V.

The temporal dynamics of Eqgs. (1-4) has also been mur
merically studied using the standard fourth-order Runge-Kutta
method with a constant time step 6t = 0.1 (assuming . =
1> M =005, £V = 1 =03 < £V, and e = 0). Nu-
merical r&ultsaremagrem]entwiﬂl linear stahility analysis.
In Fig. 3A we compute the equilibrium concentration (after
discarding the transient period) at increasing mutation rates.
Theinset clearly shows that such a concentration decreases for
the fit quasispecies (z), and increases for the pool of nutants
(z1). Once the critical mutation is overcome, the fit quasis-
pecies becomes extinct, and the flat one achieves a non-trivial
stationary concentration. In the same figure we also show the
time dynamics of the system below (Fig. 3B) and above (Fig.

3C) the critical mutation rate. Figure 3A indicates the pres-
ence of a sharp change in the qualitative dynamics once the
critical mutation rate is overcome. Such a result can be i
terpreted as an absorhing first-order phase transition among
the survival-of-the-fittest and the survival-of-the-flattest sce-
narios, in agreement with the study of Wilke (2001b). The
extinction time of these quasispecies hyperbolically diverges
in the vicinity of the critical mutation point, being extremely
long very near the phase transition point (results not shown).
This actually corresponds to a phenomenon of critical slowing
down in the vicinity of the phase transition.

III. INSILICOBIT STRING MODEL

Next, we extended the previous mean field model by con-
sidering two competing populations of quasispecies in the
form of binary digital replicators, thus considering the whole
mutant spectrum of the quasispecies, within a nultidimen-
sional sequence space. This computational approach has
been previously used to study viral dynamics and evolution
(Codoneretal. 2006, Soléetal. 1999; 2006). Let us define two
populations of digital replicons, given by a fit quasispecies,
ST, and a flat one, S/, both of them defined as populations
conposedofbmarystrmgsmmedSFf = (SET, .. 8B,
with S>/ € {0,1}, being v the sequence length, where



1 = 1,...,N, being N the maxinum population number of
sequences (We use v = 32 and N = 500). The fit quasis-
pecies is formed by the master sequence (all-ones string) and
its entire mutant spectrum (all the other2” —1 sequences). The
master sequence is assumed to self-replicate at the maxinmum
probahility (i.e. r,,, = 1). The pool of mutants self-replicates
with a lower probahility, , = 10~3, because we also assume
that the fit quasispecies is located at a sharp fitness landscape
and mutations have large deleterious effects. On the contrary,
the flat quasispecies corresponds to a robust neutral network
in which mutations do not affect self-replication rates. Thus
all possible sequence comhinations for the flat quasispecies
self-replicate atr; = 0.1.

As initial conditions we randomly inoculate the population
with master sequences of the fit quasispecies and with ran-
dom flat quasispecies. At each generation in the algorithm the
following set of rules was repeated NV times:

1. A string from the population was randomly chosen and
replicated acoording to the above-mentioned probahili-
ties.

2. Replication takes place by replacing one of the strings
in the population (also taken at random) say S;.;, by
a copy of S;. The self-replication mechanism presents
enor at rates 1, per bit and replication cyde, respec-
tively.

Figure 4 shows the average equilibrium concentration as a
function of the perbit mutation probability for three different
types of sequences: the master string; some sequences of the
mutant spectrum of the fit quasispecies (i.e., the five nearest
hypercubic orthant neighbors given by the sequences differing
up to five hits from the master one); and the flat quasispecies
(represented with the normalized sum of all the sequences be-
longing to this quasispecies) at increasing mutation probabil-
ities. From this diagram, the critical mutation probability is
shown to be yi;, =~ 0.072. In orderto compare this critical mu-
tation rate with the one obtained with the mean field model we
must take into account that /4;, is the perbit mutation probabil-
ity. The probahility of errorfree copy of the master sequence
isgiven by (1 — )", and thus the probability that at least one
bit will be copied with enroris:

p=1— (1= m)" )

According to expression (7), the critical nutation rate ob-
tained from ;1§ = 0.072, is p. = 0.908. The value predicted
with the mean field model (i.e., expression (6)), using the
self-replication probahilities as replication rates, is given by
e = 0.9. Note that this mutation value perfectly matches
with the one analytically derived from the mean field model.
Figure 4 also shows three examples of the time evolution of
the sequences used in the diagram. Specificelly, in Fig. 4A
we display the scenario below the critical per-hit mutation,
where the master sequence (solid thick line) achieves a higher
stationary concentration than the mutant strings (from top to
down we can follow the time evolution from the first to the
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FIG. 5: Quasispecies populations at increasing per-bit mutation rates
for the spatial model, with L = 128, fpoor = 0.05, frn = 1,
friat = 0.1 and e = 0.01 (each data point is the mean concentra-
tion + standard deviations averaged over 5 replicas after discarding
7 = 2 x 10° generations). The flat quasispecies (considering the
whole population of strings) is indicated with the empty circles and
the dashed line. Below the master sequence we show (from top to
bottom) the strings differing up to five bits from the master sequence.
The capital letters indicate the mutation probabilities used in Fig. 6.

fifth neighbor in sequence space). Figure 4B shows the time
dynamics near the critical mutation. For this particular run,
the flat quasispecies was able to outcompete the fit one. Note
that the master sequence and the strings forming the pool of
mutants become extinct at approximately 900 generations. If
mutation probability is increased the same outcome is found
although the fit quasispecies becomes extinct earlier (see Fig.
4C).

IV. BIT STRING SPATTIAL MODEL

We findlly develop a spatially-extended stochastic model
including the whole quasispecies structure of both competing
quasispecies. We definea I x L statespace Q(L) € Z2, with
zero-flux boundary conditions (simulating, for example, the
bounded system of plant leaves). Each quasispecies (the fit,
SF = (sh,...,sE), and the flat, S/ = (s/,,....s!))) have
a potential population composed of |H”| (with H= 2 and
v = 16) binary strings which define the states of the automa-
ton and correspond to the whole spectrum of strings living
in the vertices of two 16-th dimensional Boolean hypercubes.
We choose, at each generation 7, L x L random cells to en-
sure an average updating of all the lattice cells per generation.
Assuming that only a single hit string can occupy alattice cell
and a Moore neighborhood for replication events, we apply
two state transition rules (with same probability), according
to:

1. Self-replication: If the cell is occupied by a sequence
of the fit quasispecies, SF, and the neighbor site is
enpty, ST replicates with probahility f,,, € [0, 1] if itis
the master sequence, S¥ (i.e., all-ones string), accord-
ing to the next reactions:
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FIG. 6: Spatio-temporal dynamics for the CA model with same probahilities as in FHg. 5, and: (A) pp = 0.0075; (B) up = 0.0375;
(C) up = 0.06; and (D) pp, = 0.1. For time dynamics (in linearlog scale): flat quasispecies (dashed anrow), master sequence of the fit
quasispedies (solid arrow), pool of deleterious mutants of the fit quasispecies (the other time trajectories). In the snapshots obtained from the
time series we show: flattest strings (white); empty cells (black); fit quasispecies (gray gradient represented in the middle of the figure). Here
the upper gray band corresponds to the master sequence and the rest of colors (from top to bottom) to the sequences differing from one to
sixteen hits from the master sequence. As initial conditions (middle) we inoculated the lattice with two patches containing all-one sequences

for both flat and fit quasispecies.
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If the cell is occupied by a deleterious nutant of the
fit quasispecies, it replicates to an empty neighbor site
with probahility fp.0: € [0, 1], according to the follow-
ing pair of reactions:

Fpoot (1—p)" o8 F

z;ém ¢ i#Emo

.fpool

z;ém + ¢ Sz#m + Sj#z

If the cell is occupied by a string of the flat quasispecies,
it replicates towards an empty neighborwith probability
ffiat € [0, 1], according to:

friat(1=p)”
e

s/ +¢ 28/,

friatWi f
—J>S —&-SJ#Z

S! +¢
2. Decay: If the cell is occupied by a string, it decays with
probahility € € [0, 1], leaving a free space according to:

S; - ¢.

Weuse: frn = 1, fpoor = 0.05, fr1ar = 0.1 and e = 0.01.
The terms W;; comrespond to the probabilities of erroneous
replication and are given by W;; = (1 — p)v~9u(S:8:0 .

ptn1S:S51 being dy[Si,S;] = Yoy, |s¥ — s%|, the Hamr
mmg dlstanoe between the two sequences. As initial condi-
tions two patches were inoculated with all-one sequences for
both populations (see Fig. 6 middle).

We investigate the effect of increasing nmutation rate in the
population structure of both competing quasispecies. The re-
sults show an approximate linear decay in the concentration
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FIG. 7: Critical mutation rates as a function of self-replication rate
of the flat quasispecies. We show the values of ;.. predicted by the
mean field model (thick solid line) with £’ = 1 ande = 0. For
the in silico model (white cirdles, withr,,, = 1 andr, = 0.05), we
plot the value of the lower nuitation probahility involving (after 3000
generations) a whole population composed by flattest strings. For
the CA model (triangles) we compute (using Eq. (7)) the lower nur-
tation probability involving the outcompetition of the fit quasispecies
by the flat one with f,, = 1, fpoor = 0.05, ¢ = 0.05 and L = 128
(the same critical nutation values are found for L = 40, L = 80,
and L. = 200 (results not shown)). Dashed and thin solid lines cor-
respond, respectively, to linear regressions for the critical nmutation
values forthe bit string model of section ITI and for the CA model.

of the master sequence of the fit quasispecies as nutation rate
increases. The flat quasispecies can outcompete the fit one
beyond j1;, =~ 0.079 (see Fig. 5). The spatiotemporal dynam-
ics associated to four different mutation probahilities is shown
in Fig. 6. The first one (Fig. 6A) shows the dynamics with
low per-bit mutation rate (1, = 0.0075). As mutation rate is
low;, the master sequence of the fit quasispecies (solid arrow)
rapidly spreads, invading the space and outcompeting the flat
replicator (dashed arrow). The time evolution for the mutant
sequences differing in 1 (up) and in 2 (down) hits from the
master sequence of the fit quasispecies are also shown. These
are actually the only sequences found in the mutant spectrum
since mutation is very low.

If mutation rate is increased up to 1, = 0.0375, the master
sequence of the fit quasispecies grows slowly, and the mutant
spectrum contains a higher diversity of sequences (see Fig.
6B). The mutant sequences belonging to the fit quasispecies
(from top to down) differing in up to five bits from the mas-
ter sequence are specifically shown. Actually, the sequences
differing in more than 6 zeros from the master sequence are
not found in the pool of mutants (results not shown). The
third case (Fig. 6C) shows the dynamics with a mutation rate
near to the critical value. Here, the fit quasispecies asymp-
totically outcompetes the flat one. Note that the diversity of
sequences of the mutant spectrum increases (for this case we
find sequences differing in 1 to 9 zeros from the master se-
quence). As we are near the transition point, the time that the
fit quasispecies spends in outcompeting the flat one is longer,
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in agreement with the previous models which showed the crit-
ical slowing down phenomenon. The dynamics with 1, = 0.1
are shown in Fig. 6D. Here the perbit mutation value is
above the critical mutation probability and thus the flat qua-
sispecies outcompetes the fit one. Now all possible sequences
of the mutant spectrum appear; and the master sequence of the
fit quasispecies (small solid arrow) rapidly extincts (approxi-
mately afterr = 2200 generations).

InFig. 7 we represent the critical mutation value for all the
models analyzed in this work. Interestingly, the values of ;..
obtained for the CA model, in which space is explicitly in-
comporated, are systematically below the values obtained for
those models that do not consider spatial structure (i.e., mean
field and hit-string models), strongly suggesting that replica-
tion on a spatially constrained scenario rather than in a well-
stirred environment enlarges the parameter space at which the
survival-of-the-flattest may occur: The £, (u..) function s eas-
ily derived from the spatially mixed case, from Eq. (6):

fy(:uC) = ngO)(l - ﬂc)-,

which will be maximal for y. = 0 and zero at 4. = 1 (as
expected). The spatial model also follows a linear relation,
but it now decays as:

£y (ne) = [2(1 = ale,v)pe),

where a(e, v) is some (to be analyzed elsewhere) function of
spatial constraints, decay and -presumably- genome length.
This deviation between the spatial and non-spatial counter
parts of the string model seems consistent with previous work
by Altemeyer and McCaskill on error threshold for spatially
extended quasispecies (Altemeyer and McCaskill 2001) (see
also (Toyabe and Sano 2005)). In their study, this authors
showed that decreased diffusion in a given spatial domain
leads to a decrease in the error threshold mutation. Here a
related phenomenon is being observed within the context of
competing quasispecies.

V. DISCUSSION

In the present work we have explored the dynamics of com-
petition between two quasispecies located at two widely dif-
ferent fitness landscapes that conespond, respectively, to a
high-fitness and low-robustness (the fittest landscape) and to
a low-fitness and high-robustness (the flattest 1andscape) sce-
narios. The effect of different mutation rates on the outcome
of the competition between these two quasispecies has been
explored. A mean field model, in silico simulations with hi-
nary digital replicators and a spatially-explicit model given
by a stochastic two dimensional cellular automata (CA) have
been employed. All these approaches show, in agreement with
previous studies (Codoner et al. 2006, Sanjudn et al. 2007,
Wilke 2001a, Wilke et al. 2001), that under high mutation
rates the flat quasispecies are advantaged, and thus selection
positively acts on robustness more strongly than on replication
speed.



The mean field analysis has allowed us to derive an analyt-
ical solution for the critical nutation rate, .., at which an ab-
sorbing first-order phase transition with critical slowing down
between selection for fast replication and selection for robust-
ness takes place. In previous work, the mmerical value of /..
was obtained as the solution of a quadratic expression (Wilke
etal. 2001) and, hence, it was not straightforward to visualize
the effect that the different parameters involved in the expres-
sion (replication rate and robustness) had on 4. Ourestimator
of p.., however, has a much simpler expression since only de-
pends on the ratio between the self-replication rates of the flat
quasispecies, f,, and the master sequence (i.e., the mutation-
free genotypes), £, of the fit quasispecies. The larger the
difference in replication rates between these two quasispecies,
the smaller the value of 1. and therefore, the easierto obsarve
the survival-of-the-flattest effect.

We have also extended the analysis of these theoretical qua-
sispecies performing in silico simulations with binary repli-
cons, thus potentially taking into account the whole mutant
spectrum of these quasispecies. The results of these simuila-
tions are in complete agreement with the mean field model.
In general, the conclusions drawn from the CA model are in
excellent agreement with the mean field analysis and with the
in silico simulations, although the spatial structure is shown
to broaden the conditions at which the survival-of-the-flattest
may occur. This result is of clear relevance for the experi-
mental data supporting the applicahility of the survival-of-the-
flattest hypothesis to viral populations and in particular to the
observations of Codoner et al. (2006) with viroids and by ex-
tension to plant viruses. Plant viruses replicate and systemati-
cally move within infected plants forming spatially structured
patchy populations ratherthan a single well-mixed population
(Dietrich and Maiss 2003, Hall et al. 2001, Jridi et al. 2006).
Different leaves may not necessarily be infected with the same
virus genotype and, even within a single infected leaf, differ
ent genotypes may not coinfect the same cell and thus, not
compete each other intracellularly. This being the case, a flat
quasispecies may increase its frequency in the metapopulation
by avoiding direct competition with the fit quasispecies even

at low mutation rate.

Antiviral drugs with mutagenic action (e.g., nucleoside ana-
logues like ribavirin) have been widely used, in combination
with other drugs or interferons, as antiviral therapies against
HIV-1 and Hepatitis C virus. However, a classic observationis
that drug-resistant virus readily emerged upon treatment (Gao
etal. 1992, Keulen et al. 1999, Larder and Kemp 1989, Pfeif-
fer and Kirkegaard 2003). In general, these resistant mutants
present mutations at the polymerase gene which enhance fi-
delity at the cost of lowering replication down. In addition
to this mechanism of resistance, flat quasispecies might pro-
vide an altemative way of escaping from nutagenic therapies.
In this sense, Sanjuén et al. (2007) have recently shown ro-
bust populations of VSV, an animal RNA virus, that were able
of outcompeting the fittest wildtype in the presence of high
concentrations of mutagens. These findings, along with our
theoretical results, have clear implications for the evolution
of drug-resistant viral strains in vivo. When the nutagen has
a high concentration across host tissues, robust quasispecies
can be sdlected and dominate the viral population. After sup-
pression of the mutagenic therapy, wildtype would come back
owing to its replicative advantage and, thus shall increase its
frequency in the population. However; if flat quasispecies are
spatially confined into reservoirs, then our results show that
the time required to eliminate them from the population will
be much longer than expected for the case of a well-mixed
single population.
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