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Standard results relating to the stability of autonomous first order difference equations are 
restated here with slight modifications so as to apply directly to equations in which the 
state variable remains positive. Some simple and effective tests for both local and global 
stability of these first order difference equations are presented. The main results are 
illustrated with examples drawn from population biology. 

1. Introduction. There are many instances when a situation can be 
approximately modelled by a first order difference equation. This is one of 
the reasons for the increase in the number o f  studies made o f  these 
equations in recent times. May (1974), for example, has shown that the 
very simplest nonlinear difference equation can exhibit a very complex 
range of behaviour. The standard method  for the stability analysis of these 
equations usually consists of a linearised analysis to determine stability 
relative to small perturbations of the initial state from the equilibrium. 
This restriction to small perturbations means that the analysis may be of 
limited practical use. For practical stability a far more powerful tool is the 
Liapunov function, the use of which has increased dramatically in the 
study of dynamical systems since the 1950's even though the "second 
method" of Liapunov was originally published in 1892 (Liapunov, 1892). 

In this paper we are concerned solely with the stability of nonlinear, 
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autonomous first order difference equations of the general form 

x.+l=F(x.), n=0 ,  1,2,.. . ,  (1) 

where x, is positive for all n, and F is a continuous function except where 
otherwise indicated in the text. We shall now provide an explanation of the 
terms local stability and global Stability as used in the context of this 
paper. An equilibrium x* of (1) satisfying F(x*)=x* is said to be" stable (or 
locally stable) if, when the system experiences a slight perturbation from its 
equilibrium, all subsequent motions remain in a correspondingly small 
neighbourhood of the equilibrium (more precisely, for every neigh- 
bourhood U of x* there exists a neighbourhood V of x* such that x, e U 
for n =  1, 2, 3,.. .  whenever x0 e V); an attractor (or local attractor) if there 
is a neighbourhood U of x* such that x ,~x*  as n ~ o e  whenever x0 E U; a 
global attractor if x ,~x*  as n ~ o c  for all Xo>0;  globally stable if it is 
stable and a global attractor. 

In what follows the basic equation (1) will be thought of as a single 
species population model with x, being the magnitude of the population in 
the nth generation. Clearly however there are many other situations 
outside population biology where (1) applies and the results obtained in 
this paper will be equally applicable in these situations. For example x, 
may represent the price level of a commodity in an economic model or, in 
epidemiology, x. may represent the number of infectives in a population at 
a given time. 

Two theorems relating to the stability of (1) are presented in Section 2 of 
this paper. The first is simply a restatement of a well known global 
stability result based on the "second method" of Liapunov. The hypothesis 
of this theorem is then modified slightly in the second theorem. 

The remainder of the paper describes some simple and effective tests for 
both local and global stability. These tests are based upon the concepts of 
Liapunov functions and simple geometrical ideas. The main results are 
illustrated with examples drawn from population biology. 

2. Two Stability Theorems. Suppose that (1) represents a model of a 
population with non-overlapping generations which has a non-trivial 
equilibrium at x* where F(x*)=x*. Some of the more popular functional 
forms which have been employed in ecological models of this type are 
depicted in Table I. 

Two results which will prove to be useful later are now given in the 
following two theorems. The first of these is simply a direct translation of a 
well known reSult on stability by means of Liapunov's "second method". If 
we modify the standard Liapunov theorem for global stability (Corollary 
1.2" of Kalman and Bertram, 1960) we obtain 
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TABLE I 

Some Difference Equations, Taken From the Biological 
Literature 

863 

F(x) Reference 

x[1 + r(1 -x/K)] 
x exp Jr(1 - x/K)] 
2x[1 + ax] - b 
x[1/(b + cx)- a] 
2x[1 + (2- 1)(x/K) c] -1 

Maynard Smith (1968) 

Ricker (1954) 

Hassell (1974) 
Utida (1957) 

Maynard Smith (1974) 

THEOREM i. Let  V be a continuous function and AV(x)= V(F(x ) ) -  V(x). 
The equilibrium x* of ( l )  is globally stable if." 

(a) V(x)>O for  all x>O, xs~x* and V(x*)=O; 
(b) AV(x)<O for  all x>O, xC=x*; 
(c) V(x)--.oo monotonically as x ~ o o ;  
(d) V(x )~ oo  monotonically as x ~ O + .  

The proof of this theorem follows directly from that of the standard 
theorem (Kalman and Bertram, 1960) upon. applying the transformation y 
=log(x /x*)  which maps (0, oo) onto the whole of the real line. The use of 
this theorem is illustrated in the following example. 

Example 1. Consider the second equation in Table I, i.e. 

x.+ 1 = x. exp[r(1 - x./K)],  (2) 

considered by some to be the difference analogue to the logistic differential 
equation. The equilibrium point is at x* =K,  the carrying capacity. Let 

V(x) =l(x  - K  - K :  log (x/K). 

Then V satisfies conditions (a), (c) and (d) of Theorem 1. Also it can be 
shown (Goh, 1977) that for r~(0,2), AV(x)<0 for all x>O,x--pK. Hence, 
for these values of r, x* = K  is globally stable. 

The hypothesis of Theorem 1 can be modified slightly by removing 
condition (d) and imposing a positivity condition on the function F in (1). 
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THEOREM 2. Let V be a continuous function. The equilibrium x* of (1) 
is globally stable if 

(a) V(x )>0  for all x > 0 ,  x sL x * and V(x*)=O; 
(b) A V ( x ) < 0  for all x > 0 ,  xs~x*; 
(c) V(x)-~oo monotonically as x~oo;  
(d) F(x)>O for all x>O. 

Proof Since F(x)>O for all x>O,  we have that  any solution of (1) 
which begins in (0, oo) must  remain there. Also AV(x)<O for all x > O  
implies that  all bounded  solutions of (1) tend to x* as n ~ o o .  But 
condit ions (b) and (c) imply that  all solutions are bounded.  Hence every 
solution which begins in (0, oo) remains there and approaches x* as n ~  oo. 

Example 2. Consider  again the model  described by (2). It has been 
suggested (May, 1974) that  a suitable Liapunov function for this model  is 
given by V ( x ) = ( x - K )  2. We see that  V satisfies condit ions (a) and (c) of 
Theorem 2. Also for 0 < r < 2, it can be shown (see Appendix) that  A V ( x ) < 0  
for all x > 0, x ~-K. Hence the equil ibrium point  x* = K  is globally stable since 
F(x) > 0 for all x > 0. 

3. Simple Stability Tests Based on Liapunov Functions. For  many  popu- 
lation models it may be difficult or even impossible to show analytically, 
for a given V function, that  AV(x )<0  for all x>O,x(=x*. We can however 
obtain some simple quanti tat ive tests for both  local and global stability 
based on the concept  of a Liapunov function. For  (1) consider the function 

V (x) = [log (x/x* )] 2 (3) 

as a possible candidate for a Liapunov function. V satisfies condit ions (a), 
(b) and (d) of Theorem 1 and 

AV(x) = [log (F(x)/x* )] 2 - I-log (x/x* )]2. 

Since the difference between the squares of two numbers  can be written as 
the product  of the sum of the two numbers  and their difference, it follows 
that  

A V(x)= log (xF(x)/x* 2). log (F(x)/x). 

Hence we have that  AV(x )<0  if and only if 

(i) x <F(x)  < x*2/x for  all x e (0, x*) ; 
(ii) x*2/x<F(x)<x for all xe(x*,oo).  
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Figure 1. 

F(x.)' 

•  

I 
0 x* Xn 

Equation (1) is globally stable if F(x) lies inside the shaded region 

These inequalities are illustrated in Figure 1. We see that if the graph of 
F(x)  lies inside the shaded region in Figure 1 then the equilibrium point x* 
is globally stable. A function which satisfies these conditions is illustrated. 
In the case when the graph of F(x)  crosses the boundary of the shaded 
region a region of attraction for the model can be obtained. For example, 
if  F(x)  crosses the boundary at x = a ,  then a region of  attraction for the 
model is given by the open interval A = { x > O \ V ( x ) < V ( a ) } .  This is 
illustrated in Figure 2. 

If F(x)  tends to zero faster than x*2/x as x tends to infinity then the V 
function given in (3) is obviously unsuitable for displaying global stability. 
An example of this type of function is given by (2) which has been shown 
to be globally stable for 0 < r  < 2. Here F(x)  behaves like x exp ( -  rx /K)  for 
x large. To accommodate functions of this type we can modify V of (3) to 
the form 

V(x)  = c 1 [(x p - x*P)/p - x *p log (x/x*)] + c2 [log (x/x*)] 2, 

where cl ~ 0 ,  e 2 ~ 0  and p>0.  This leads to 

AV(x) = cl [(FP(x) - xP)/p - x *p log (F(x)/x)] 

+ c2{[log (F(x)/x*)] 2 - [log (x/x*)]2}.  
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Figure 2. 

FCx.3 

X* 

X* gl Xn 

�9 A P 

A region of attraction for the function displayed is given by the 
interval A 

Once again the equation AV(x)=0 defines exactly two functions of x, one 
of which is given by F(x)=x as before. The other function, say G, has to 
be determined numerically (a simple root finding method will suffice). So 
we have the result that AV(x)<0 if and only if there exists non-negative 
constants cl and e2 and a positive constant p such that 

(i) x<F(x)<G(x) for all xe (0 ,x*) ;  
(ii) G(x)<F(x)<x for all xe(x*, ~). 

It is easy to show that for c2 r 0, 

V G(x) exp [ -  \ c ~ - /  A 

as x tends to infinity. Hence to illustrate that (2) is globally stable we 
would need to choose p > 2  in order to ensure that the inequality F(x) 
> G(x) is satisfied for x large. If c2 =0, then 

G(x ) ~ exp [ -~ (x/x* ) v] 

as x tends to infinity and p would now need to be > 1. Figure 3 depicts 
graphs of G(x) for various choices of cl, c2 and p. 
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FCx.)' 

X* 

0 

d c b 

x " ' ' " ~  o 

x *  Xn 

Sketches of G(x) for the cases (a) ct=0, c2=1; (b) c1=1, c2=1, p 
--2; (r cl =1, c2=0, p=2 and (d) cl=l, c2=0, p=3 

4. A Geometric Approach. In the previous section stability regions were 
obtained by examining the equation AV(x)=0 for a particular Liapunov 
function V. We now employ a purely geometric approach to obtain a 
different class of stability regions. 

Take any point on the line F ( x ) = x  lying between the origin and the 
point corresponding to equilibrium. From this point construct a square, 
which contains the equilibrium point, with sides parallel to the axes as 
shown in Figure 4. Draw lines from the equilibrium point through the 
vertices P and Q o f  this square. Clearly, if the plot of F(x) of (1) 
corresponded to the lines just drawn, then (1) would be neutrally stable. 
This follows by construction since for any Xn, 

x .  + 1 = F(x,) 

xn+2=F(Xn+l)=Xn �9 

That is, the system returns to x. after every two time steps. These lines 
then correspond to neutral stability. We will now show that x* of (1) will 
be globally stable if the graph of F(x) lies completely in the regions 
bounded by the two lines and the line F(x)= x (see Figure 4). By varying 
the initial point on the line F ( x ) = x  and the side length of the square we 
can obtain an infinite variety of stability regions. In fact the lines through 
P and Q can be characterised purely in terms of their slope. If we define 
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R(x) as the equation of the line through P and S(x) as the equation of the 
line through Q, then 

R(x) = x* + (x* - x) tan 0, 

S(x) = x* - (x - x*) cot 0, (4) 

where 0 is the angle shown in Figure 4. For O<O<n/2 we have the 
important property that 

S(R(x))=R(S(x))=x. 

Figure 4. 

F[x.)' 

X* 

~ R( x ) 

(2) ~p 

(x-x~co{e 

0 X* Xn 

Equation (1) is globally stable if F(x) lies in the region bounded by 
the lines R(x), S(x) and x 

This construction can now be formalised in the following theorem. 

THEOREM 3. The equilibrium point x* of (1) is globally stable if there 
exists a 0 e (0, 7z/2) such that 

(a) x<F(x)<R(x)  for all xe(O,x*); 
(b) Max(O,S(x))<F(x)<x for all xe(x*,  oo); 

with R(x) and S(x) defined by (4). 

Proof We shall show that a Liapunov function for (1) is 

V(x)=~x_Sx)(  if xe(x*,  oo). 
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V satisfies conditions (a) and (c) of Theorem 2 and F satisfies condition (d) 
of Theorem 2. The proof is completed by showing that AV(x)<0 for all x 
> 0  and x----px*. This is done by considering separately four possibilities as 
depicted in Figure 4. 

(1) Let 0 < x < x *  and x < F ( x ) < x * .  We have 

AV(x) = [ R ( F ( x ) ) -  F ( x ) ] -  [ R ( x ) -  x] 

= [R(F(x)) - R(x)] + [x - F(x)] 

>0 ,  

because R is a monotonic  decreasing function and F(x )>  x. 
(2) Let 0 < x < x* and x* < F ( x )  < R(x).  We have 

A V(x )=  [ F ( x ) -  S(F(x ) ) ] -  J R ( x ) -  x] 

= [F(x) - R(x)] + Ix - S(F(x))]. 

The function S is monotonic  decreasing and by assumption R(x)>F(x) .  It 
follows that S(F(x)) > S(R(x)) = x. Hence AV(x) < 0. 

(3) Let x < x *  and m a x ( O , S ( x ) ) < F ( x ) < x * .  We have 

A V(x) = [ R ( F ( x ) ) -  F(x)] - Ix - S(x)] 

= [ R ( F ( x ) ) -  x] + IS(x) - F ( x ) ] .  

The function R is monotonic  decreasing and F (x )>  S(x) by assumption. It 
follows that R ( F ( x ) ) < R ( S ( x ) ) = x .  Hence AV(x)<0.  

(4) Let x > x* and x* < F(x) < x. We have 

AV(x) = IF(x) - S(F(x))] - Ix  - S(x)] 

= [ F ( x ) - x ]  + I S ( x ) -  S(F(x))] 

<0,  

because S is monotonic  decreasing and F(x )<  x. 
So far we have restricted our attention to functions F which a r e  

continuous on (0, oe). I f  we have a function which is discontinuous at the 
equilibrium point, but continuous elsewhere, then clearly we can no longer 
have stability, either local or global. However, the equilibrium point may 
still be a global attractor, i.e. x , ,~x*  as n ~ o e  for any initial Xo>0,  and  
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from a biological viewpoint this may be an acceptable property for some 
models (see Example 3(b)). The  following two corollaries give sufficient 
conditions for the equilibrium point of (1) to be a global attractor. They 
essentially correspond to the cases 0=re/2 and 0 = 0  in the statement of 
Theorem 3. 

COROLLARY 1. Let  F have a simple discontinuity f r o m  the left at x* but 
be continuous elsewhere on (0, oo) and bounded on (0,x*). Then x* o f  (1) is a 
global at tractor  if 

(a) F(x)>x for all xe(O,x*); 
(b) x* <F(x)<x for all xe(x*, oo). 

P r o o f  Since F is bounded for all x~(0,x*) there exists M > 0  such that 
F(x)  < M for all x ~ (0, x*). Consider the function V defined by 

V(x)={M xX. if xE(O,x*) ,  
if x ~ [x*, oo). 

V is not continuous at the equilibrium point but discontinuous "Liapunov- 
like" functions can be used t o  prove that an equilibrium point is an 
attractor (Kloeden and Fisher, 1978). 

(1) Let x > x * ,  we have 

AV(x) = (F(x) - x*)  - (x - x*)  

= F ( x )  - x 

<0.  

Hence for any initial Xo e (x* ,  oo), x , ~ x *  as n ~  since V is continuous on 
(x*, oo) and AV(x)<0. 

(2) Let 0 < x < x * .  To prove AV(x)<0  we need to consider two PoSsibil- 
ities. Firstly, let x < F ( x ) < x * .  We have 

AV(x) = ( M  - F ( x ) )  - ( M  - x)  

= x - F ( x )  

<0.  

Secondly, let x* < F ( x ) < M ,  We have 

AV(x) = (V(x) - x*)  - ( M  -- x)  

= ( F ( x )  - M )  + ( x  - x * )  

<0. 
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Since F has a simple discontinuity from the left at x*, limx.~x.F(x)>x* (we 
cannot have limx_.~,.F(x)<x* since this would violate the condition F(x) 
> x  for all x e(O,x*)). Therefore there exists a 6 >0  such that F(x)>x* for 
all x e ( x * - f , x * )  and then x, ox*  as n ~ o o  for all Xoe(X*-6,x*). Also, 
since AV(x)<O for all x e  (O,x*), every trajectory initiating in (O,x*) must 
eventually enter (x*-6,x*) or (x*,oo). Hence x ,~x*  as n ~ o o  for all 
Xo e (0, x*). 

COROLLARY 2. Let F have a simple discontinuity from the right at x* 
and be continuous elsewhere on (0, oo). Then x* of (1) is a global attractor if 

(a) x<F(x)<x* for all xe(0 ,  x*); 
(b) O<F(x)<x for all xe(x*,oo). 

Proof Consider the V function defined by 

V ( x ) = [ x * - x  if xe(O,x*];  
x if xe(x*,oo). 

It can be shown that AV(x)<O for all x>O, x 4 x *  and the proof follows 
by a similar argument to that used in Corollary 1. 

Example 3. Let x, be the number of fish in a year class in the nth 
generation and suppose that the number of fish in the next generation is 
given by the first equation in Table 1. If u,+ 1 is now defined as the number 
of fish harvested at time n + 1, then 

x.+j  =x , [1  +r(1 -x , /K)]  - - U n +  1 . (5) 

The "maximum sustainable yield" (MSY) is given by if=r K~4 and the 
corresponding MSY equilibrium is at x*--K/2. We now consider two 
different harvesting strategies for model (5). 

(a) Let 

I 
O 

u , + a =  ~(lOx,/x*--9) 

t,_a 

if x, < 0.9x*, 

if 0.9x* < x, < x*, 

if x. >x*.  

This corresponds to harvesting at MSY if the stock is above MSY level 
and reducing the catch by 10 ~o for every 1 ~ by which the stock falls short 
of the MSY level. This policy is similar to that used by the International 
Whaling Commission (I.W.C. Annual Report, 1976) for determining quotas 
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F(x.) 

K / 2  

/'~"-/ R 

K / 2  K x. 

(a) 

Figure 5. 

F[x.] x ~ /  

K / 2  

P 

0 K / 2  K x. 

(b) 
F(x) as in equation (5) for the case r = 2 ,  with (a) u,+x defined in 

Example 3(a); and (b) u,+ 1 defined in Example 3(b). 

for some whale species. The graph of F(x) corresponding to this definition 
of u.+l  is shown in Figure 5(a)for the case r=2 .  

If we choose t an -  1 9 < 0 < n/2 then we have that the equilibrium is stable 
by Theorem 3 (although not globally stable since the graph o f  F(x) drops 
below that o f  S(x) if  x is large enough). Lines R(x) and S(x) corresponding 
to 0 = t a n - 1  9 are shown in Figure 5(a). 
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(b) An alternative harvesting strategy is given by 

{~ if x , < x * ,  
Un+ 1 ~ Xn~X, 

i.e. if the stock level falls below the MSY level stop harvesting otherwise 
harvest at MSY. F(x) for this case is shown in Figure 5(b) with r=2 .  F In 
this example satisfies the conditions of Corollary 1 (provided we restrict x 
to a suitable neighbourhood of x*) and so x* =K/2 is a local attractor 
although x* is not locally stable. 

At this point it is wor th  commenting on the continuity requirements 
imposed on the function F in Theorem 3 and its two corollaries. For nearly 
all models,  either biological or otherwise, F would be continuous except 
perhaps in the presence of a control as typified in example 3(b). In this 
case there would be a simple discontinuity at the equilibrium point and F 
would be continuous elsewhere. Theorem 3 and its two corollaries are still 
valid however if we allow f to have discontinuities at points other than the 
equilibrium point (the only exception being limit points of F on the line 
F(x) = x). For example, the model with 

x* (x-x*)~2 for x>O and x irrational, 
V ( x )  = + 

x*+(x-x*) /4  for x > 0  a n d  x rational, 

is globally stable. The proofs of Theorem 3 and its corollaries can be 
modified to cover the more general case of F discontinuous but these 
proofs have been omitted here in an attempt to keep the presentation as 
simple as possible. For a proof of an analogue of Corollary 1, without the 
continuity restriction on F, the reader is referred to Kloeden and Fisher, 
1978. 

For completeness we include a final theorem on instability. 

THEOREM 4. The equilibrium point x* of (1) is unstable if there exists 
0~(0,7z/2) such that for some open interval I containing x* we have 

(a) F(x)>g(x) or O~F(x)<x for all x6I ,  x<x*;  
(b) O~F(x)<S(x) or F(x)>x for all xEI, x>x*. 

Proof As for Theorem 3 we define 

l/t " ( R ( x ) - x  if xe(O,x*],  
x ) = ~ x - S ( x )  if xe(x*, oo). 
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V ( x ) > 0  for all x>'0,  xr It can be shown that A V ( x ) > 0  for all 
x e I, x ~P x* in a manner similar to that used in the p roof  of Theorem 3. 
Hence we have that x* of (1) is unstable. 

A P P E N D I X  

From Example 2 we have 

AV(x) = (x exp [r(1 - x /K)]  - K )  z - (x - K )  z 

= xh(x)(exp [r(1 - x / K ) ]  - 1), 

where 

Mx) = x exp [r(1 - x /K)]  + x - 2K.  

To prove that AV(x)<0  for all x > O ,  x4~x* and 0 < r < 2  it is sufficient to prove that h(x) 
< 0 for x E (0,K) and h ( x ) >  0 for x e (K, oo). The proof  is by contradiction. 

Suppose that h (x )>0  for some x ~ ( O , K ) .  Since h O ) < 0 ,  h ' (K)>0  for 0 < r < 2  and h(K)=0,  
h" must have at least one zero in (0,K). But 

h"(x) = - (r /K)  exp Jr(1 - x /K)] (2  - r x /K)  < 0 

for 0 < r < 2  and x ~ ( O , K ) .  Hence h (x )<0  for all x e  (0, K) and 0 ~ r < 2 .  
Now suppose that h (x )<0  for some x e ( K ,  oo). Then h must have a minimum at some 

point y > K  where h ( y ) < 0  since h ' (K)> 0 for 0 < r < 2 and h(x)--* + 0o as x ~  + oo. y satisfies 

1 
exp [r(1 - y / K ) ]  = ry /K  - 1 >0 ,  

and then 

h(y) - Y t- y - 2K 
ry /K -- 1 

( r / K ) ( y - K )  2 + K ( 2 -  r) 

ry /K  - 1 
> 0 .  

This is a contradiction. Hence h ( x ) >  0 for all x > K, 0 < r < 2. 
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