
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/202924343

Stochastic Differential Equations: An Introduction with Applications

Book  in  Journal of the American Statistical Association · January 2000

DOI: 10.1007/978-3-662-03185-8

CITATIONS

2,896
READS

19,915

1 author:

Some of the authors of this publication are also working on these related projects:

Stochastic integration and differentiation View project

Bernt Øksendal

University of Oslo

357 PUBLICATIONS   16,260 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Bernt Øksendal on 16 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/202924343_Stochastic_Differential_Equations_An_Introduction_with_Applications?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/202924343_Stochastic_Differential_Equations_An_Introduction_with_Applications?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Stochastic-integration-and-differentiation?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernt-Oksendal?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernt-Oksendal?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Oslo?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernt-Oksendal?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernt-Oksendal?enrichId=rgreq-7d8899531bcf52551812545f530330ab-XXX&enrichSource=Y292ZXJQYWdlOzIwMjkyNDM0MztBUzo5NzI4NDYwNzk3MTMyOEAxNDAwMjA1ODY2MDIz&el=1_x_10&_esc=publicationCoverPdf


Bernt Øksendal

Stochastic Differential Equations

An Introduction with Applications

Fifth Edition, Corrected Printing

Springer-Verlag Heidelberg New York

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
HongKong Barcelona
Budapest



To My Family

Eva, Elise, Anders and Karina



2



The front cover shows four sample paths Xt(ω1), Xt(ω2), Xt(ω3) and Xt(ω4)
of a geometric Brownian motion Xt(ω), i.e. of the solution of a (1-dimensional)
stochastic differential equation of the form

dXt

dt
= (r + α ·Wt)Xt t ≥ 0 ; X0 = x

where x, r and α are constants and Wt = Wt(ω) is white noise. This process is
often used to model “exponential growth under uncertainty”. See Chapters 5,
10, 11 and 12.

The figure is a computer simulation for the case x = r = 1, α = 0.6.
The mean value of Xt, E[Xt] = exp(t), is also drawn. Courtesy of Jan Ubøe,
Stord/Haugesund College.



We have not succeeded in answering all our problems.
The answers we have found only serve to raise a whole set
of new questions. In some ways we feel we are as confused
as ever, but we believe we are confused on a higher level
and about more important things.

Posted outside the mathematics reading room,
Tromsø University



Preface to Corrected Printing, Fifth Edition

The main corrections and improvements in this corrected printing are from
Chaper 12. I have benefitted from useful comments from a number of peo-
ple, including (in alphabetical order) Fredrik Dahl, Simone Deparis, Ulrich
Haussmann, Yaozhong Hu, Marianne Huebner, Carl Peter Kirkebø, Niko-
lay Kolev, Takashi Kumagai, Shlomo Levental, Geir Magnussen, Anders
Øksendal, Jürgen Potthoff, Colin Rowat, Stig Sandnes, Lones Smith, Set-
suo Taniguchi and Bjørn Thunestvedt.

I want to thank them all for helping me making the book better. I also
want to thank Dina Haraldsson for proficient typing.

Blindern, May 2000
Bernt Øksendal
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Preface to the Fifth Edition

The main new feature of the fifth edition is the addition of a new chapter,
Chapter 12, on applications to mathematical finance. I found it natural to
include this material as another major application of stochastic analysis, in
view of the amazing development in this field during the last 10–20 years.
Moreover, the close contact between the theoretical achievements and the
applications in this area is striking. For example, today very few firms (if
any) trade with options without consulting the Black & Scholes formula!

The first 11 chapters of the book are not much changed from the previous
edition, but I have continued my efforts to improve the presentation through-
out and correct errors and misprints. Some new exercises have been added.
Moreover, to facilitate the use of the book each chapter has been divided
into subsections. If one doesn’t want (or doesn’t have time) to cover all the
chapters, then one can compose a course by choosing subsections from the
chapters. The chart below indicates what material depends on which sections.

Chapter 8

Chapter 1-5

Chapter 7

Chapter 10

Chapter 6

Chapter 9

Chapter 11

Section
12.3

Chapter 12

Section
9.1

Section
8.6

For example, to cover the first two sections of the new chapter 12 it is recom-
mended that one (at least) covers Chapters 1–5, Chapter 7 and Section 8.6.
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Chapter 10, and hence Section 9.1, are necessary additional background for
Section 12.3, in particular for the subsection on American options.

In my work on this edition I have benefitted from useful suggestions
from many people, including (in alphabetical order) Knut Aase, Luis Al-
varez, Peter Christensen, Kian Esteghamat, Nils Christian Framstad, Helge
Holden, Christian Irgens, Saul Jacka, Naoto Kunitomo and his group, Sure
Mataramvura, Trond Myhre, Anders Øksendal, Nils Øvrelid, Walter Schacher-
mayer, Bjarne Schielderop, Atle Seierstad, Jan Ubøe, Gjermund V̊age and
Dan Zes. I thank them all for their contributions to the improvement of the
book.

Again Dina Haraldsson demonstrated her impressive skills in typing the
manuscript – and in finding her way in the LATEX jungle! I am very grateful
for her help and for her patience with me and all my revisions, new versions
and revised revisions . . .

Blindern, January 1998
Bernt Øksendal



Preface to the Fourth Edition

In this edition I have added some material which is particularly useful for the
applications, namely the martingale representation theorem (Chapter IV),
the variational inequalities associated to optimal stopping problems (Chapter
X) and stochastic control with terminal conditions (Chapter XI). In addition
solutions and extra hints to some of the exercises are now included. Moreover,
the proof and the discussion of the Girsanov theorem have been changed in
order to make it more easy to apply, e.g. in economics. And the presentation
in general has been corrected and revised throughout the text, in order to
make the book better and more useful.

During this work I have benefitted from valuable comments from several
persons, including Knut Aase, Sigmund Berntsen, Mark H. A. Davis, Helge
Holden, Yaozhong Hu, Tom Lindstrøm, Trygve Nilsen, Paulo Ruffino, Isaac
Saias, Clint Scovel, Jan Ubøe, Suleyman Ustunel, Qinghua Zhang, Tusheng
Zhang and Victor Daniel Zurkowski. I am grateful to them all for their help.

My special thanks go to H̊akon Nyhus, who carefully read large portions
of the manuscript and gave me a long list of improvements, as well as many
other useful suggestions.

Finally I wish to express my gratitude to Tove Møller and Dina Haralds-
son, who typed the manuscript with impressive proficiency.

Oslo, June 1995 Bernt Øksendal
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Preface to the Third Edition

The main new feature of the third edition is that exercises have been included
to each of the chapters II–XI. The purpose of these exercises is to help the
reader to get a better understanding of the text. Some of the exercises are
quite routine, intended to illustrate the results, while other exercises are
harder and more challenging and some serve to extend the theory.

I have also continued the effort to correct misprints and errors and to
improve the presentation. I have benefitted from valuable comments and
suggestions from Mark H. A. Davis, H̊akon Gjessing, Torgny Lindvall and
H̊akon Nyhus, My best thanks to them all.

A quite noticeable non-mathematical improvement is that the book is
now typed in TEX. Tove Lieberg did a great typing job (as usual) and I am
very grateful to her for her effort and infinite patience.

Oslo, June 1991 Bernt Øksendal
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Preface to the Second Edition

In the second edition I have split the chapter on diffusion processes in two, the
new Chapters VII and VIII: Chapter VII treats only those basic properties
of diffusions that are needed for the applications in the last 3 chapters. The
readers that are anxious to get to the applications as soon as possible can
therefore jump directly from Chapter VII to Chapters IX, X and XI.

In Chapter VIII other important properties of diffusions are discussed.
While not strictly necessary for the rest of the book, these properties are
central in today’s theory of stochastic analysis and crucial for many other
applications.

Hopefully this change will make the book more flexible for the different
purposes. I have also made an effort to improve the presentation at some
points and I have corrected the misprints and errors that I knew about,
hopefully without introducing new ones. I am grateful for the responses that
I have received on the book and in particular I wish to thank Henrik Martens
for his helpful comments.

Tove Lieberg has impressed me with her unique combination of typing
accuracy and speed. I wish to thank her for her help and patience, together
with Dina Haraldsson and Tone Rasmussen who sometimes assisted on the
typing.

Oslo, August 1989 Bernt Øksendal
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Preface to the First Edition

These notes are based on a postgraduate course I gave on stochastic dif-
ferential equations at Edinburgh University in the spring 1982. No previous
knowledge about the subject was assumed, but the presentation is based on
some background in measure theory.

There are several reasons why one should learn more about stochastic
differential equations: They have a wide range of applications outside mathe-
matics, there are many fruitful connections to other mathematical disciplines
and the subject has a rapidly developing life of its own as a fascinating re-
search field with many interesting unanswered questions.

Unfortunately most of the literature about stochastic differential equa-
tions seems to place so much emphasis on rigor and completeness that it
scares many nonexperts away. These notes are an attempt to approach the
subject from the nonexpert point of view: Not knowing anything (except ru-
mours, maybe) about a subject to start with, what would I like to know first
of all? My answer would be:

1) In what situations does the subject arise?
2) What are its essential features?
3) What are the applications and the connections to other fields?

I would not be so interested in the proof of the most general case, but rather
in an easier proof of a special case, which may give just as much of the basic
idea in the argument. And I would be willing to believe some basic results
without proof (at first stage, anyway) in order to have time for some more
basic applications.

These notes reflect this point of view. Such an approach enables us to
reach the highlights of the theory quicker and easier. Thus it is hoped that
these notes may contribute to fill a gap in the existing literature. The course
is meant to be an appetizer. If it succeeds in awaking further interest, the
reader will have a large selection of excellent literature available for the study
of the whole story. Some of this literature is listed at the back.

In the introduction we state 6 problems where stochastic differential equa-
tions play an essential role in the solution. In Chapter II we introduce the
basic mathematical notions needed for the mathematical model of some of
these problems, leading to the concept of Ito integrals in Chapter III. In
Chapter IV we develop the stochastic calculus (the Ito formula) and in Chap-
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ter V we use this to solve some stochastic differential equations, including the
first two problems in the introduction. In Chapter VI we present a solution
of the linear filtering problem (of which problem 3 is an example), using
the stochastic calculus. Problem 4 is the Dirichlet problem. Although this is
purely deterministic we outline in Chapters VII and VIII how the introduc-
tion of an associated Ito diffusion (i.e. solution of a stochastic differential
equation) leads to a simple, intuitive and useful stochastic solution, which is
the cornerstone of stochastic potential theory. Problem 5 is an optimal stop-
ping problem. In Chapter IX we represent the state of a game at time t by an
Ito diffusion and solve the corresponding optimal stopping problem. The so-
lution involves potential theoretic notions, such as the generalized harmonic
extension provided by the solution of the Dirichlet problem in Chapter VIII.
Problem 6 is a stochastic version of F.P. Ramsey’s classical control problem
from 1928. In Chapter X we formulate the general stochastic control prob-
lem in terms of stochastic differential equations, and we apply the results of
Chapters VII and VIII to show that the problem can be reduced to solving
the (deterministic) Hamilton-Jacobi-Bellman equation. As an illustration we
solve a problem about optimal portfolio selection.

After the course was first given in Edinburgh in 1982, revised and ex-
panded versions were presented at Agder College, Kristiansand and Univer-
sity of Oslo. Every time about half of the audience have come from the ap-
plied section, the others being so-called “pure” mathematicians. This fruitful
combination has created a broad variety of valuable comments, for which I
am very grateful. I particularly wish to express my gratitude to K.K. Aase,
L. Csink and A.M. Davie for many useful discussions.

I wish to thank the Science and Engineering Research Council, U.K. and
Norges Almenvitenskapelige Forskningsr̊ad (NAVF), Norway for their finan-
cial support. And I am greatly indebted to Ingrid Skram, Agder College and
Inger Prestbakken, University of Oslo for their excellent typing – and their
patience with the innumerable changes in the manuscript during these two
years.

Oslo, June 1985 Bernt Øksendal

Note: Chapters VIII, IX, X of the First Edition have become Chapters IX,
X, XI of the Second Edition.
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1. Introduction

To convince the reader that stochastic differential equations is an important
subject let us mention some situations where such equations appear and can
be used:

1.1 Stochastic Analogs of Classical Differential
Equations

If we allow for some randomness in some of the coefficients of a differential
equation we often obtain a more realistic mathematical model of the situation.

Problem 1. Consider the simple population growth model

dN

dt
= a(t)N(t), N(0) = N0 (constant) (1.1.1)

where N(t) is the size of the population at time t, and a(t) is the relative
rate of growth at time t. It might happen that a(t) is not completely known,
but subject to some random environmental effects, so that we have

a(t) = r(t) + “noise” ,

where we do not know the exact behaviour of the noise term, only its prob-
ability distribution. The function r(t) is assumed to be nonrandom. How do
we solve (1.1.1) in this case?

Problem 2. The charge Q(t) at time t at a fixed point in an electric circuit
satisfies the differential equation

L ·Q′′(t) + R ·Q′(t) +
1
C
·Q(t) = F (t), Q(0) = Q0, Q′(0) = I0 (1.1.2)

where L is inductance, R is resistance, C is capacitance and F (t) the potential
source at time t.

Again we may have a situation where some of the coefficients, say F (t),
are not deterministic but of the form

F (t) = G(t) + “noise” . (1.1.3)
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How do we solve (1.1.2) in this case?
More generally, the equation we obtain by allowing randomness in the

coefficients of a differential equation is called a stochastic differential equa-
tion. This will be made more precise later. It is clear that any solution of
a stochastic differential equation must involve some randomness, i.e. we can
only hope to be able to say something about the probability distributions of
the solutions.

1.2 Filtering Problems

Problem 3. Suppose that we, in order to improve our knowledge about
the solution, say of Problem 2, perform observations Z(s) of Q(s) at times
s ≤ t. However, due to inaccuracies in our measurements we do not really
measure Q(s) but a disturbed version of it:

Z(s) = Q(s) + “noise” . (1.2.1)

So in this case there are two sources of noise, the second coming from the
error of measurement.

The filtering problem is: What is the best estimate of Q(t) satisfying
(1.1.2), based on the observations Zs in (1.2.1), where s ≤ t ? Intuitively, the
problem is to “filter” the noise away from the observations in an optimal way.

In 1960 Kalman and in 1961 Kalman and Bucy proved what is now known
as the Kalman-Bucy filter. Basically the filter gives a procedure for estimating
the state of a system which satisfies a “noisy” linear differential equation,
based on a series of “noisy” observations.

Almost immediately the discovery found applications in aerospace en-
gineering (Ranger, Mariner, Apollo etc.) and it now has a broad range of
applications.

Thus the Kalman-Bucy filter is an example of a recent mathematical
discovery which has already proved to be useful – it is not just “potentially”
useful.

It is also a counterexample to the assertion that “applied mathematics
is bad mathematics” and to the assertion that “the only really useful math-
ematics is the elementary mathematics”. For the Kalman-Bucy filter – as
the whole subject of stochastic differential equations – involves advanced,
interesting and first class mathematics.

1.3 Stochastic Approach to Deterministic Boundary
Value Problems

Problem 4. The most celebrated example is the stochastic solution of the
Dirichlet problem:
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Given a (reasonable) domain U in Rn and a continuous function f on
the boundary of U, ∂U . Find a function f̃ continuous on the closure
U of U such that
(i) f̃ = f on ∂U
(ii) f̃ is harmonic in U , i.e.

∆f̃ : =
n∑

i=1

∂2f̃

∂x2
i

= 0 in U .

In 1944 Kakutani proved that the solution could be expressed in terms
of Brownian motion (which will be constructed in Chapter 2): f̃(x) is the
expected value of f at the first exit point from U of the Brownian motion
starting at x ∈ U .

It turned out that this was just the tip of an iceberg: For a large class
of semielliptic second order partial differential equations the corresponding
Dirichlet boundary value problem can be solved using a stochastic process
which is a solution of an associated stochastic differential equation.

1.4 Optimal Stopping

Problem 5. Suppose a person has an asset or resource (e.g. a house, stocks,
oil...) that she is planning to sell. The price Xt at time t of her asset on the
open market varies according to a stochastic differential equation of the same
type as in Problem 1:

dXt

dt
= rXt + αXt · “noise”

where r, α are known constants. The discount rate is a known constant ρ. At
what time should she decide to sell?

We assume that she knows the behaviour of Xs up to the present time t,
but because of the noise in the system she can of course never be sure at the
time of the sale if her choice of time will turn out to be the best. So what
we are searching for is a stopping strategy that gives the best result in the
long run, i.e. maximizes the expected profit when the inflation is taken into
account.

This is an optimal stopping problem. It turns out that the solution can be
expressed in terms of the solution of a corresponding boundary value problem
(Problem 4), except that the boundary is unknown (free) as well and this is
compensated by a double set of boundary conditions. It can also be expressed
in terms of a set of variational inequalities.
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1.5 Stochastic Control

Problem 6 (An optimal portfolio problem).
Suppose that a person has two possible investments:

(i) A risky investment (e.g. a stock), where the price p1(t) per unit at time
t satisfies a stochastic differential equation of the type discussed in Prob-
lem 1:

dp1

dt
= (a + α · “noise”)p1 (1.5.1)

where a > 0 and α ∈ R are constants

(ii) A safe investment (e.g. a bond), where the price p2(t) per unit at time t
grows exponentially:

dp2

dt
= bp2 (1.5.2)

where b is a constant, 0 < b < a.

At each instant t the person can choose how large portion (fraction)
ut of his fortune Xt he wants to place in the risky investment, thereby
placing (1−ut)Xt in the safe investment. Given a utility function U and
a terminal time T the problem is to find the optimal portfolio ut ∈ [0, 1]
i.e. find the investment distribution ut; 0 ≤ t ≤ T which maximizes the
expected utility of the corresponding terminal fortune X

(u)
T :

max
0≤ut≤1

{
E

[
U(X(u)

T )
]}

(1.5.3)

1.6 Mathematical Finance

Problem 7 (Pricing of options).
Suppose that at time t = 0 the person in Problem 6 is offered the right (but
without obligation) to buy one unit of the risky asset at a specified price
K and at a specified future time t = T . Such a right is called a European
call option. How much should the person be willing to pay for such an op-
tion? This problem was solved when Fischer Black and Myron Scholes (1973)
used stochastic analysis and an equlibrium argument to compute a theo-
retical value for the price, the now famous Black and Scholes option price
formula. This theoretical value agreed well with the prices that had already
been established as an equilibrium price on the free market. Thus it repre-
sented a triumph for mathematical modelling in finance. It has become an
indispensable tool in the trading of options and other financial derivatives.
In 1997 Myron Scholes and Robert Merton were awarded the Nobel Prize
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in Economics for their work related to this formula. (Fischer Black died in
1995.)

We will return to these problems in later chapters, after having developed
the necessary mathematical machinery. We solve Problem 1 and Problem 2
in Chapter 5. Problems involving filtering (Problem 3) are treated in Chap-
ter 6, the generalized Dirichlet problem (Problem 4) in Chapter 9. Problem 5
is solved in Chapter 10 while stochastic control problems (Problem 6) are dis-
cussed in Chapter 11. Finally we discuss applications to mathematical finance
in Chapter 12.



6 1. Introduction



2. Some Mathematical Preliminaries

2.1 Probability Spaces, Random Variables and
Stochastic Processes

Having stated the problems we would like to solve, we now proceed to find
reasonable mathematical notions corresponding to the quantities mentioned
and mathematical models for the problems. In short, here is a first list of the
notions that need a mathematical interpretation:

(1) A random quantity
(2) Independence
(3) Parametrized (discrete or continuous) families of random quantities
(4) What is meant by a “best” estimate in the filtering problem (Problem 3)
(5) What is meant by an estimate “based on” some observations (Prob-

lem 3)?
(6) What is the mathematical interpretation of the “noise” terms?
(7) What is the mathematical interpretation of the stochastic differential

equations?

In this chapter we will discuss (1)–(3) briefly. In the next chapter we will
consider (6), which leads to the notion of an Itô stochastic integral (7). In
Chapter 6 we will consider (4)–(5).

The mathematical model for a random quantity is a random variable.
Before we define this, we recall some concepts from general probability theory.
The reader is referred to e.g. Williams (1991) for more information.

Definition 2.1.1. If Ω is a given set, then a σ-algebra F on Ω is a family
F of subsets of Ω with the following properties:

(i) ∅ ∈ F
(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

(iii) A1, A2, . . . ∈ F ⇒ A: =
∞⋃

i=1

Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P
on a measurable space (Ω,F) is a function P :F −→ [0, 1] such that

(a) P (∅) = 0, P (Ω) = 1
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(b) if A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩Aj = ∅ if i 6= j) then

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai) .

The triple (Ω,F , P ) is called a probability space. It is called a complete
probability space if F contains all subsets G of Ω with P -outer measure zero,
i.e. with

P ∗(G):= inf{P (F ); F ∈ F , G ⊂ F} = 0 .

Any probability space can be made complete simply by adding to F all
sets of outer measure 0 and by extending P accordingly.

The subsets F of Ω which belong to F are called F-measurable sets. In a
probability context these sets are called events and we use the interpretation

P (F ) = “the probability that the event F occurs” .

In particular, if P (F ) = 1 we say that “F occurs with probability 1”, or
“almost surely (a.s.)”.

Given any family U of subsets of Ω there is a smallest σ-algebra HU
containing U , namely

HU =
⋂
{H;H σ-algebra of Ω, U ⊂ H} .

(See Exercise 2.3.)
We call HU the σ-algebra generated by U .
For example, if U is the collection of all open subsets of a topological

space Ω (e.g. Ω = Rn), then B = HU is called the Borel σ-algebra on Ω and
the elements B ∈ B are called Borel sets. B contains all open sets, all closed
sets, all countable unions of closed sets, all countable intersections of such
countable unions etc.

If (Ω,F , P ) is a given probability space, then a function Y : Ω → Rn is
called F-measurable if

Y −1(U):= {ω ∈ Ω;Y (ω) ∈ U} ∈ F
for all open sets U ∈ Rn (or, equivalently, for all Borel sets U ⊂ Rn).

If X: Ω → Rn is any function, then the σ-algebra HX generated by X is
the smallest σ-algebra on Ω containing all the sets

X−1(U) ; U ⊂ Rn open .

It is not hard to show that

HX = {X−1(B); B ∈ B} ,

where B is the Borel σ-algebra on Rn. Clearly, X will then beHX -measurable
and HX is the smallest σ-algebra with this property.

The following result is useful. It is a special case of a result sometimes
called the Doob-Dynkin lemma. See e.g. M. M. Rao (1984), Prop. 3, p. 7.
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Lemma 2.1.2. If X,Y : Ω → Rn are two given functions,then Y is HX-
measurable if and only if there exists a Borel measurable function g:Rn → Rn

such that
Y = g(X) .

In the following we let (Ω,F , P ) denote a given complete probability
space. A random variable X is an F-measurable function X: Ω → Rn. Every
random variable induces a probability measure µX on Rn, defined by

µX(B) = P (X−1(B)) .

µX is called the distribution of X.
If

∫
Ω

|X(ω)|dP (ω) < ∞ then the number

E[X]: =
∫

Ω

X(ω)dP (ω) =
∫

Rn

xdµX(x)

is called the expectation of X (w.r.t. P ).
More generally, if f :Rn → R is Borel measurable and∫

Ω

|f(X(ω))|dP (ω) < ∞ then we have

E[f(X)]: =
∫

Ω

f(X(ω))dP (ω) =
∫

Rn

f(x)dµX(x) .

The mathematical model for independence is the following:

Definition 2.1.3. Two subsets A, B ∈ F are called independent if

P (A ∩B) = P (A) · P (B) .

A collection A = {Hi; i ∈ I} of families Hi of measurable sets is independent
if

P (Hi1 ∩ · · · ∩Hik
) = P (Hi1) · · ·P (Hik

)

for all choices of Hi1 ∈ Hi1 , · · · ,Hik
∈ Hik

with different indices i1, . . . , ik.
A collection of random variables {Xi; i ∈ I} is independent if the collec-

tion of generated σ-algebras HXi is independent.

If two random variables X,Y : Ω → R are independent then

E[XY ] = E[X]E[Y ] ,

provided that E[|X|] < ∞ and E[|Y |] < ∞. (See Exercise 2.5.)

Definition 2.1.4. A stochastic process is a parametrized collection of ran-
dom variables

{Xt}t∈T

defined on a probability space (Ω,F , P ) and assuming values in Rn.
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The parameter space T is usually (as in this book) the halfline [0,∞), but
it may also be an interval [a, b], the non-negative integers and even subsets
of Rn for n ≥ 1. Note that for each t ∈ T fixed we have a random variable

ω → Xt(ω) ; ω ∈ Ω .

On the other hand, fixing ω ∈ Ω we can consider the function

t → Xt(ω) ; t ∈ T

which is called a path of Xt.
It may be useful for the intuition to think of t as “time” and each ω

as an individual “particle” or “experiment”. With this picture Xt(ω) would
represent the position (or result) at time t of the particle (experiment) ω.
Sometimes it is convenient to write X(t, ω) instead of Xt(ω). Thus we may
also regard the process as a function of two variables

(t, ω) → X(t, ω)

from T × Ω into Rn. This is often a natural point of view in stochastic
analysis, because (as we shall see) there it is crucial to have X(t, ω) jointly
measurable in (t, ω).

Finally we note that we may identify each ω with the function t → Xt(ω)
from T into Rn. Thus we may regard Ω as a subset of the space Ω̃ = (Rn)T of
all functions from T into Rn. Then the σ-algebra F will contain the σ-algebra
B generated by sets of the form

{ω; ω(t1) ∈ F1, · · · , ω(tk) ∈ Fk} , Fi ⊂ Rn Borel sets

(B is the same as the Borel σ-algebra on Ω̃ if T = [0,∞) and Ω̃ is given
the product topology). Therefore one may also adopt the point of view
that a stochastic process is a probability measure P on the measurable space
((Rn)T ,B).

The (finite-dimensional) distributions of the process X = {Xt}t∈T are
the measures µt1,...,tk

defined on Rnk, k = 1, 2, . . ., by

µt1,...,tk
(F1 × F2 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk

∈ Fk] ; ti ∈ T .

Here F1, . . . , Fk denote Borel sets in Rn.
The family of all finite-dimensional distributions determine many (but

not all) important properties of the process X.
Conversely, given a family {νt1,...,tk

; k ∈ N, ti ∈ T} of probability mea-
sures on Rnk it is important to be able to construct a stochastic process
Y = {Yt}t∈T having νt1,...,tk

as its finite-dimensional distributions. One
of Kolmogorov’s famous theorems states that this can be done provided
{νt1,...,tk

} satisfies two natural consistency conditions: (See Lamperti (1977).)
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Theorem 2.1.5 (Kolmogorov’s extension theorem).
For all t1, . . . , tk ∈ T , k ∈ N let νt1,...,tk

be probability measures on Rnk s.t.

νtσ(1),···,tσ(k)(F1 × · · · × Fk) = νt1,···,tk
(Fσ−1(1) × · · · × Fσ−1(k)) (K1)

for all permutations σ on {1, 2, . . . , k} and

νt1,...,tk
(F1×· · ·×Fk) = νt1,...,tk,tk+1,...,tk+m

(F1×· · ·×Fk×Rn×· · ·×Rn) (K2)

for all m ∈ N, where (of course) the set on the right hand side has a total of
k + m factors.

Then there exists a probability space (Ω,F , P ) and a stochastic process
{Xt} on Ω, Xt: Ω → Rn, s.t.

νt1,...,tk
(F1 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk

∈ Fk] ,

for all ti ∈ T , k ∈ N and all Borel sets Fi.

2.2 An Important Example: Brownian Motion

In 1828 the Scottish botanist Robert Brown observed that pollen grains sus-
pended in liquid performed an irregular motion. The motion was later ex-
plained by the random collisions with the molecules of the liquid. To describe
the motion mathematically it is natural to use the concept of a stochastic
process Bt(ω), interpreted as the position at time t of the pollen grain ω. We
will generalize slightly and consider an n-dimensional analog.

To construct {Bt}t≥0 it suffices, by the Kolmogorov extension theorem, to
specify a family {νt1,...,tk

} of probability measures satisfying (K1) and (K2).
These measures will be chosen so that they agree with our observations of
the pollen grain behaviour:

Fix x ∈ Rn and define

p(t, x, y) = (2πt)−n/2 · exp(−|x− y|2
2t

) for y ∈ Rn, t > 0 .

If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk define a measure νt1,...,tk
on Rnk by

νt1,...,tk
(F1 × · · · × Fk) = (2.2.1)

=
∫

F1×···×Fk

p(t1, x, x1)p(t2−t1, x1, x2) · · · p(tk−tk−1, xk−1, xk)dx1 · · · dxk

where we use the notation dy = dy1 · · · dyk for Lebesgue measure and the
convention that p(0, x, y)dy = δx(y), the unit point mass at x.

Extend this definition to all finite sequences of ti’s by using (K1). Since∫
Rn

p(t, x, y)dy = 1 for all t ≥ 0, (K2) holds, so by Kolmogorov’s theorem
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there exists a probability space (Ω,F , P x) and a stochastic process {Bt}t≥0

on Ω such that the finite-dimensional distributions of Bt are given by (2.2.1),
i.e.

P x(Bt1 ∈ F1, · · · , Btk
∈ Fk) =

=
∫

F1×···×Fk

p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)dx1 . . . dxk . (2.2.2)

Definition 2.2.1. Such a process is called (a version of) Brownian motion
starting at x (observe that P x(B0 = x) = 1).

The Brownian motion thus defined is not unique, i.e. there exist several
quadruples (Bt, Ω,F , P x) such that (2.2.2) holds. However, for our purposes
this is not important, we may simply choose any version to work with. As we
shall soon see, the paths of a Brownian motion are (or, more correctly, can be
chosen to be) continuous, a.s. Therefore we may identify (a.a.) ω ∈ Ω with a
continuous function t → Bt(ω) from [0,∞) into Rn. Thus we may adopt the
point of view that Brownian motion is just the space C([0,∞),Rn) equipped
with certain probability measures P x (given by (2.2.1) and (2.2.2) above).
This version is called the canonical Brownian motion. Besides having the
advantage of being intuitive, this point of view is useful for the further anal-
ysis of measures on C([0,∞),Rn), since this space is Polish (i.e. a complete
separable metric space). See Stroock and Varadhan (1979).

We state some basic properties of Brownian motion:

(i) Bt is a Gaussian process, i.e. for all 0 ≤ t1 ≤ · · · ≤ tk the random variable
Z = (Bt1 , . . . , Btk

) ∈ Rnk has a (multi)normal distribution. This means
that there exists a vector M ∈ Rnk and a non-negative definite matrix
C = [cjm] ∈ Rnk×nk (the set of all nk × nk-matrices with real entries)
such that

Ex
[
exp

(
i

nk∑

j=1

ujZj

)]
= exp

(
− 1

2

∑

j,m

ujcjmum + i
∑

j

ujMj

)
(2.2.3)

for all u = (u1, . . . , unk) ∈ Rnk, where i =
√−1 is the imaginary unit

and Ex denotes expectation with respect to P x. Moreover, if (2.2.3)
holds then

M = Ex[Z] is the mean value of Z (2.2.4)

and

cjm = Ex[(Zj −Mj)(Zm −Mm)] is the covariance matrix of Z .
(2.2.5)

(See Appendix A).
To see that (2.2.3) holds for Z = (Bt1 , . . . , Btk

) we calculate its left hand
side explicitly by using (2.2.2) (see Appendix A) and obtain (2.2.3) with
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M = Ex[Z] = (x, x, · · · , x) ∈ Rnk (2.2.6)

and

C =




t1In t1In · · · t1In

t1In t2In · · · t2In
...

...
...

t1In t2In · · · tkIn




. (2.2.7)

Hence
Ex[Bt] = x for all t ≥ 0 (2.2.8)

and

Ex[(Bt − x)2] = nt, Ex[(Bt − x)(Bs − x)] = n min(s, t) . (2.2.9)

Moreover,
Ex[(Bt −Bs)2] = n(t− s) if t ≥ s , (2.2.10)

since

Ex[(Bt −Bs)2] = Ex[(Bt − x)2 − 2(Bt − x)(Bs − x) + (Bs − x)2]
= n(t− 2s + s) = n(t− s), when t ≥ s .

(ii) Bt has independent increments, i.e.

Bt1 , Bt2 −Bt1 , · · · , Btk
−Btk−1 are independent

for all 0 ≤ t1 < t2 · · · < tk . (2.2.11)

To prove this we use the fact that normal random variables are inde-
pendent iff they are uncorrelated. (See Appendix A). So it is enough to
prove that

Ex[(Bti −Bti−1)(Btj −Btj−1)] = 0 when ti < tj , (2.2.12)

which follows from the form of C:

Ex[BtiBtj −Bti−1Btj −BtiBtj−1 + Bti−1Btj−1 ]
= n(ti − ti−1 − ti + ti−1) = 0 .

From this we deduce that Bs −Bt is independent of Ft if s > t.
(iii) Finally we ask: Is t → Bt(ω) continuous for almost all ω? Stated like this

the question does not make sense, because the set H = {ω; t → Bt(ω)
is continuous} is not measurable with respect to the Borel σ-algebra B
on (Rn)[0,∞) mentioned above (H involves an uncountable number of
t’s). However, if modified slightly the question can be given a positive
answer. To explain this we need the following important concept:
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Definition 2.2.2. Suppose that {Xt} and {Yt} are stochastic processes on
(Ω,F , P ). Then we say that {Xt} is a version of (or a modification of) {Yt}
if

P ({ω;Xt(ω) = Yt(ω)}) = 1 for all t .

Note that if Xt is a version of Yt, then Xt and Yt have the same finite-
dimensional distributions. Thus from the point of view that a stochastic pro-
cess is a probability law on (Rn)[0,∞) two such processes are the same, but
nevertheless their path properties may be different. (See Exercise 2.9.)

The continuity question of Brownian motion can be answered by using
another famous theorem of Kolmogorov:

Theorem 2.2.3 (Kolmogorov’s continuity theorem). Suppose that the
process X = {Xt}t≥0 satisfies the following condition: For all T > 0 there
exist positive constants α, β,D such that

E[|Xt −Xs|α] ≤ D · |t− s|1+β ; 0 ≤ s, t ≤ T . (2.2.13)

Then there exists a continuous version of X.

For a proof see for example Stroock and Varadhan (1979, p. 51).
For Brownian motion Bt it is not hard to prove that (See Exercise 2.8)

Ex[|Bt −Bs|4] = n(n + 2)|t− s|2 . (2.2.14)

So Brownian motion satisfies Kolmogorov’s condition (2.2.13) with α = 4,
D = n(n+2) and β = 1, and therefore it has a continuous version. From now
on we will assume that Bt is such a continuous version.

Finally we note that

If Bt =(B(1)
t , · · · , B(n)

t ) is n-dimensional Brownian motion, then

the 1-dimensional processes {B(j)
t }t≥0, 1≤j≤n are independent,

1-dimensional Brownian motions . (2.2.15)

Exercises

2.1. Suppose that X: Ω → R is a function which assumes only countably
many values a1, a2, . . . ∈ R.
a) Show that X is a random variable if and only if

X−1(ak) ∈ F for all k = 1, 2, . . . (2.2.16)

b) Suppose (2.2.16) holds. Show that

E[|X|] =
∞∑

k=1

|ak|P [X = ak] . (2.2.17)
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c) If (2.2.16) holds and E[|X|] < ∞, show that

E[X] =
∞∑

k=1

akP [X = ak] .

d) If (2.2.16) holds and f :R → R is measurable and bounded, show
that

E[f(X)] =
∞∑

k=1

f(ak)P [X = ak] .

2.2. Let X: Ω → R be a random variable. The distribution function F of
X is defined by

F (x) = P [X ≤ x] .

a) Prove that F has the following properties:
(i) 0 ≤ F ≤ 1, lim

x→−∞
F (x) = 0, lim

x→∞
F (x) = 1 .

(ii) F is increasing (= non-decreasing).
(iii) F is right-continuous, i.e. F (x) = limh→0

h>0
F (x + h) .

b) Let g:R → R be measurable such that E[|g(X)|] < ∞. Prove that

E[g(X)] =

∞∫

−∞
g(x)dF (x) ,

where the integral on the right is interpreted in the Lebesgue-
Stieltjes sense.

c) Let p(x) ≥ 0 be a measurable function on R. We say that X has
the density p if

F (x) =

x∫

−∞
p(y)dy for all x .

Thus from (2.2.1)–(2.2.2) we know that 1-dimensional Brownian
motion Bt at time t with B0 = 0 has the density

p(x) =
1√
2πt

exp(−x2

2t
); x ∈ R .

Find the density of B2
t .

2.3. Let {Hi}i∈I be a family of σ-algebras on Ω. Prove that

H =
⋂
{Hi; i ∈ I}

is again a σ-algebra.
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2.4. a) Let X: Ω → Rn be a random variable such that

E[|X|p] < ∞ for some p, 0 < p < ∞ .

Prove Chebychev’s inequality :

P [|X| ≥ λ] ≤ 1
λp

E[|X|p] for all λ ≥ 0 .

Hint:
∫
Ω

|X|pdP ≥ ∫
A

|X|pdP , where A = {ω: |X| ≥ λ} .

b) Suppose there exists k > 0 such that

M = E[exp(k|X|)] < ∞ .

Prove that P [|X| ≥ λ] ≤ Me−kλ for all λ ≥ 0 .

2.5. Let X, Y :Ω → R be two independent random variables and assume
for simplicity that X and Y are bounded. Prove that

E[XY ] = E[X]E[Y ] .

(
Hint: Assume |X| ≤ M , |Y | ≤ N . Approximate X and Y by sim-

ple functions ϕ(ω) =
m∑

i=1

aiXFi(ω), ψ(ω) =
n∑

j=1

bjXGj (ω), respectively,

where Fi = X−1([ai, ai+1)), Gj = Y −1([bj , bj+1)), −M = a0 < a1 <
. . . < am = M , −N = b0 < b1 < . . . < bn = N . Then

E[X] ≈ E[ϕ] =
∑

i

aiP (Fi), E[Y ] ≈ E[ψ] =
∑

j

bjP (Gj)

and
E[XY ] ≈ E[ϕψ] =

∑

i,j

aibjP (Fi ∩Gj) . . .
)

.

2.6. Let (Ω,F , P ) be a probability space and let A1, A2, . . . be sets in F
such that ∞∑

k=1

P (Ak) < ∞ .

Prove the Borel-Cantelli lemma:

P (
∞⋂

m=1

∞⋃

k=m

Ak) = 0 ,

i.e. the probability that ω belongs to infinitely many A′ks is zero.
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2.7. a) Suppose G1, G2, . . . , Gn are disjoint subsets of Ω such that

Ω =
n⋃

i=1

Gi .

Prove that the family G consisting of ∅ and all unions of some (or
all) of G1, . . . , Gn constitutes a σ-algebra on Ω.

b) Prove that any finite σ-algebra F on Ω is of the type described in
a).

c) Let F be a finite σ-algebra on Ω and let X: Ω → R be F-
measurable. Prove that X assumes only finitely many possible
values. More precisely, there exists a disjoint family of subsets
F1, . . . , Fm ∈ F and real numbers c1, . . . , cm such that

X(ω) =
m∑

i=1

ciXFi
(ω) .

2.8. Let Bt be Brownian motion on R, B0 = 0. Put E = E0.
a) Use (2.2.3) to prove that

E[eiuBt ] = exp(−1
2
u2t) for all u ∈ R .

b) Use the power series expansion of the exponential function on both
sides, compare the terms with the same power of u and deduce that

E[B4
t ] = 3t2

and more generally that

E
[
B2k

t

]
=

(2k)!
2k · k!

tk ; k ∈ N .

c) If you feel uneasy about the lack of rigour in the method in b), you
can proceed as follows: Prove that (2.2.2) implies that

E[f(Bt)] =
1√
2πt

∫

R

f(x)e−
x2
2t dx

for all functions f such that the integral on the right converges.
Then apply this to f(x) = x2k and use integration by parts and
induction on k.

d) Prove (2.2.14), for example by using b) and induction on n.

2.9. To illustrate that the (finite-dimensional) distributions alone do not
give all the information regarding the continuity properties of a pro-
cess, consider the following example:
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Let (Ω,F , P ) = ([0,∞),B, µ) where B denotes the Borel σ-algebra on
[0,∞) and µ is a probability measure on [0,∞) with no mass on single
points. Define

Xt(ω) =
{ 1 if t = ω

0 otherwise
and

Yt(ω) = 0 for all (t, ω) ∈ [0,∞)× [0,∞) .

Prove that {Xt} and {Yt} have the same distributions and that Xt is
a version of Yt. And yet we have that t → Yt(ω) is continuous for all
ω, while t → Xt(ω) is discontinuous for all ω.

2.10. A stochastic process Xt is called stationary if {Xt} has the same dis-
tribution as {Xt+h} for any h > 0. Prove that Brownian motion Bt

has stationary increments, i.e. that the process {Bt+h − Bt}h≥0 has
the same distribution for all t.

2.11. Prove (2.2.15).

2.12. Let Bt be Brownian motion and fix t0 ≥ 0. Prove that

B̃t: = Bt0+t −Bt0 ; t ≥ 0

is a Brownian motion.

2.13. Let Bt be 2-dimensional Brownian motion and put

Dρ = {x ∈ R2; |x| < ρ} for ρ > 0 .

Compute
P 0[Bt ∈ Dρ] .

2.14. Let Bt be n-dimensional Brownian motion and let K ⊂ Rn have zero
n-dimensional Lebesgue measure. Prove that the expected total length
of time that Bt spends in K is zero. (This implies that the Green
measure associated with Bt is absolutely continuous with respect to
Lebesgue measure. See Chapter 9).

2.15. Let Bt be n-dimensional Brownian motion starting at 0 and let
U ∈Rn×n be a (constant) orthogonal matrix, i.e. UUT =I. Prove that

B̃t: = UBt

is also a Brownian motion.

2.16. (Brownian scaling). Let Bt be a 1-dimensional Brownian motion
and let c > 0 be a constant. Prove that

B̂t: =
1
c
Bc2t

is also a Brownian motion.
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2.17. If Xt(·): Ω → R is a continuous stochastic process, then for p > 0 the
p’th variation process of Xt, 〈X, X〉(p)

t is defined by

〈X,X〉(p)
t (ω) = lim

∆tk→0

∑

tk≤t

∣∣Xtk+1(ω)−Xtk
(ω)

∣∣p (limit in probability)

where 0 = t1 < t2 < . . . < tn = t and ∆tk = tk+1 − tk. In particular,
if p = 1 this process is called the total variation process and if p = 2
this is called the quadratic variation process. (See Exercise 4.7.) For
Brownian motion Bt ∈ R we now show that the quadratic variation
process is simply

〈B,B〉t(ω) = 〈B,B〉(2)t (ω) = t a.s.

Proceed as follows:
a) Define

∆Bk = Btk+1 −Btk

and put
Y (t, ω) =

∑

tk≤t

(∆Bk(ω))2 ,

Show that
E[(

∑

tk≤t

(∆Bk)2 − t)2] = 2
∑

tk≤t

(∆tk)2

and deduce that Y (t, ·) → t in L2(P ) as ∆tk →∞ .
b) Use a) to prove that a.a. paths of Brownian motion do not have

a bounded variation on [0, t], i.e. the total variation of Brownian
motion is infinite, a.s.
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3. Itô Integrals

3.1 Construction of the Itô Integral

We now turn to the question of finding a reasonable mathematical interpre-
tation of the “noise” term in the equation of Problem 1 in the Introduction:

dN

dt
= (r(t) + “noise”)N(t)

or more generally in equations of the form

dX

dt
= b(t,Xt) + σ(t,Xt) · “noise” , (3.1.1)

where b and σ are some given functions. Let us first concentrate on the case
when the noise is 1-dimensional. It is reasonable to look for some stochastic
process Wt to represent the noise term, so that

dX

dt
= b(t,Xt) + σ(t,Xt) ·Wt . (3.1.2)

Based on many situations, for example in engineering, one is led to assume
that Wt has, at least approximately, these properties:

(i) t1 6= t2 ⇒ Wt1 and Wt2 are independent.
(ii) {Wt} is stationary, i.e. the (joint) distribution of {Wt1+t, . . . ,Wtk+t}

does not depend on t.
(iii) E[Wt] = 0 for all t.

However, it turns out there does not exist any “reasonable” stochastic
process satisfying (i) and (ii): Such a Wt cannot have continuous paths. (See
Exercise 3.11.) If we require E[W 2

t ] = 1 then the function (t, ω) → Wt(ω)
cannot even be measurable, with respect to the σ-algebra B ×F , where B is
the Borel σ-algebra on [0,∞]. (See Kallianpur (1980, p. 10).)

Nevertheless it is possible to represent Wt as a generalized stochastic
process called the white noise process.

That the process is generalized means that it can be constructed as a
probability measure on the space S ′ of tempered distributions on [0,∞),
and not as a probability measure on the much smaller space R[0,∞), like an
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ordinary process can. See e.g. Hida (1980), Adler (1981), Rozanov (1982),
Hida, Kuo, Potthoff and Streit (1993) or Holden, Øksendal, Ubøe and Zhang
(1996).

We will avoid this kind of construction and rather try to rewrite equation
(3.1.2) in a form that suggests a replacement of Wt by a proper stochastic
process: Let 0 = t0 < t1 < · · · < tm = t and consider a discrete version of
(3.1.2):

Xk+1 −Xk = b(tk, Xk)∆tk + σ(tk, Xk)Wk∆tk , (3.1.3)

where
Xj = X(tj), Wk = Wtk

, ∆tk = tk+1 − tk .

We abandon the Wk-notation and replace Wk∆tk by ∆Vk = Vtk+1 − Vtk
,

where {Vt}t≥0 is some suitable stochastic process. The assumptions (i), (ii)
and (iii) on Wt suggest that Vt should have stationary independent increments
with mean 0. It turns out that the only such process with continuous paths
is the Brownian motion Bt. (See Knight (1981)). Thus we put Vt = Bt and
obtain from (3.1.3):

Xk = X0 +
k−1∑

j=0

b(tj , Xj)∆tj +
k−1∑

j=0

σ(tj , Xj)∆Bj . (3.1.4)

Is it possible to prove that the limit of the right hand side of (3.1.4) exists,
in some sense, when ∆tj → 0? If so, then by applying the usual integration
notation we should obtain

Xt = X0 +

t∫

0

b(s,Xs)ds + “

t∫

0

σ(s,Xs)dBs” (3.1.5)

and we would adopt as a convention that (3.1.2) really means that Xt =
Xt(ω) is a stochastic process satisfying (3.1.5).

Thus, in the remainder of this chapter we will prove the existence, in a
certain sense, of

“

t∫

0

f(s, ω)dBs(ω)”

where Bt(ω) is 1-dimensional Brownian motion starting at the origin, for a
wide class of functions f : [0,∞]×Ω → R. Then, in Chapter 5, we will return
to the solution of (3.1.5).

Suppose 0 ≤ S < T and f(t, ω) is given. We want to define

T∫

S

f(t, ω)dBt(ω) . (3.1.6)
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It is reasonable to start with a definition for a simple class of functions f
and then extend by some approximation procedure. Thus, let us first assume
that f has the form

φ(t, ω) =
∑

j≥0

ej(ω) · X[j·2−n,(j+1)2−n)(t) , (3.1.7)

where X denotes the characteristic (indicator) function and n is a natural
number. For such functions it is reasonable to define

T∫

S

φ(t, ω)dBt(ω) =
∑

j≥0

ej(ω)[Btj+1 −Btj
](ω) , (3.1.8)

where

tk = t
(n)
k =





k · 2−n if S ≤ k · 2−n ≤ T
S if k · 2−n < S
T if k · 2−n > T





However, without any further assumptions on the functions ej(ω) this leads
to difficulties, as the next example shows.

Here – and in the following – E means the same as E0, the expectation
w.r.t. the law P 0 for Brownian motion starting at 0. And P means the same
as P 0.

Example 3.1.1. Choose

φ1(t, ω) =
∑

j≥0

Bj·2−n(ω) · X[j·2−n,(j+1)2−n)(t)

φ2(t, ω) =
∑

j≥0

B(j+1)2−n(ω) · X[j·2−n,(j+1)2−n)(t) .

Then

E

[ T∫

0

φ1(t, ω)dBt(ω)
]

=
∑

j≥0

E[Btj (Btj+1 −Btj )] = 0 ,

since {Bt} has independent increments. But

E

[ T∫

0

φ2(t, ω)dBt(ω)
]

=
∑

j≥0

E[Btj+1 · (Btj+1 −Btj )]

=
∑

j≥0

E[(Btj+1 −Btj )
2] = T , by (2.2.10) .

So, in spite of the fact that both φ1 and φ2 appear to be very reasonable
approximations to
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f(t, ω) = Bt(ω) ,

their integrals according to (3.1.8) are not close to each other at all, no matter
how large n is chosen.

This only reflects the fact that the variations of the paths of Bt are too
big to enable us to define the integral (3.1.6) in the Riemann-Stieltjes sense.
In fact, one can show that the paths t → Bt of Brownian motion are nowhere
differentiable, almost surely (a.s.). (See Breiman (1968)). In particular, the
total variation of the path is infinite, a.s.

In general it is natural to approximate a given function f(t, ω) by
∑

j

f(t∗j , ω) · X[tj ,tj+1)(t)

where the points t∗j belong to the intervals [tj , tj+1], and then define
T∫
S

f(t, ω)dBt(ω) as the limit (in a sense that we will explain) of
∑
j

f(t∗j , ω)[Btj+1− Btj ](ω) as n → ∞. However, the example above shows

that – unlike the Riemann-Stieltjes integral – it does make a difference here
what points t∗j we choose. The following two choices have turned out to be
the most useful ones:

1) t∗j = tj (the left end point), which leads to the Itô integral, from now on
denoted by

T∫

S

f(t, ω)dBt(ω) ,

and
2) t∗j = (tj+tj+1)/2 (the mid point), which leads to the Stratonovich integral,

denoted by
T∫

S

f(t, ω) ◦ dBt(ω) .

(See Protter (1990, Th. V. 5.30)).

In the end of this chapter we will explain why these choices are the best
and discuss the relations and distinctions between the corresponding inte-
grals.

In any case one must restrict oneself to a special class of functions f(t, ω)
in (3.1.6), also if they have the particular form (3.1.7), in order to obtain
a reasonable definition of the integral. We will here present Itô’s choice
t∗j = tj . The approximation procedure indicated above will work out success-
fully provided that f has the property that each of the functions ω → f(tj , ω)
only depends on the behaviour of Bs(ω) up to time tj . This leads to the fol-
lowing important concepts:
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Definition 3.1.2. Let Bt(ω) be n-dimensional Brownian motion. Then we
define Ft = F (n)

t to be the σ-algebra generated by the random variables Bs(·);
s ≤ t. In other words, Ft is the smallest σ-algebra containing all sets of the
form

{ω; Bt1(ω) ∈ F1, · · · , Btk
(ω) ∈ Fk} ,

where tj ≤ t and Fj ⊂ Rn are Borel sets, j ≤ k = 1, 2, . . . (We assume that
all sets of measure zero are included in Ft).

One often thinks of Ft as “the history of Bs up to time t”. A function
h(ω) will be Ft-measurable if and only if h can be written as the pointwise
a.e. limit of sums of functions of the form

g1(Bt1)g2(Bt2) · · · gk(Btk
) ,

where g1, . . . , gk are bounded continuous functions and tj ≤ t for j ≤ k,
k = 1, 2, . . . . (See Exercise 3.14.) Intuitively, that h is Ft-measurable means
that the value of h(ω) can be decided from the values of Bs(ω) for s ≤ t. For
example, h1(ω) = Bt/2(ω) is Ft-measurable, while h2(ω) = B2t(ω) is not.

Note that Fs ⊂ Ft for s < t (i.e. {Ft} is increasing) and that Ft ⊂ F for
all t.

Definition 3.1.3. Let {Nt}t≥0 be an increasing family of σ-algebras of sub-
sets of Ω. A process g(t, ω): [0,∞)×Ω → Rn is called Nt-adapted if for each
t ≥ 0 the function

ω → g(t, ω)

is Nt-measurable.

Thus the process h1(t, ω) = Bt/2(ω) is Ft-adapted, while h2(t, ω) =
B2t(ω) is not.

We now describe our class of functions for which the Itô integral will be
defined:

Definition 3.1.4. Let V = V(S, T ) be the class of functions

f(t, ω): [0,∞)×Ω → R

such that

(i) (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel σ-
algebra on [0,∞).

(ii) f(t, ω) is Ft-adapted.

(iii) E
[ T∫

S

f(t, ω)2dt
]

< ∞.
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The Itô Integral

For functions f ∈ V we will now show how to define the Itô integral

I[f ](ω) =

T∫

S

f(t, ω)dBt(ω) ,

where Bt is 1-dimensional Brownian motion.
The idea is natural: First we define I[φ] for a simple class of functions

φ. Then we show that each f ∈ V can be approximated (in an appropriate
sense) by such φ’s and we use this to define

∫
fdB as the limit of

∫
φdB as

φ → f .
We now give the details of this construction: A function φ ∈ V is called

elementary if it has the form

φ(t, ω) =
∑

j

ej(ω) · X[tj ,tj+1)(t) . (3.1.9)

Note that since φ ∈ V each function ej must be Ftj -measurable. Thus in
Example 3.1.1 above the function φ1 is elementary while φ2 is not.

For elementary functions φ(t, ω) we define the integral according to
(3.1.8), i.e.

T∫

S

φ(t, ω)dBt(ω) =
∑

j≥0

ej(ω)[Btj+1 −Btj ](ω) . (3.1.10)

Now we make the following important observation:

Lemma 3.1.5 (The Itô isometry). If φ(t, ω) is bounded and elementary
then

E

[( T∫

S

φ(t, ω)dBt(ω)
)2]

= E

[ T∫

S

φ(t, ω)2dt

]
. (3.1.11)

Proof. Put ∆Bj = Btj+1 −Btj . Then

E[eiej∆Bi∆Bj ] =
{

0 if i 6= j
E[e2

j ] · (tj+1 − tj) if i = j

using that eiej∆Bi and ∆Bj are independent if i < j. Thus

E

[( T∫

S

φdB

)2]
=

∑

i,j

E[eiej∆Bi∆Bj ] =
∑

j

E[e2
j ] · (tj+1 − tj)

= E

[ T∫

S

φ2dt

]
.
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The idea is now to use the isometry (3.1.11) to extend the definition from
elementary functions to functions in V. We do this in several steps:

Step 1. Let g ∈ V be bounded and g(·, ω) continuous for each ω. Then there
exist elementary functions φn ∈ V such that

E

[ T∫

S

(g − φn)2dt

]
→ 0 as n →∞ .

Proof. Define φn(t, ω) =
∑
j

g(tj , ω) ·X[tj ,tj+1)(t). Then φn is elementary since

g ∈ V, and

T∫

S

(g − φn)2dt → 0 as n →∞, for each ω ,

since g(·, ω) is continuous for each ω. Hence E[
T∫
S

(g− φn)2dt] → 0 as n →∞,

by bounded convergence.

Step 2. Let h ∈ V be bounded. Then there exist bounded functions gn ∈ V
such that gn(·, ω) is continuous for all ω and n, and

E

[ T∫

S

(h− gn)2dt

]
→ 0 .

Proof. Suppose |h(t, ω)| ≤ M for all (t, ω). For each n let ψn be a non-
negative, continuous function on R such that

(i) ψn(x) = 0 for x ≤ − 1
n and x ≥ 0

and

(ii)
∞∫
−∞

ψn(x)dx = 1

Define

gn(t, ω) =

t∫

0

ψn(s− t)h(s, ω)ds .

Then gn(·, ω) is continuous for each ω and |gn(t, ω)| ≤ M . Since h ∈ V we
can show that gn(t, ·) is Ft-measurable for all t. (This is a subtle point; see
e.g. Karatzas and Shreve (1991), p. 133 for details.) Moreover,



28 3. Itô Integrals

T∫

S

(gn(s, ω)− h(s, ω))2ds → 0 as n →∞, for each ω ,

since {ψn}n constitutes an approximate identity. (See e.g. Hoffman (1962,
p. 22).) So by bounded convergence

E

[ T∫

S

(h(t, ω)− gn(t, ω))2dt

]
→ 0 as n →∞ ,

as asserted.

Step 3. Let f ∈ V. Then there exists a sequence {hn} ⊂ V such that hn is
bounded for each n and

E

[ T∫

S

(f − hn)2dt

]
→ 0 as n →∞ .

Proof. Put

hn(t, ω) =





−n if f(t, ω) < −n
f(t, ω) if −n ≤ f(t, ω) ≤ n

n if f(t, ω) > n .

Then the conclusion follows by dominated convergence.
That completes the approximation procedure.

We are now ready to complete the definition of the Itô integral

T∫

S

f(t, ω)dBt(ω) for f ∈ V .

If f ∈ V we choose, by Steps 1-3, elementary functions φn ∈ V such that

E

[ T∫

S

|f − φn|2dt

]
→ 0 .

Then define

I[f ](ω):=

T∫

S

f(t, ω)dBt(ω): = lim
n→∞

T∫

S

φn(t, ω)dBt(ω) .

The limit exists as an element of L2(P ), since
{ T∫

S

φn(t, ω)dBt(ω)
}

forms a

Cauchy sequence in L2(P ), by (3.1.11).
We summarize this as follows:
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Definition 3.1.6 (The Itô integral). Let f ∈ V(S, T ). Then the Itô inte-
gral of f (from S to T ) is defined by

T∫

S

f(t, ω)dBt(ω) = lim
n→∞

T∫

S

φn(t, ω)dBt(ω) (limit in L2(P )) (3.1.12)

where {φn} is a sequence of elementary functions such that

E

[ T∫

S

(f(t, ω)− φn(t, ω))2dt

]
→ 0 as n →∞ . (3.1.13)

Note that such a sequence {φn} satisfying (3.1.13) exists by Steps 1–3
above. Moreover, by (3.1.11) the limit in (3.1.12) exists and does not depend
on the actual choice of {φn}, as long as (3.1.13) holds. Furthermore, from
(3.1.11) and (3.1.12) we get the following important

Corollary 3.1.7 (The Itô isometry).

E

[( T∫

S

f(t, ω)dBt

)2]
= E

[ T∫

S

f2(t, ω)dt

]
for all f ∈ V(S, T ) . (3.1.14)

Corollary 3.1.8. If f(t, ω) ∈ V(S, T ) and fn(t, ω) ∈ V(S, T ) for n = 1, 2, . . .

and E
[ T∫

S

(fn(t, ω)− f(t, ω))2dt
] → 0 as n →∞, then

T∫

S

fn(t, ω)dBt(ω) →
T∫

S

f(t, ω)dBt(ω) in L2(P ) as n →∞ .

We illustrate this integral with an example:

Example 3.1.9. Assume B0 = 0. Then

t∫

0

BsdBs = 1
2B2

t − 1
2 t .

Proof. Put φn(s, ω) =
∑

Bj(ω) · X[tj ,tj+1)(s), where Bj = Btj . Then

E

[ t∫

0

(φn −Bs)2ds

]
= E

[ ∑

j

tj+1∫

tj

(Bj −Bs)2ds

]

=
∑

j

tj+1∫

tj

(s− tj)ds =
∑

j

1
2 (tj+1 − tj)2 → 0 as ∆tj → 0 .
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So by Corollary 3.1.8

t∫

0

BsdBs = lim
∆tj→0

t∫

0

φndBs = lim
∆tj→0

∑

j

Bj∆Bj .

(See also Exercise 3.13.) Now

∆(B2
j ) = B2

j+1 −B2
j = (Bj+1 −Bj)2 + 2Bj(Bj+1 −Bj)

= (∆Bj)2 + 2Bj∆Bj ,

and therefore, since B0 = 0,

B2
t =

∑

j

∆(B2
j ) =

∑

j

(∆Bj)2 + 2
∑

j

Bj∆Bj

or ∑

j

Bj∆Bj = 1
2B2

t − 1
2

∑

j

(∆Bj)2 .

Since
∑
j

(∆Bj)2 → t in L2(P ) as ∆tj → 0 (Exercise 2.17), the result follows.

The extra term − 1
2 t shows that the Itô stochastic integral does not behave

like ordinary integrals. In the next chapter we will establish the Itô formula,
which explains the result in this example and which makes it easy to calculate
many stochastic integrals.

3.2 Some properties of the Itô integral

First we observe the following:

Theorem 3.2.1. Let f, g ∈ V(0, T ) and let 0 ≤ S < U < T . Then

(i)
T∫
S

fdBt =
U∫
S

fdBt +
T∫
U

fdBt for a.a. ω

(ii)
T∫
S

(cf + g)dBt = c ·
T∫
S

fdBt +
T∫
S

gdBt (c constant) for a.a. ω

(iii) E
[ T∫

S

fdBt

]
= 0

(iv)
T∫
S

fdBt is FT -measurable.

Proof. This clearly holds for all elementary functions, so by taking limits we
obtain this for all f, g ∈ V(0, T ).

An important property of the Itô integral is that it is a martingale:
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Definition 3.2.2. A filtration (on (Ω,F)) is a family M = {Mt}t≥0 of
σ-algebras Mt ⊂ F such that

0 ≤ s < t ⇒Ms ⊂Mt

(i.e. {Mt} is increasing). An n-dimensional stochastic process {Mt}t≥0 on
(Ω,F , P ) is called a martingale with respect to a filtration {Mt}t≥0 (and
with respect to P ) if

(i) Mt is Mt-measurable for all t,
(ii) E[|Mt|] < ∞ for all t

and
(iii) E[Ms|Mt] = Mt for all s ≥ t.

Here the expectation in (ii) and the conditional expectation in (iii) is
taken with respect to P = P 0. (See Appendix B for a survey of conditional
expectation).

Example 3.2.3. Brownian motion Bt in Rn is a martingale w.r.t. the σ-
algebras Ft generated by {Bs; s ≤ t}, because

E[|Bt|]2 ≤ E[|Bt|2] = |B0|2 + nt and if s ≥ t then
E[Bs|Ft] = E[Bs −Bt + Bt|Ft]

= E[Bs −Bt|Ft] + E[Bt|Ft] = 0 + Bt = Bt .

Here we have used that E[(Bs − Bt)|Ft] = E[Bs − Bt] = 0 since Bs − Bt is
independent of Ft (see (2.2.11) and Theorem B.2.d)) and we have used that
E[Bt|Ft] = Bt since Bt is Ft-measurable (see Theorem B.2.c)).

For continuous martingales we have the following important inequality
due to Doob: (See e.g. Stroock and Varadhan (1979), Theorem 1.2.3 or Revuz
and Yor (1991), Theorem II.1.7)

Theorem 3.2.4 (Doob’s martingale inequality). If Mt is a martingale
such that t → Mt(ω) is continuous a.s., then for all p ≥ 1, T ≥ 0 and all
λ > 0

P [ sup
0≤t≤T

|Mt| ≥ λ] ≤ 1
λp
· E[|MT |p] .

We now use this inequality to prove that the Itô integral

t∫

0

f(s, ω)dBs

can be chosen to depend continuously on t :
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Theorem 3.2.5. Let f ∈ V(0, T ). Then there exists a t-continuous version
of

t∫

0

f(s, ω)dBs(ω) ; 0 ≤ t ≤ T ,

i.e. there exists a t-continuous stochastic process Jt on (Ω,F , P ) such that

P [Jt =

t∫

0

fdB] = 1 for all t, 0 ≤ t ≤ T . (3.2.1)

Proof. Let φn = φn(t, ω) =
∑
j

e
(n)
j (ω)X

[t
(n)
j

,t
(n)
j+1)

(t) be elementary functions

such that

E

[ T∫

0

(f − φn)2dt

]
→ 0 when n →∞ .

Put

In(t, ω) =

t∫

0

φn(s, ω)dBs(ω)

and

It = I(t, ω) =

t∫

0

f(s, ω)dBs(ω) ; 0 ≤ t ≤ T .

Then In(·, ω) is continuous, for all n. Moreover, In(t, ω) is a martingale with
respect to Ft, for all n :

E[In(s, ω)|Ft] = E

[( t∫

0

φndB +

s∫

t

φndB

)∣∣∣Ft

]

=

t∫

0

φndB + E

[ ∑

t≤t
(n)
j
≤t

(n)
j+1≤s

e
(n)
j ∆Bj |Ft

]

=

t∫

0

φndB +
∑

j

E
[
E[e(n)

j ∆Bj |Ft
(n)
j

]|Ft

]

=

t∫

0

φndB +
∑

j

E
[
e
(n)
j E[∆Bj |Ft

(n)
j

]|Ft

]

=

t∫

0

φndB = In(t, ω) (3.2.2)
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when t < s, using Theorem B.3. and Theorem B.2.d).
Hence In − Im is also an Ft-martingale, so by the martingale inequality

(Theorem 3.2.4) it follows that

P

[
sup

0≤t≤T
|In(t, ω)− Im(t, ω)| > ε

]
≤ 1

ε2
· E[|In(T, ω)− Im(T, ω)|2]

=
1
ε2

E

[ T∫

0

(φn − φm)2ds

]
→ 0 as m,n →∞ .

Hence we may choose a subsequence nk ↑ ∞ s.t.

P
[

sup
0≤t≤T

|Ink+1(t, ω)− Ink
(t, ω)| > 2−k

]
< 2−k .

By the Borel-Cantelli lemma

P
[

sup
0≤t≤T

|Ink+1(t, ω)− Ink
(t, ω)| > 2−k for infinitely many k

]
= 0 .

So for a.a. ω there exists k1(ω) such that

sup
0≤t≤T

|Ink+1(t, ω)− Ink
(t, ω)| ≤ 2−k for k ≥ k1(ω) .

Therefore Ink
(t, ω) is uniformly convergent for t ∈ [0, T ], for a.a. ω and so the

limit, denoted by Jt(ω), is t-continuous for t ∈ [0, T ], a.s. Since Ink
(t, ·) →

I(t, ·) in L2[P ] for all t, we must have

It = Jt a.s. , for all t ∈ [0, T ] .

That completes the proof. tu

From now on we shall always assume that
t∫
0

f(s, ω)dBs(ω) means a t-

continuous version of the integral.

Corollary 3.2.6. Let f(t, ω) ∈ V(0, T ) for all T . Then

Mt(ω) =

t∫

0

f(s, ω)dBs

is a martingale w.r.t. Ft and

P
[

sup
0≤t≤T

|Mt| ≥ λ
] ≤ 1

λ2
· E

[ T∫

0

f(s, ω)2ds

]
; λ, T > 0 . (3.2.3)

Proof. This follows from (3.2.2), the a.s. t-continuity of Mt and the martin-
gale inequality (Theorem 3.2.4), combined with the Itô isometry (3.1.14).

tu
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3.3 Extensions of the Itô integral

The Itô integral
∫

fdB can be defined for a larger class of integrands f than
V. First, the measurability condition (ii) of Definition 3.1.4 can be relaxed to
the following:

(ii)’ There exists an increasing family of σ-algebras Ht; t ≥ 0 such that
a) Bt is a martingale with respect to Ht and
b) ft is Ht-adapted.

Note that a) implies that Ft ⊂ Ht. The essence of this extension is that we
can allow ft to depend on more than Ft as long as Bt remains a martingale
with respect to the “history” of fs; s ≤ t. If (ii)’ holds, then E[Bs−Bt|Ht] = 0
for all s > t and if we inspect our proofs above, we see that this is sufficient
to carry out the construction of the Itô integral as before.

The most important example of a situation where (ii)’ applies (and (ii)
doesn’t) is the following:

Suppose Bt(ω) = Bk(t, ω) is the k’th coordinate of n-dimensional Brown-
ian motion (B1, . . . , Bn). Let F (n)

t be the σ-algebra generated by B1(s1, ·), · · ·,
Bn(sn, ·); sk ≤ t. Then Bk(t, ω) is a martingale with respect to F (n)

t because
Bk(s, ·)− Bk(t, ·) is independent of F (n)

t when s > t. Thus we have now de-

fined
t∫
0

f(s, ω)dBk(s, ω) for F (n)
t -adapted integrands f(t, ω). That includes

integrals like ∫
B2dB1 or

∫
sin(B2

1 + B2
2) dB2

involving several components of n-dimensional Brownian motion. (Here we
have used the notation dB1 = dB1(t, ω) etc.)

This allows us to define the multi-dimensional Itô integral as follows:

Definition 3.3.1. Let B = (B1, B2, . . . , Bn) be n-dimensional Brownian
motion. Then Vm×n

H (S, T ) denotes the set of m × n matrices v = [vij(t, ω)]
where each entry vij(t, ω) satisfies (i) and (iii) of Definition 3.1.4 and (ii)’
above, with respect to some filtration H = {Ht}t≥0.

If v ∈ Vm×n
H (S, T ) we define, using matrix notation

T∫

S

vdB =

T∫

S




v11 · · · v1n
...

...
vm1 · · · vmn







dB1
...

dBn




to be the m×1 matrix (column vector) whose i’th component is the following
sum of (extended) 1-dimensional Itô integrals:

n∑

j=1

T∫

S

vij(s, ω)dBj(s, ω) .
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If H = F (n) = {F (n)
t }t≥0 we write Vm×n(S, T ) and if m = 1 we write

Vn
H(S, T ) (respectively Vn(S, T )) instead of Vn×1

H (S, T ) (respectively
Vn×1(S, T )). We also put

Vm×n = Vm×n(0,∞) =
⋂

T>0

Vm×n(0, T ) .

The next extension of the Itô integral consists of weakening condition (iii)
of Definition 3.1.4 to

(iii)’ P

[ T∫

S

f(s, ω)2ds < ∞
]

= 1 .

Definition 3.3.2. WH(S, T ) denotes the class of processes f(t, ω) ∈ R satis-
fying (i) of Definition 3.1.4 and (ii)’, (iii)’ above. Similarly to the notation for
V we put WH =

⋂
T>0

WH(0, T ) and in the matrix case we write Wm×n
H (S, T )

etc. If H = F (n) we write W(S, T ) instead of WF(n)(S, T ) etc. If the dimen-
sion is clear from the context we sometimes drop the superscript and write
F for F (n) and so on.

Let Bt denote 1-dimensional Brownian motion. If f ∈ WH one can show

that for all t there exist step functions fn ∈ WH such that
t∫
0

|fn− f |2ds → 0

in probability, i.e. in measure with respect to P . For such a sequence one has

that
t∫
0

fn(s, ω)dBs converges in probability to some random variable and the

limit only depends on f , not on the sequence {fn}. Thus we may define

t∫

0

f(s, ω)dBs(ω) = lim
n→∞

t∫

0

fn(s, ω)dBs(ω) (limit in probability) for f ∈WH .

(3.3.1)
As before there exists a t-continuous version of this integral. See Friedman
(1975, Chap. 4) or McKean (1969, Chap. 2) for details. Note, however, that
this integral is not in general a martingale. See for example Dudley’s Theorem
(Theorem 12.1.5). It is, however, a local martingale. See Karatzas and Shreve
(1991), p. 146. See also Exercise 7.12.

A comparison of Itô and Stratonovich integrals

Let us now return to our original question in this chapter: We have argued
that the mathematical interpretation of the white noise equation

dX

dt
= b(t,Xt) + σ(t,Xt) ·Wt (3.3.2)
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is that Xt is a solution of the integral equation

Xt = X0 +

t∫

0

b(s,Xs)ds + “

t∫

0

σ(s,Xs)dBs” , (3.3.3)

for some suitable interpretation of the last integral in (3.3.3). However, as
indicated earlier, the Itô interpretation of an integral of the form

“

t∫

0

f(s, ω)dBs(ω)” (∗)

is just one of several reasonable choices. For example, the Stratonovich in-
tegral is another possibility, leading (in general) to a different result. So the
question still remains: Which interpretation of (∗) makes (3.3.3) the “right”
mathematical model for the equation (3.3.2)? Here is an argument that in-
dicates that the Stratonovich interpretation in some situations may be the
most appropriate: Choose t-continuously differentiable processes B

(n)
t such

that for a.a. ω
B(n)(t, ω) → B(t, ω) as n →∞

uniformly (in t) in bounded intervals. For each ω let X
(n)
t (ω) be the solution

of the corresponding (deterministic) differential equation

dXt

dt
= b(t,Xt) + σ(t,Xt)

dB
(n)
t

dt
. (3.3.4)

Then X
(n)
t (ω) converges to some function Xt(ω) in the same sense: For a.a.

ω we have that X
(n)
t (ω) → Xt(ω) as n → ∞, uniformly (in t) in bounded

intervals.
It turns out (see Wong and Zakai (1969) and Sussman (1978)) that this so-

lution Xt coincides with the solution of (3.3.3) obtained by using Stratonovich
integrals, i.e.

Xt = X0 +

t∫

0

b(s,Xs)ds +

t∫

0

σ(s,Xs) ◦ dBs . (3.3.5)

This implies that Xt is the solution of the following modified Itô equation:

Xt = X0 +

t∫

0

b(s,Xs)ds + 1
2

t∫

0

σ′(s,Xs)σ(s,Xs)ds +

t∫

0

σ(s,Xs)dBs , (3.3.6)

where σ′ denotes the derivative of σ(t, x) with respect to x. (See Stratonovich
(1966)).
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Therefore, from this point of view it seems reasonable to use (3.3.6) (i.e.
the Stratonovich interpretation) – and not the Itô interpretation

Xt = X0 +

t∫

0

b(s,Xs)ds +

t∫

0

σ(s,Xs)dBs (3.3.7)

as the model for the original white noise equation (3.3.2).
On the other hand, the specific feature of the Itô model of “not looking

into the future” (as explained after Example 3.1.1) seems to be a reason for
choosing the Itô interpretation in many cases, for example in biology (see the
discussion in Turelli (1977)). The difference between the two interpretations
is illustrated in Example 5.1.1. Note that (3.3.6) and (3.3.7) coincide if σ(t, x)
does not depend on x. For example, this is the situation in the linear case
handled in the filtering problem in Chapter 6.

In any case, because of the explicit connection (3.3.6) between the two
models (and a similar connection in higher dimensions – see (6.1.3)), it will
for many purposes suffice to do the general mathematical treatment for one
of the two types of integrals. In general one can say that the Stratonovich
integral has the advantage of leading to ordinary chain rule formulas under a
transformation (change of variable), i.e. there are no second order terms in the
Stratonovich analogue of the Itô transformation formula (see Theorems 4.1.2
and 4.2.1). This property makes the Stratonovich integral natural to use for
example in connection with stochastic differential equations on manifolds (see
Elworthy (1982) or Ikeda and Watanabe (1989)).

However, Stratonovich integrals are not martingales, as we have seen that
Itô integrals are. This gives the Itô integral an important computational
advantage, even though it does not behave so nicely under transformations
(as Example 3.1.9 shows). For our purposes the Itô integral will be most
convenient, so we will base our discussion on that from now on.

Exercises

Unless otherwise stated Bt denotes Brownian motion in R, B0 = 0.

3.1. Prove directly from the definition of Itô integrals (Definition 3.1.6)
that

t∫

0

sdBs = tBt −
t∫

0

Bsds .

(Hint: Note that
∑

j

∆(sjBj) =
∑

j

sj∆Bj +
∑

j

Bj+1∆sj .)
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3.2. Prove directly from the definition of Itô integrals that

t∫

0

B2
sdBs = 1

3B3
t −

t∫

0

Bsds .

3.3. If Xt: Ω → Rn is a stochastic process, let Ht = H(X)
t denote the σ-

algebra generated by {Xs(·); s ≤ t} (i.e. {H(X)
t }t≥0 is the filtration of

the process {Xt}t≥0).
a) Show that if Xt is a martingale w.r.t. some filtration {Nt}t≥0, then

Xt is also a martingale w.r.t. its own filtration {H(X)
t }t≥0 .

b) Show that if Xt is a martingale w.r.t H(X)
t , then

E[Xt] = E[X0] for all t ≥ 0 . (∗)
c) Give an example of a stochastic process Xt satisfying (∗) and which

is not a martingale w.r.t. its own filtration.

3.4. Check whether the following processes Xt are martingales w.r.t. {Ft}:
(i) Xt = Bt + 4t
(ii) Xt = B2

t

(iii) Xt = t2Bt − 2
t∫
0

sBsds

(iv) Xt = B1(t)B2(t), where (B1(t), B2(t)) is 2-dimensional Brownian
motion.

3.5. Prove directly (without using Example 3.1.9) that

Mt = B2
t − t

is an Ft-martingale.

3.6. Prove that Nt = B3
t − 3tBt is a martingale.

3.7. A famous result of Itô (1951) gives the following formula for n times
iterated Itô integrals:

n!
∫
· · · (

∫
(

∫

0≤u1≤···≤un≤t

dBu1)dBu2) · · · dBun = t
n
2 hn

(
Bt√

t

)
(3.3.8)

where hn is the Hermite polynomial of degree n, defined by

hn(x) = (−1)ne
x2
2

dn

dxn

(
e
− x2

2
)

; n = 0, 1, 2, . . .

(Thus h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x.)
a) Verify that in each of these n Itô integrals the integrand satisfies

the requirements in Definition 3.1.4.
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b) Verify formula (3.3.8) for n = 1, 2, 3 by combining Example 3.1.9
and Exercise 3.2.

c) Use b) to give a new proof of the statement in Exercise 3.6.
3.8. a) Let Y be a real valued random variable on (Ω,F , P ) such that

E[|Y |] < ∞ .

Define
Mt = E[Y |Ft] ; t ≥ 0 .

Show that Mt is an Ft-martingale.
b) Conversely, let Mt; t ≥ 0 be a real valued Ft-martingale such that

sup
t≥0

E[|Mt|p] < ∞ for some p > 1 .

Show that there exists Y ∈ L1(P ) such that

Mt = E[Y |Ft] .

(Hint: Use Corollary C.7.)

3.9. Suppose f ∈ V(0, T ) and that t → f(t, ω) is continuous for a.a. ω.
Then we have shown that

T∫

0

f(t, ω)dBt(ω) = lim
∆tj→0

∑

j

f(tj , ω)∆Bj in L2(P ) .

Similarly we define the Stratonovich integral of f by

T∫

0

f(t, ω)◦dBt(ω)= lim
∆tj→0

∑

j

f(t∗j , ω)∆Bj , where t∗j = 1
2 (tj + tj+1) ,

whenever the limit exists in L2(P ). In general these integrals are dif-
ferent. For example, compute

T∫

0

Bt ◦ dBt

and compare with Example 3.1.9.

3.10. If the function f in Exercise 3.9 varies “smoothly” with t then in fact
the Itô and Stratonovich integrals of f coincide. More precisely, assume
that there exists K < ∞ and ε > 0 such that

E[|f(s, ·)− f(t, ·)|2] ≤ K|s− t|1+ε ; 0 ≤ s , t ≤ T .
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Prove that then we have

T∫

0

f(t, ω)dBt = lim
∆tj→0

∑

j

f(t′j , ω)∆Bj (limit in L1(P ))

for any choice of t′j ∈ [tj , tj+1]. In particular,

T∫

0

f(t, ω)dBt =

T∫

0

f(t, ω) ◦ dBt .

(Hint: Consider E
[|∑

j

f(tj , ω)∆Bj −
∑
j

f(t′j , ω)∆Bj |
]
.)

3.11. Let Wt be a stochastic process satisfying (i), (ii) and (iii) (below
(3.1.2)). Prove that Wt cannot have continuous paths. (Hint: Consider
E[(W (N)

t −W
(N)
s )2], where

W
(N)
t = (−N) ∨ (N ∧Wt), N = 1, 2, 3, . . .) .

3.12. As in Exercise 3.9 we let ◦dBt denote Stratonovich differentials.
(i) Use (3.3.6) to transform the following Stratonovich differential

equations into Itô differential equations:
(a) dXt = γXtdt + αXt ◦ dBt

(b) dXt = sin Xt cosXtdt + (t2 + cos Xt) ◦ dBt

(ii) Transform the following Itô differential equations into Stratonovich
differential equations:
(a) dXt = rXtdt + αXtdBt

(b) dXt = 2e−Xtdt + X2
t dBt

3.13. A stochastic process Xt(·): Ω → R is continuous in mean square if
E[X2

t ] < ∞ for all t and

lim
s→t

E[(Xs −Xt)2] = 0 for all t ≥ 0 .

a) Prove that Brownian motion Bt is continuous in mean square.
b) Let f :R → R be a Lipschitz continuous function, i.e. there exists

C < ∞ such that

|f(x)− f(y)| ≤ C|x− y| for all x, y ∈ R .

Prove that
Yt: = f(Bt)

is continuous in mean square.
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c) Let Xt be a stochastic process which is continuous in mean square
and assume that Xt ∈ V(S, T ), T < ∞. Show that

T∫

S

XtdBt = lim
n→∞

T∫

S

φn(t, ω)dBt(ω) (limit in L2(P ))

where

φn(t, ω) =
∑

j

X
t
(n)
j

(ω)X
[t

(n)
j

,t
(n)
j+1)

(t) , T < ∞ .

(Hint: Consider

E

[ T∫

S

(Xt − φn(t))2dt

]
= E

[∑

j

t
(n)
j+1∫

t
(n)
j

(Xt −X
t
(n)
j

)2dt

]
) .

3.14. Show that a function h(ω) is Ft-measurable if and only if h is a point-
wise limit (for a.a. ω) of sums of functions of the form

g1(Bt1) · g2(Bt2) · · · gk(Btk
)

where g1, . . . , gk are bounded continuous functions and tj ≤ t for j ≤ k,
k = 1, 2, . . .
Hint: Complete the following steps:
a) We may assume that h is bounded.
b) For n = 1, 2, . . . and j = 1, 2, . . . put tj = t

(n)
j = j · 2−n. For

fixed n let Hn be the σ-algebra generated by {Btj (·)}tj≤t. Then by
Corollary C.9

h = E[h|Ft] = lim
n→∞

E[h|Hn] (pointwise a.e. limit)

c) Define hn: = E[h|Hn]. Then by the Doob-Dynkin lemma (Lemma
2.1.2) we have

hn(ω) = Gn(Bt1(ω), . . . , Btk
(ω))

for some Borel function Gn:Rk→R, where k=max{j; j · 2−n≤ t}.
Now use that any Borel function G:Rk → R can be approximated
pointwise a.e. by a continuous function F :Rk → R and complete
the proof by applying the Stone-Weierstrass theorem.

3.15. Suppose f, g ∈ V(S, T ) and that there exist constants C, D such that

C +

T∫

S

f(t, ω)dBt(ω) = D +

T∫

S

g(t, ω)dBt(ω) for a.a. ω ∈ Ω .



42 3. Itô Integrals

Show that
C = D

and
f(t, ω) = g(t, ω) for a.a. (t, ω) ∈ [S, T ]×Ω .

3.16. Let X: Ω → R be a random variable such that E[X2] < ∞ and let
H ⊂ F be a σ-algebra. Show that

E
[
(E[X|H])2

] ≤ E[X2] .

(See Lemma 6.1.1. See also the Jensen inequality for conditional ex-
pectation (Appendix B).)

3.17. Let (Ω,F , P ) be a probability space and let X:Ω → R be a random
variable with E[|X|] < ∞. If G ⊂ F is a finite σ-algebra, then by

Exercise 2.7 there exists a partition Ω =
n⋃

i=1

Gi such that G consists

of ∅ and unions of some (or all) of G1, . . . , Gn.
a) Explain why E[X|G](ω) is constant on each Gi. (See Exercise 2.7 c).)
b) Assume that P [Gi] > 0. Show that

E[X|G](ω) =

∫
Gi

XdP

P (Gi)
for ω ∈ Gi .

c) Suppose X assumes only finitely many values a1, . . . , am. Then from
elementary probability theory we know that (see Exercise 2.1)

E[X|Gi] =
m∑

k=1

akP [X = ak|Gi] .

Compare with b) and verify that

E[X|Gi] = E[X|G](ω) for ω ∈ Gi .

Thus we may regard the conditional expectation as defined in Ap-
pendix B as a (substantial) generalization of the conditional expec-
tation in elementary probability theory.



4. The Itô Formula and the Martingale
Representation Theorem

4.1 The 1-dimensional Itô formula

Example 3.1.9 illustrates that the basic definition of Itô integrals is not very
useful when we try to evaluate a given integral. This is similar to the situation
for ordinary Riemann integrals, where we do not use the basic definition but
rather the fundamental theorem of calculus plus the chain rule in the explicit
calculations.

In this context, however, we have no differentiation theory, only integra-
tion theory. Nevertheless it turns out that it is possible to establish an Itô
integral version of the chain rule, called the Itô formula. The Itô formula is,
as we will show by examples, very useful for evaluating Itô integrals.

From the example

t∫

0

BsdBs = 1
2B2

t − 1
2 t or 1

2B2
t = 1

2 t +

t∫

0

BsdBs , (4.1.1)

we see that the image of the Itô integral Bt =
t∫
0

dBs by the map g(x) = 1
2x2

is not again an Itô integral of the form

t∫

0

f(s, ω)dBs(ω)

but a combination of a dBs-and a ds-integral:

1
2B2

t =

t∫

0

1
2ds +

t∫

0

BsdBs . (4.1.2)

It turns out that if we introduce Itô processes (also called stochastic integrals)
as sums of a dBs-and a ds-integral then this family of integrals is stable under
smooth maps. Thus we define

Definition 4.1.1 (1-dimensional Itô processes).
Let Bt be 1-dimensional Brownian motion on (Ω,F , P ). A (1-dimensional)
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Itô process (or stochastic integral) is a stochastic process Xt on (Ω,F , P ) of
the form

Xt = X0 +

t∫

0

u(s, ω)ds +

t∫

0

v(s, ω)dBs , (4.1.3)

where v ∈ WH, so that

P

[ t∫

0

v(s, ω)2ds < ∞ for all t ≥ 0
]

= 1 (4.1.4)

(see Definition 3.3.2). We also assume that u is Ht-adapted (where Ht is as
in (ii)’, Section 3.3) and

P

[ t∫

0

|u(s, ω)|ds < ∞ for all t ≥ 0
]

= 1 . (4.1.5)

If Xt is an Itô process of the form (4.1.3) the equation (4.1.3) is sometimes
written in the shorter differential form

dXt = udt + vdBt . (4.1.6)

For example, (4.1.1) (or (4.1.2)) may be represented by

d
(

1
2B2

t

)
= 1

2dt + BtdBt .

We are now ready to state the first main result in this chapter:

Theorem 4.1.2 (The 1-dimensional Itô formula).
Let Xt be an Itô process given by

dXt = udt + vdBt .

Let g(t, x) ∈ C2([0,∞) × R) (i.e. g is twice continuously differentiable on
[0,∞)×R). Then

Yt = g(t,Xt)

is again an Itô process, and

dYt =
∂g

∂t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt + 1

2

∂2g

∂x2
(t,Xt) · (dXt)2 , (4.1.7)

where (dXt)2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dBt = dBt · dt = 0 , dBt · dBt = dt . (4.1.8)

Before we prove Itô’s formula let us look at some examples.
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Example 4.1.3. Let us return to the integral

I =

t∫

0

BsdBs from Chapter 3 .

Choose Xt = Bt and g(t, x) = 1
2x2. Then

Yt = g(t, Bt) =
1
2
B2

t .

Then by Itô’s formula,

dYt =
∂g

∂t
dt +

∂g

∂x
dBt + 1

2

∂2g

∂x2
(dBt)2 = BtdBt + 1

2 (dBt)2 = BtdBt + 1
2dt .

Hence
d( 1

2B2
t ) = BtdBt + 1

2dt .

In other words,

1
2B2

t =

t∫

0

BsdBs + 1
2 t, as in Chapter 3 .

Example 4.1.4. What is
t∫

0

sdBs ?

From classical calculus it seems reasonable that a term of the form tBt should
appear, so we put

g(t, x) = tx

and
Yt = g(t, Bt) = tBt .

Then by Itô’s formula,

dYt = Btdt + tdBt + 0

i.e.
d(tBt) = Btdt + tdBt

or

tBt =

t∫

0

Bsds +

t∫

0

sdBs

or
t∫

0

sdBs = tBt −
t∫

0

Bsds ,

which is reasonable from an integration-by-parts point of view.
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More generally, the same method gives

Theorem 4.1.5 (Integration by parts). Suppose f(s, ω) = f(s) only de-
pends on s and that f is continuous and of bounded variation in [0, t]. Then

t∫

0

f(s)dBs = f(t)Bt −
t∫

0

Bsdfs .

Note that it is crucial for the result to hold that f does not depend on ω.
(See Exercise 4.3.)

Sketch of proof of the Itô formula. First observe that if we substitute

dXt = udt + vdBt

in (4.1.7) and use (4.1.8) we get the equivalent expression

g(t, Xt) = g(0, X0) +

t∫

0

(
∂g

∂s
(s,Xs) + us

∂g

∂x
(s,Xs) + 1

2v2
s ·

∂2g

∂x2
(s, Xs)

)
ds

+

t∫

0

vs · ∂g

∂x
(s,Xs)dBs where us = u(s, ω), vs = v(s, ω) . (4.1.9)

Note that (4.1.9) is an Itô process in the sense of Definition 4. 1.1.

We may assume that g, ∂g
∂t , ∂g

∂x and ∂2g
∂x2 are bounded, for if (4.1.9) is proved

in this case we obtain the general case by approximating by C2 functions
gn such that gn, ∂gn

∂t , ∂gn

∂x and ∂2gn

∂x2 are bounded for each n and converge
uniformly on compact subsets of [0,∞) × R to g, ∂g

∂t , ∂g
∂x , ∂2g

∂x2 , respectively.
(See Exercise 4.9.) Moreover, from (3.3.1) we see that we may assume that
u(t, ω) and v(t, ω) are elementary functions. Using Taylor’s theorem we get

g(t,Xt) = g(0, X0) +
∑

j

∆g(tj , Xj) = g(0, X0) +
∑

j

∂g

∂t
∆tj +

∑

j

∂g

∂x
∆Xj

+ 1
2

∑

j

∂2g

∂t2
(∆tj)2 +

∑

j

∂2g

∂t∂x
(∆tj)(∆Xj) + 1

2

∑

j

∂2g

∂x2
(∆Xj)2 +

∑

j

Rj ,

where ∂g
∂t , ∂g

∂x etc. are evaluated at the points (tj , Xtj ),

∆tj = tj+1− tj , ∆Xj = Xtj+1 −Xtj , ∆g(tj , Xj) = g(tj+1, Xtj+1)− g(tj , Xj)

and Rj = o(|∆tj |2 + |∆Xj |2) for all j.
If ∆tj → 0 then
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∑

j

∂g

∂t
∆tj =

∑

j

∂g

∂t
(tj , Xj)∆tj →

t∫

0

∂g

∂t
(s,Xs)ds (4.1.10)

∑

j

∂g

∂x
∆Xj =

∑

j

∂g

∂x
(tj , Xj)∆Xj →

t∫

0

∂g

∂x
(s,Xs)dXs . (4.1.11)

Moreover, since u and v are elementary we get

∑

j

∂2g

∂x2
(∆Xj)2 =

∑

j

∂2g

∂x2
u2

j (∆tj)2 + 2
∑

j

∂2g

∂x2
ujvj(∆tj)(∆Bj)

+
∑

j

∂2g

∂x2
v2

j · (∆Bj)2, where uj = u(tj , ω), vj = v(tj , ω) . (4.1.12)

The first two terms here tend to 0 as ∆tj → 0. For example,

E

[( ∑

j

∂2g

∂x2
ujvj(∆tj)(∆Bj)

)2]
=

=
∑

j

E

[(
∂2g

∂x2
ujvj

)2]
(∆tj)3 → 0 as ∆tj → 0 .

We claim that the last term tends to

t∫

0

∂2g

∂x2
v2ds in L2(P ), as ∆tj → 0 .

To prove this, put a(t) = ∂2g
∂x2 (t,Xt)v2(t, ω), aj = a(tj) and consider

E

[(∑

j

aj(∆Bj)2−
∑

j

aj∆tj

)2]
=

∑

i,j

E[aiaj((∆Bi)2−∆ti)((∆Bj)2−∆tj)] .

If i < j then aiaj((∆Bi)2 −∆ti) and (∆Bj)2 −∆tj are independent so the
terms vanish in this case, and similarly if i > j. So we are left with

∑

j

E[a2
j ((∆Bj)2 −∆tj)2] =

∑

j

E[a2
j ] · E[(∆Bj)4 − 2(∆Bj)2∆tj + (∆tj)2]

=
∑

j

E[a2
j ] · (3(∆tj)2 − 2(∆tj)2 + (∆tj)2) = 2

∑

j

E[a2
j ] · (∆tj)2

→ 0 as ∆tj → 0 .

In other words, we have established that
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∑

j

aj(∆Bj)2 →
t∫

0

a(s)ds in L2(P ) as ∆tj → 0

and this is often expressed shortly by the striking formula

(dBt)2 = dt . (4.1.13)

The argument above also proves that
∑

Rj → 0 as ∆tj → 0. That completes
the proof of the Itô formula. tu
Remark. Note that it is enough that g(t, x) is C2 on [0,∞)× U , if U ⊂ R
is an open set such that Xt(ω) ∈ U for all t ≥ 0, ω ∈ Ω. Moreover, it is
sufficient that g(t, x) is C1 w.r.t. t and C2 w.r.t. x.

4.2 The Multi-dimensional Itô Formula

We now turn to the situation in higher dimensions: Let B(t, ω)=(B1(t, ω), . . .,
Bm(t, ω)) denote m-dimensional Brownian motion. If each of the processes
ui(t, ω) and vij(t, ω) satisfies the conditions given in Definition 4.1.1 (1≤ i≤n,
1 ≤ j ≤ m) then we can form the following n Itô processes





dX1 = u1dt + v11dB1 + · · ·+ v1mdBm

...
...

...
dXn = undt + vn1dB1 + · · ·+ vnmdBm

(4.2.1)

Or, in matrix notation simply

dX(t) = udt + vdB(t) , (4.2.2)

where

X(t) =




X1(t)
...

Xn(t)


, u =




u1
...

un


, v =




v11 · · · v1m
...

...
vn1 · · · vnm


, dB(t) =




dB1(t)
...

dBm(t)




(4.2.3)
Such a process X(t) is called an n-dimensional Itô process (or just an Itô
process).

We now ask: What is the result of applying a smooth function to X? The
answer is given by

Theorem 4.2.1 (The general Itô formula).
Let

dX(t) = udt + vdB(t)

be an n-dimensional Itô process as above. Let g(t, x) = (g1(t, x), . . . , gp(t, x))
be a C2 map from [0,∞)×Rn into Rp. Then the process
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Y (t, ω) = g(t,X(t))

is again an Itô process, whose component number k, Yk, is given by

dYk =
∂gk

∂t
(t, X)dt +

∑

i

∂gk

∂xi
(t,X)dXi + 1

2

∑

i,j

∂2gk

∂xi∂xj
(t, X)dXidXj

where dBidBj = δijdt, dBidt = dtdBi = 0.

The proof is similar to the 1-dimensional version (Theorem 4.1.2) and is
omitted.

Example 4.2.2. Let B = (B1, . . . , Bn) be Brownian motion in Rn, n ≥ 2,
and consider

R(t, ω) = |B(t, ω)| = (B2
1(t, ω) + · · ·+ B2

n(t, ω))
1
2 ,

i.e. the distance to the origin of B(t, ω). The function g(t, x) = |x| is not C2

at the origin, but since Bt never hits the origin, a.s. when n ≥ 2 (see Exercise
9.7) Itô’s formula still works and we get

dR =
n∑

i=1

BidBi

R
+

n− 1
2R

dt .

The process R is called the n-dimensional Bessel process because its generator
(Chapter 7) is the Bessel differential operator Af(x) = 1

2f ′′(x) + n−1
2x f ′(x).

See Example 8.4.1.

4.3 The Martingale Representation Theorem

Let B(t) = (B1(t), . . . , Bn(t)) be n-dimensional Brownian motion. In Chap-
ter 3 (Corollary 3.2.6) we proved that if v ∈ Vn then the Itô integral

Xt = X0 +

t∫

0

v(s, ω)dB(s) ; t ≥ 0

is always a martingale w.r.t. filtration F (n)
t (and w.r.t. the probability mea-

sure P ). In this section we will prove that the converse is also true: Any
F (n)

t -martingale (w.r.t. P ) can be represented as an Itô integral. This result,
called the martingale representation theorem, is important for many applica-
tions, for example in mathematical finance. See Chapter 12. For simplicity
we prove the result only when n = 1, but the reader can easily verify that
essentially the same proof works for arbitrary n.

We first establish some auxiliary results.
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Lemma 4.3.1. Fix T > 0. The set of random variables

{φ(Bt1 , . . . , Btn); ti ∈ [0, T ], φ ∈ C∞0 (Rn), n = 1, 2, . . .}

is dense in L2(FT , P ).

Proof. Let {ti}∞i=1 be a dense subset of [0, T ] and for each n = 1, 2, . . . let Hn

be the σ-algebra generated by Bt1(·), . . . , Btn(·). Then clearly

Hn ⊂ Hn+1

and FT is the smallest σ-algebra containing all the Hn’s. Choose
g ∈ L2(FT , P ). Then by the martingale convergence theorem Corollary C.9
(Appendix C) we have that

g = E[g|FT ] = lim
n→∞

E[g|Hn] .

The limit is pointwise a.e. (P ) and in L2(FT , P ). By the Doob-Dynkin Lemma
(Lemma 2.1.2) we can write, for each n,

E[g|Hn] = gn(Bt1 , . . . , Btn)

for some Borel measurable function gn:Rn → R. Each such gn(Bt1 , . . . , Btn)
can be approximated in L2(FT , P ) by functions φn(Bt1 , . . . , Btn) where
φn ∈ C∞0 (Rn) and the result follows. tu
Lemma 4.3.2. The linear span of random variables of the type

exp
{ T∫

0

h(t)dBt(ω)− 1
2

T∫

0

h2(t)dt

}
; h∈L2[0, T ] (deterministic) (4.3.1)

is dense in L2(FT , P ).

Proof. Suppose g ∈ L2(FT , P ) is orthogonal (in L2(FT , P )) to all functions
of the form (4.3.1). Then in particular

G(λ): =
∫

Ω

exp{λ1Bt1(ω) + · · ·+ λnBtn(ω)}g(ω)dP (ω) = 0 (4.3.2)

for all λ = (λ1, . . . , λn) ∈ Rn and all t1, . . . , tn ∈ [0, T ]. The function G(λ) is
real analytic in λ ∈ Rn and hence G has an analytic extension to the complex
space Cn given by

G(z) =
∫

Ω

exp{z1Bt1(ω) + · · ·+ znBtn(ω)}g(ω)dP (ω) (4.3.3)
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for all z=(z1, . . . , zn)∈Cn. (See the estimates in Exercise 2.8 b).) Since G=0
on Rn and G is analytic, G = 0 on Cn. In particular, G(iy1, iy2, . . . , iyn) = 0
for all y = (y1, . . . , yn) ∈ Rn. But then we get, for φ ∈ C∞0 (Rn),

∫

Ω

φ(Bt1 , . . . , Btn)g(ω)dP (ω)

=
∫

Ω

(2π)−n/2

( ∫

Rn

φ̂(y)ei(y1Bt1+···+ynBtn )dy

)
g(ω)dP (ω)

= (2π)−n/2

∫

Rn

φ̂(y)
( ∫

Ω

ei(y1Bt1+···+ynBtn )g(ω)dP (ω)
)

dy

= (2π)−n/2

∫

Rn

φ̂(y)G(iy)dy = 0 , (4.3.4)

where
φ̂(y) = (2π)−n/2

∫

Rn

φ(x)e−i x·ydx

is the Fourier transform of φ and we have used the inverse Fourier transform
theorem

φ(x) = (2π)−n/2

∫

Rn

φ̂(y)ei x·ydy

(see e.g. Folland (1984)).
By (4.3.4) and Lemma 4.3.1 g is orthogonal to a dense subset of L2(FT , P )

and we conclude that g = 0. Therefore the linear span of the functions in
(4.3.1) must be dense in L2(FT , P ) as claimed. tu

Suppose B(t) = (B1(t), . . . , Bn(t)) is n-dimensional. If v(s, ω) ∈ Vn(0, T )
then the random variable

V (ω):=

T∫

0

v(t, ω)dB(t) (4.3.5)

is F (n)
T -measurable and by the Itô isometry

E[V 2] =

T∫

0

E[v2(t, ·)]dt < ∞ , so V ∈ L2(F (n)
T , P ) .

The next result states that any F ∈ L2(F (n)
T , P ) can be represented this way:

Theorem 4.3.3 (The Itô representation theorem).
Let F ∈L2(F (n)

T , P ). Then there exists a unique stochastic process f(t, ω)∈
Vn(0, T ) such that
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F (ω) = E[F ] +

T∫

0

f(t, ω)dB(t) . (4.3.6)

Proof. Again we consider only the case n = 1. (The proof in the general case
is similar.) First assume that F has the form (4.3.1), i.e.

F (ω) = exp
{ T∫

0

h(t)dBt(ω)− 1
2

T∫

0

h2(t)dt

}

for some h(t) ∈ L2[0, T ].
Define

Yt(ω) = exp
{ t∫

0

h(s)dBs(ω)− 1
2

t∫

0

h2(s)ds

}
; 0 ≤ t ≤ T .

Then by Itô’s formula

dYt = Yt(h(t)dBt − 1
2h2(t)dt) + 1

2Yt(h(t)dBt)2 = Yth(t)dBt

so that

Yt = 1 +

t∫

0

Ysh(s)dBs ; t ∈ [0, T ] .

Therefore

F = YT = 1 +

T∫

0

Ysh(s)dBs

and hence E[F ] = 1. So (4.3.6) holds in this case. By linearity (4.3.6)
also holds for linear combinations of functions of the form (4.3.1). So if
F ∈ L2(FT , P ) is arbitrary, we approximate F in L2(FT , P ) by linear com-
binations Fn of functions of the form (4.3.1). Then for each n we have

Fn(ω) = E[Fn] +

T∫

0

fn(s, ω)dBs(ω), where fn ∈ V(0, T ) .

By the Itô isometry

E[(Fn − Fm)2] = E

[
(E[Fn − Fm] +

T∫

0

(fn − fm)dB)2
]

= (E[Fn − Fm])2 +

T∫

0

E[(fn − fm)2]dt → 0 as n,m →∞
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so {fn} is a Cauchy sequence in L2([0, T ]×Ω) and hence converges to some
f ∈ L2([0, T ]×Ω). Since fn ∈ V(0, T ) we have f ∈ V(0, T ). (A subsequence
of {fn(t, ω)} converges to f(t, ω) for a.a. (t, ω) ∈ [0, T ]×Ω. Therefore f(t, ·)
is Ft-measurable for a.a. t. So by modifying f(t, ω) on a t-set of measure 0
we can obtain that f(t, ω) is Ft-adapted.) Again using the Itô isometry we
see that

F = lim
n→∞

Fn = lim
n→∞

(
E[Fn] +

T∫

0

fndB

)
= E[F ] +

T∫

0

fdB ,

the limit being taken in L2(FT , P ). Hence the representation (4.3.6) holds
for all F ∈ L2(FT , P ).

The uniqueness follows from the Itô isometry: Suppose

F (ω) = E[F ] +

T∫

0

f1(t, ω)dBt(ω) = E[F ] +

T∫

0

f2(t, ω)dBt(ω)

with f1, f2 ∈ V(0, T ). Then

0 = E[(

T∫

0

(f1(t, ω)− f2(t, ω))dBt(ω))2] =

T∫

0

E[(f1(t, ω)− f2(t, ω))2]dt

and therefore f1(t, ω) = f2(t, ω) for a.a. (t, ω) ∈ [0, T ]×Ω. tu
Remark. The process f(t, ω) can be expressed in terms of the Frechet
derivative and also in terms of the Malliavin derivative of F (ω). See Clark
(1970/71) and Ocone (1984).

Theorem 4.3.4 (The martingale representation theorem).
Let B(t) = (B1(t), . . . , Bn(t)) be n-dimensional. Suppose Mt is an F (n)

t -
martingale (w.r.t. P ) and that Mt ∈ L2(P ) for all t ≥ 0. Then there exists a
unique stochastic process g(s, ω) such that g ∈ V(n)(0, t) for all t ≥ 0 and

Mt(ω) = E[M0] +

t∫

0

g(s, ω)dB(s) a.s., for all t ≥ 0 .

Proof (n = 1). By Theorem 4.3.3 applied to T = t, F = Mt, we have that
for all t there exists a unique f (t)(s, ω) ∈ L2(Ft, P ) such that

Mt(ω) = E[Mt] +

t∫

0

f (t)(s, ω)dBs(ω) = E[M0] +

t∫

0

f (t)(s, ω)dBs(ω) .

Now assume 0 ≤ t1 < t2. Then
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Mt1 = E[Mt2 |Ft1 ] = E[M0] + E

[ t2∫

0

f (t2)(s, ω)dBs(ω)|Ft1

]

= E[M0] +
∫ t1

0

f (t2)(s, ω)dBs(ω) . (4.3.7)

But we also have

Mt1 = E[M0] +

t1∫

0

f (t1)(s, ω)dBs(ω) . (4.3.8)

Hence, comparing (4.3.7) and (4.3.8) we get that

0 = E

[( t1∫

0

(f (t2) − f (t1))dB

)2]
=

t1∫

0

E[(f (t2) − f (t1))2]ds

and therefore

f (t1)(s, ω) = f (t2)(s, ω) for a.a. (s, ω) ∈ [0, t1]×Ω .

So we can define f(s, ω) for a.a. s ∈ [0,∞)×Ω by setting

f(s, ω) = f (N)(s, ω) if s ∈ [0, N ]

and then we get

Mt = E[M0]+

t∫

0

f (t)(s, ω)dBs(ω) = E[M0]+

t∫

0

f(s, ω)dBs(ω) for all t ≥ 0 .

tu

Exercises

4.1. Use Itô’s formula to write the following stochastic processes Xt on the
standard form

dXt = u(t, ω)dt + v(t, ω)dBt

for suitable choices of u ∈ Rn, v ∈ Rn×m and dimensions n,m:
a) Xt = B2

t , where Bt is 1-dimensional
b) Xt = 2 + t + eBt (Bt is 1-dimensional)
c) Xt = B2

1(t) + B2
2(t) where (B1, B2) is 2-dimensional

d) Xt = (t0 + t, Bt) (Bt is 1-dimensional)
e) Xt = (B1(t)+B2(t)+B3(t), B2

2(t)−B1(t)B3(t)), where (B1, B2, B3)
is 3-dimensional.
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4.2. Use Itô’s formula to prove that

t∫

0

B2
sdBs = 1

3B3
t −

t∫

0

Bsds .

4.3. Let Xt, Yt be Itô processes in R. Prove that

d(XtYt) = XtdYt + YtdXt + dXt · dYt .

Deduce the following general integration by parts formula

t∫

0

XsdYs = XtYt −X0Y0 −
t∫

0

YsdXs −
t∫

0

dXs · dYs .

4.4. (Exponential martingales)
Suppose θ(t, ω) = (θ1(t, ω), . . . , θn(t, ω)) ∈ Rn with θk(t, ω) ∈ V[0, T ]
for k = 1, . . . , n, where T ≤ ∞. Define

Zt = exp
{ t∫

0

θ(s, ω)dB(s)− 1
2

t∫

0

θ2(s, ω)ds

}
; 0 ≤ t ≤ T

where B(s) ∈ Rn and θ2 = θ · θ (dot product).
a) Use Itô’s formula to prove that

dZt = Ztθ(t, ω)dB(t) .

b) Deduce that Zt is a martingale for t ≤ T , provided that

Ztθk(t, ω) ∈ V[0, T ] for 1 ≤ k ≤ n .

Remark. A sufficient condition that Zt be a martingale is the Kazamaki
condition

E

[
exp

(
1
2

t∫

0

θ(s, ω)dB(s)
)]

< ∞ for all t ≤ T . (4.3.9)

This is implied by the following (stronger) Novikov condition

E

[
exp

(
1
2

T∫

0

θ2(s, ω)ds

)]
< ∞ . (4.3.10)

See e.g. Ikeda & Watanabe (1989), Section III.5, and the references
therein.
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4.5. Let Bt ∈ R, B0 = 0. Define

βk(t) = E[Bk
t ] ; k = 0, 1, 2, . . . ; t ≥ 0 .

Use Itô’s formula to prove that

βk(t) = 1
2k(k − 1)

t∫

0

βk−2(s)ds ; k ≥ 2 .

Deduce that
E[B4

t ] = 3t2 (see (2.2.14))

and find
E[B6

t ] .

4.6. a) For c, α constants, Bt ∈ R define

Xt = ect+αBt .

Prove that
dXt = (c + 1

2α2)Xtdt + αXtdBt .

b) For c, α1, . . . , αn constants, Bt = (B1(t), . . . , Bn(t)) ∈ Rn define

Xt = exp
(

ct +
n∑

j=1

αjBj(t)
)

.

Prove that

dXt =
(

c + 1
2

n∑

j=1

α2
j

)
Xtdt + Xt

( n∑

j=1

αjdBj

)
.

4.7. Let Xt be an Itô integral

dXt = v(t, ω)dBt(ω) where v ∈ Rn, v ∈ V(0, T ), Bt ∈ Rn, 0 ≤ t ≤ T .

a) Give an example to show that X2
t is not in general a martingale.

b) Prove that if v is bounded then

Mt: = X2
t −

t∫

0

|vs|2ds is a martingale .

The process 〈X, X〉t: =
t∫
0

|vs|2ds is called the quadratic variation

process of the martingale Xt. For general processes Xt it is defined
by
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〈X, X〉t = lim
∆tk→0

∑

tk≤t

|Xtk+1−Xtk
|2 (limit in probability) (4.3.11)

where 0 = t1 < t2 · · · < tn = t and ∆tk = tk+1 − tk. The limit can
be shown to exist for continuous square integrable martingales Xt.
See e.g. Karatzas and Shreve (1991).

4.8. a) Let Bt denote n-dimensional Brownian motion and let f :Rn→R
be C2. Use Itô’s formula to prove that

f(Bt) = f(B0) +

t∫

0

∇f(Bs)dBs + 1
2

t∫

0

∆f(Bs)ds ,

where ∆ =
n∑

i=1

∂2

∂x2
i

is the Laplace operator.

b) Assume that g : R → R is C1 everywhere and C2 outside finitely
many points z1, . . . , zN with |g′′(x)| ≤ M for x /∈ {z1, . . . , zN}.
Let Bt be 1-dimensional Brownian motion. Prove that the 1-
dimensional version of a) still holds, i.e.

g(Bt) = g(B0) +

t∫

0

g′(Bs)dBs +
1
2

t∫

0

g′′(Bs)ds .

(Hint: Choose fk ∈ C2(R) s.t. fk → g uniformly, f ′k → g′ uni-
formly and |f ′′k | ≤ M, f ′′k → g′′ outside z1, . . . , zN . Apply a) to fk

and let k →∞).

4.9. Prove that we may assume that g and its first two derivatives are
bounded in the proof of the Itô formula (Theorem 4.1.2) by proceeding
as follows: For fixed t ≥ 0 and n = 1, 2, . . . choose gn as in the statement
such that gn(s, x) = g(s, x) for all s ≤ t and all |x| ≤ n. Suppose we
have proved that (4.1.9) holds for each gn. Define the stochastic time

τn = τn(ω) = inf{s > 0; |Xs(ω)| ≥ n}

(τn is called a stopping time (See Chapter 7)) and prove that

( t∫

0

v
∂gn

∂x
(s,Xs)Xs≤τndBs: =

)

t∧τn∫

0

v
∂gn

∂x
(s,Xs)dBs =

t∧τn∫

0

v
∂g

∂x
(s,Xs)dBs

for each n. This gives that
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g(t ∧ τn, Xt∧τn) = g(0, X0)

+

t∧τn∫

0

(
∂g

∂s
+ u

∂g

∂x
+ 1

2v2 ∂2g

∂x2

)
ds +

t∧τn∫

0

v
∂g

∂x
dBs

and since
P [τn > t] → 1 as n →∞

we can conclude that (4.1.9) holds (a.s.) for g.

4.10. (Tanaka’s formula and local time).
What happens if we try to apply the Itô formula to g(Bt) when Bt is
1-dimensional and g(x) = |x| ? In this case g is not C2 at x = 0, so we
modify g(x) near x = 0 to gε(x) as follows:

gε(x) =
{ |x| if |x| ≥ ε

1
2 (ε + x2

ε ) if |x| < ε

where ε > 0.

a) Apply Exercise 4.8 b) to show that

gε(Bt) = gε(B0) +

t∫

0

g′ε(Bs)dBs +
1
2ε
· |{s ∈ [0, t]; Bs ∈ (−ε, ε)}|

where |F | denotes the Lebesgue measure of the set F .
b) Prove that

t∫

0

g′ε(Bs) · XBs∈(−ε,ε)dBs =

t∫

0

Bs

ε
· XBs∈(−ε,ε)dBs → 0

in L2(P ) as ε → 0.
(Hint: Apply the Itô isometry to

E

[( t∫

0

Bs

ε
· XBs∈(−ε,ε)dBs

)2]
.
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c) By letting ε → 0 prove that

|Bt| = |B0|+
t∫

0

sign(Bs)dBs + Lt(ω) , (4.3.12)

where

Lt = lim
ε→0

1
2ε
· |{s ∈ [0, t]; Bs ∈ (−ε, ε)}| (limit in L2(P ))

and

sign(x) =
{−1 for x ≤ 0

1 for x > 0 .

Lt is called the local time for Brownian motion at 0 and (4.3.12) is
the Tanaka formula (for Brownian motion). (See e.g. Rogers and
Williams (1987)).

4.11. Use Itô’s formula (for example in the form of Exercise 4.3) to prove
that the following stochastic processes are {Ft}-martingales:
a) Xt = e

1
2 t cosBt (Bt ∈ R)

b) Xt = e
1
2 t sin Bt (Bt ∈ R)

c) Xt = (Bt + t)exp(−Bt − 1
2 t) (Bt ∈ R).

4.12. Let dXt = u(t, ω)dt + v(t, ω)dBt be an Itô process in Rn such that

E

[ t∫

0

|u(r, ω)|dr

]
+ E

[ t∫

0

|vvT (r, ω)|dr

]
< ∞ for all t ≥ 0 .

Suppose Xt is an {F (n)
t }-martingale. Prove that

u(s, ω) = 0 for a.a. (s, ω) ∈ [0,∞)×Ω . (4.3.13)

Remarks:

0) 1) This result may be regarded as a special case of the Martingale
Representation Theorem.

2) The conclusion (4.3.13) does not hold if the filtration F (n)
t is re-

placed by the σ-algebras Mt generated by Xs(·); s ≤ t, i.e. if we
only assume that Xt is a martingale w.r.t. its own filtration. See
e.g. the Brownian motion characterization in Chapter 8.

Hint for the solution:
If Xt is an F (n)

t -martingale, then deduce that

E

[ s∫

t

u(r, ω)dr|F (n)
t

]
= 0 for all s ≥ t .



60 4. The Itô Formula and the Martingale ...

Differentiate w.r.t. s to deduce that

E[u(s, ω)|F (n)
t ] = 0 a.s., for a.a. s > t .

Then let t ↑ s and apply Corollary C.9.

4.13. Let dXt = u(t, ω)dt + dBt (u ∈ R, Bt ∈ R) be an Itô process
and assume for simplicity that u is bounded. Then from Exercise 4.12
we know that unless u = 0 the process Xt is not an Ft-martingale.
However, it turns out that we can construct an Ft-martingale from Xt

by multiplying by a suitable exponential martingale. More precisely,
define

Yt = XtMt

where

Mt = exp
(
−

t∫

0

u(r, ω)dBr − 1
2

t∫

0

u2(r, ω)dr

)
.

Use Itô’s formula to prove that

Yt is an Ft-martingale .

Remarks:

a) a) Compare with Exercise 4.11 c).
b) This result is a special case of the important Girsanov Theorem.

It can be interpreted as follows: {Xt}t≤T is a martingale w.r.t the
measure Q defined on FT by

dQ = MT dP (T < ∞) .

See Section 8.6.

4.14. In each of the cases below find the process f(t, ω) ∈ V[0, T ] such that
(4.3.6) holds, i.e.

F (ω) = E[F ] +

T∫

0

f(t, ω)dBt(ω) .

a) F (ω) = BT (ω) b) F (ω) =
T∫
0

Bt(ω)dt

c) F (ω) = B2
T (ω) d) F (ω) = B3

T (ω)

e) F (ω) = e
BT (ω) f) F (ω) = sin BT (ω)

4.15. Let x > 0 be a constant and define

Xt = (x1/3 + 1
3Bt)3 ; t ≥ 0 .

Show that

dXt = 1
3X

1/3
t dt + X

2/3
t dBt ; X0 = x .



5. Stochastic Differential Equations

5.1 Examples and Some Solution Methods

We now return to the possible solutions Xt(ω) of the stochastic differential
equation

dXt

dt
= b(t,Xt) + σ(t,Xt)Wt, b(t, x) ∈ R, σ(t, x) ∈ R (5.1.1)

where Wt is 1-dimensional “white noise”. As discussed in Chapter 3 the Itô
interpretation of (5.1.1) is that Xt satisfies the stochastic integral equation

Xt = X0 +

t∫

0

b(s,Xs)ds +

t∫

0

σ(s,Xs)dBs

or in differential form

dXt = b(t,Xt)dt + σ(t,Xt)dBt . (5.1.2)

Therefore, to get from (5.1.1) to (5.1.2) we formally just replace the white
noise Wt by dBt

dt in (5.1.1) and multiply by dt. It is natural to ask:

(A) Can one obtain existence and uniqueness theorems for such equations?
What are the properties of the solutions?

(B) How can one solve a given such equation?

We will first consider question (B) by looking at some simple examples,
and then in Section 5.2 we will discuss (A).

It is the Itô formula that is the key to the solution of many stochastic
differential equations. The method is illustrated in the following examples.

Example 5.1.1. Let us return to the population growth model in Chapter 1:

dNt

dt
= atNt , N0 given

where at = rt + αWt, Wt = white noise, α = constant.
Let us assume that rt = r = constant. By the Itô interpretation (5.1.2)

this equation is equivalent to (here σ(t, x) = αx)
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dNt = rNtdt + αNtdBt (5.1.3)

or
dNt

Nt
= rdt + αdBt .

Hence
t∫

0

dNs

Ns
= rt + αBt (B0 = 0) . (5.1.4)

To evaluate the integral on the left hand side we use the Itô formula for the
function

g(t, x) = ln x ; x > 0

and obtain

d(lnNt) =
1
Nt

· dNt + 1
2

(
− 1

N2
t

)
(dNt)2

=
dNt

Nt
− 1

2N2
t

· α2N2
t dt =

dNt

Nt
− 1

2α2dt .

Hence
dNt

Nt
= d(lnNt) + 1

2α2dt

so from (5.1.4) we conclude

ln
Nt

N0
= (r − 1

2
α2)t + αBt

or
Nt = N0 exp((r − 1

2α2)t + αBt) . (5.1.5)

For comparison, referring to the discussion at the end of Chapter 3, the
Stratonovich interpretation of (5.1.3),

dN t = rN tdt + αN t ◦ dBt ,

would have given the solution

N t = N0 exp(rt + αBt) . (5.1.6)

The solutions Nt, N t are both processes of the type

Xt = X0 exp(µt + αBt) (µ, α constants) .

Such processes are called geometric Brownian motions. They are important
also as models for stochastic prices in economics. See Chapters 10, 11, 12.
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Remark. It seems reasonable that if Bt is independent of N0 we should
have

E[Nt] = E[N0]ert, (∗)
i.e. the same as when there is no noise in at. To see if this is indeed the case,
we let

Yt = eαBt

and apply Itô’s formula:

dYt = αeαBtdBt + 1
2α2eαBtdt

or

Yt = Y0 + α

t∫

0

eαBsdBs + 1
2α2

t∫

0

eαBsds .

Since E[
t∫
0

eαBsdBs] = 0 (Theorem 3.2.1 (iii)), we get

E[Yt] = E[Y0] + 1
2α2

t∫

0

E[Ys]ds

i.e.
d

dt
E[Yt] = 1

2α2E[Yt], E[Y0] = 1 .

So
E[Yt] = e

1
2 α2t ,

and therefore – as anticipated – we obtain

E[Nt] = E[N0]ert .

For the Stratonovich solution, however, the same calculation gives

E[N t] = E[N0]e(r+ 1
2 α2)t .

Now that we have found the explicit solutions Nt and N t in (5.1.5), (5.1.6)
we can use our knowledge about the behaviour of Bt to gain information on
these solutions. For example, for the Itô solution Nt we get the following:

(i) If r > 1
2α2 then Nt →∞ as t →∞, a.s.

(ii) If r < 1
2α2 then Nt → 0 as t →∞, a.s.

(iii) If r = 1
2α2 then Nt will fluctuate between arbitrary large and arbitrary

small values as t →∞, a.s.

These conclusions are direct consequences of the formula (5.1.5) for Nt

together with the following basic result about 1-dimensional Brownian motion
Bt:
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Theorem 5.1.2 (The law of iterated logarithm).

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.

For a proof we refer to Lamperti (1977), §22.
For the Stratonovich solution N t we get by the same argument that N t →

0 a.s. if r < 0 and N t →∞ a.s. if r > 0.
Thus the two solutions have fundamentally different properties and it is an

interesting question what solution gives the best description of the situation.

Example 5.1.3. Let us return to the equation in Problem 2 of Chapter 1:

LQ′′
t + RQ′

t +
1
C

Qt = Ft = Gt + αWt . (5.1.7)

We introduce the vector

X = X(t, ω) =

X1

X2


 =


Qt

Q′t


 and obtain

{
X ′

1 = X2

LX ′
2 = −RX2 − 1

C X1 + Gt + αWt
(5.1.8)

or, in matrix notation,

dX = dX(t) = AX(t)dt + H(t)dt + KdBt (5.1.9)

where

dX =
(

dX1

dX2

)
, A=

(
0 1

− 1
CL −R

L

)
, H(t) =

(
0

1
LGt

)
, K =

(
0
α
L

)
, (5.1.10)

and Bt is a 1-dimensional Brownian motion.
Thus we are led to a 2-dimensional stochastic differential equation. We

rewrite (5.1.9) as

exp(−At)dX(t)− exp(−At)AX(t)dt = exp(−At)[H(t)dt+KdBt] , (5.1.11)

where for a general n× n matrix F we define exp(F ) to be the n× n matrix

given by exp(F ) =
∞∑

n=0

1
n!F

n. Here it is tempting to relate the left hand side

to
d(exp(−At)X(t)) .

To do this we use a 2-dimensional version of the Itô formula (Theorem 4.2.1).
Applying this result to the two coordinate functions g1, g2 of

g: [0,∞)×R2 → R2 given by g(t, x1, x2) = exp(−At)
(

x1

x2

)
,
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we obtain that

d(exp(−At)X(t)) = (−A) exp(−At)X(t)dt + exp(−At)dX(t) .

Substituted in (5.1.11) this gives

exp(−At)X(t)−X(0) =

t∫

0

exp(−As)H(s)ds +

t∫

0

exp(−As)KdBs

or

X(t) = exp(At)[X(0) + exp(−At)KBt

+

t∫

0

exp(−As)[H(s) + AKBs]ds] , (5.1.12)

by integration by parts (Theorem 4.1.5).

Example 5.1.4. Choose X = B, 1-dimensional Brownian motion, and

g(t, x) = eix = (cos x, sin x) ∈ R2 for x ∈ R .

Then
Y = g(t,X) = eiB = (cos B, sin B)

is by Itô’s formula again an Itô process.
Its coordinates Y1, Y2 satisfy

{
dY1(t) = − sin(B)dB − 1

2 cos(B)dt

dY2(t) = cos(B)dB − 1
2 sin(B)dt .

Thus the process Y = (Y1, Y2), which we could call Brownian motion on the
unit circle, is the solution of the stochastic differential equations

{
dY1 = − 1

2Y1dt− Y2dB

dY2 = − 1
2Y2dt + Y1dB .

(5.1.13)

Or, in matrix notation,

dY = −1
2
Y dt + KY dB , where K =

(
0 −1
1 0

)
.

Other examples and solution methods can be found in the exercises of
this chapter.

For a comprehensive description of reduction methods for 1-dimensional
stochastic differential equations see Gard (1988), Chapter 4.
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5.2 An Existence and Uniqueness Result

We now turn to the existence and uniqueness question (A) above.

Theorem 5.2.1. (Existence and uniqueness theorem for stochastic
differential equations).

Let T > 0 and b(·, ·): [0, T ] × Rn → Rn, σ(·, ·): [0, T ] × Rn → Rn×m be
measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) ; x∈Rn, t∈ [0, T ] (5.2.1)

for some constant C, (where |σ|2 =
∑ |σij |2) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)−σ(t, y)| ≤ D|x− y| ; x, y∈Rn, t∈ [0, T ] (5.2.2)

for some constant D. Let Z be a random variable which is independent of the
σ-algebra F (m)

∞ generated by Bs(·), s ≥ 0 and such that

E[|Z|2] < ∞ .

Then the stochastic differential equation

dXt = b(t,Xt)dt + σ(t,Xt)dBt , 0≤ t ≤T, X0 = Z (5.2.3)

has a unique t-continuous solution Xt(ω) with the property that

Xt(ω) is adapted to the filtration FZ
t generated by Z and Bs(·); s ≤ t

(5.2.4)
and

E

[ T∫

0

|Xt|2dt

]
< ∞ . (5.2.5)

Remarks. Conditions (5.2.1) and (5.2.2) are natural in view of the following
two simple examples from deterministic differential equations (i.e. σ = 0):

a) The equation
dXt

dt
= X2

t , X0 = 1 (5.2.6)

corresponding to b(x) = x2 (which does not satisfy (5.2.1)) has the
(unique) solution

Xt =
1

1− t
; 0 ≤ t < 1 .

Thus it is impossible to find a global solution (defined for all t) in this
case.
More generally, condition (5.2.1) ensures that the solution Xt(ω) of (5.2.3)
does not explode, i.e. that |Xt(ω)| does not tend to ∞ in a finite time.
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b) The equation
dXt

dt
= 3X

2/3
t ; X0 = 0 (5.2.7)

has more than one solution. In fact, for any a > 0 the function

Xt =
{

0 for t ≤ a
(t− a)3 for t > a

solves (5.2.7). In this case b(x) = 3x2/3 does not satisfy the Lipschitz
condition (5.2.2) at x = 0.
Thus condition (5.2.2) guarantees that equation (5.2.3) has a unique so-
lution. Here uniqueness means that if X1(t, ω) and X2(t, ω) are two t-
continuous processes satisfying (5.2.3), (5.2.4) and (5.2.5) then

X1(t, ω) = X2(t, ω) for all t ≤ T , a.s. (5.2.8)

Proof of Theorem 5.2.1. The uniqueness follows from the Itô isometry
(Corollary 3.1.7) and the Lipschitz property (5.2.2): Let X1(t, ω) = Xt(ω)
and X2(t, ω) = X̂t(ω) be solutions with initial values Z, Ẑ respectively, i.e.
X1(0, ω) = Z(ω), X2(0, ω) = Ẑ(ω), ω ∈ Ω. For our purposes here we only
need the case Z = Ẑ, but the following more general estimate will be useful
for us later, in connection with Feller continuity (Chapter 8).

Put a(s, ω) = b(s, Xs)− b(s, X̂s) and γ(s, ω) = σ(s,Xs)− σ(s, X̂s). Then

E[|Xt − X̂t|2] = E

[(
Z − Ẑ +

t∫

0

ads +

t∫

0

γdBs

)2]

≤ 3E[|Z − Ẑ|2] + 3E

[( t∫

0

ads
)2]

+ 3E

[( t∫

0

γdBs

)2]

≤ 3E[|Z − Ẑ|2] + 3tE

[ t∫

0

a2ds

]
+ 3E

[ t∫

0

γ2ds

]

≤ 3E[|Z − Ẑ|2] + 3(1 + t)D2

t∫

0

E[|Xs − X̂s|2]ds .

So the function

v(t) = E[|Xt − X̂t|2] ; 0 ≤ t ≤ T

satisfies

v(t) ≤ F + A

t∫

0

v(s)ds , (5.2.9)

where F = 3E[|Z − Ẑ|2] and A = 3(1 + T )D2 .
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By the Gronwall inequality (Exercise 5.17) we conclude that

v(t) ≤ F exp(At) . (5.2.10)

Now assume that Z = Ẑ. Then F = 0 and so v(t) = 0 for all t ≥ 0. Hence

P [|Xt − X̂t| = 0 for all t ∈ Q ∩ [0, T ]] = 1 ,

where Q denotes the rational numbers.
By continuity of t → |Xt − X̂t| it follows that

P [|X1(t, ω)−X2(t, ω)| = 0 for all t ∈ [0, T ]] = 1 , (5.2.11)

and the uniqueness is proved.
The proof of the existence is similar to the familiar existence proof for

ordinary differential equations: Define Y
(0)
t = X0 and Y

(k)
t = Y

(k)
t (ω) induc-

tively as follows

Y
(k+1)
t = X0 +

t∫

0

b(s, Y (k)
s )ds +

t∫

0

σ(s, Y (k)
s )dBs . (5.2.12)

Then, similar computation as for the uniqueness above gives

E[|Y (k+1)
t − Y

(k)
t |2] ≤ (1 + T )3D2

t∫

0

E[|Y (k)
s − Y (k−1)

s |2]ds ,

for k ≥ 1, t ≤ T and

E[|Y (1)
t − Y

(0)
t |2] ≤ 2C2t2(1 + E[|X0|2])

+2C2t(1 + E[|X0|2]) ≤ A1t

where the constant A1 only depends on C, T and E[|X0|2]. So by induction
on k we obtain

E[|Y (k+1)
t − Y

(k)
t |2] ≤ Ak+1

2 tk+1

(k + 1)!
; k ≥ 0, t ∈ [0, T ] (5.2.13)

for some suitable constant A2 depending only on C, D, T and E[|X0|2]. Now

sup
0≤t≤T

|Y (k+1)
t − Y

(k)
t | ≤

T∫

0

|b(s, Y (k)
s )− b(s, Y (k−1)

s )|ds

+ sup
0≤t≤T

∣∣∣∣
t∫

0

(σ(s, Y (k)
s )− σ(s, Y (k−1)

s ))dBs

∣∣∣∣ .



5.2 An Existence and Uniqueness Result 69

By the martingale inequality (Theorem 3.2.4) we obtain

P

[
sup

0≤t≤T
|Y (k+1)

t − Y
(k)
t | > 2−k

]

≤ P

[( T∫

0

|b(s, Y (k)
s )− b(s, Y (k−1)

s )|ds

)2

> 2−2k−2

]

+P

[
sup

0≤t≤T

∣∣∣∣
t∫

0

(σ(s, Y (k)
s )− σ(s, Y (k−1)

s ))dBs

∣∣∣∣ > 2−k−1

]

≤ 22k+2T

T∫

0

E(|b(s, Y (k)
s )− b(s, Y (k−1)

s )|2)ds

+22k+2

T∫

0

E[|σ(s, Y (k)
s )− σ(s, Y (k−1)

s )|2]ds

≤ 22k+2D2(T + 1)

T∫

0

Ak
2tk

k!
dt ≤ (4A2T )k+1

(k + 1)!
, if A2 ≥ D2(T + 1) .

Therefore, by the Borel-Cantelli lemma,

P

[
sup

0≤t≤T
|Y (k+1)

t − Y
(k)
t | > 2−k for infinitely many k

]
= 0 .

Thus, for a.a. ω there exists k0 = k0(ω) such that

sup
0≤t≤T

|Y (k+1)
t − Y

(k)
t | ≤ 2−k for k ≥ k0 .

Therefore the sequence

Y
(n)
t (ω) = Y

(0)
t (ω) +

n−1∑

k=0

(Y (k+1)
t (ω)− Y

(k)
t (ω))

is uniformly convergent in [0, T ], for a.a. ω.
Denote the limit by Xt = Xt(ω). Then Xt is t-continuous for a.a. ω since

Y
(n)
t is t-continuous for all n. Moreover, Xt(·) is FZ

t -measurable for all t,
since Y

(n)
t (·) has this property for all n.

Next, note that for m > n ≥ 0 we have by (5.2.13)

E[|Y (m)
t −Y

(n)
t |2]1/2 = ‖Y (m)

t −Y
(n)
t ‖L2(P ) =

∥∥∥
m−1∑

k=n

(Y (k+1)
t −Y

(k)
t )

∥∥∥
L2(P )

≤
m−1∑

k=n

‖Y (k+1)
t −Y

(k)
t ‖L2(P ) ≤

∞∑

k=n

[
(A2t)k+1

(k + 1)!

]1/2

→0 as n→∞ . (5.2.14)
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So {Y (n)
t } converges in L2(P ) to a limit Yt, say. A subsequence of Y

(n)
t (ω)

will then converge ω-pointwise to Yt(ω) and therefore we must have Yt = Xt

a.s. In particular, Xt satisfies (5.2.4) and (5.2.5).
It remains to show that Xt satisfies (5.2.3). For all n we have

Y
(n+1)
t = X0 +

t∫

0

b(s, Y (n)
s )ds +

t∫

0

σ(s, Y (n)
s )dBs . (5.2.15)

Now Y
(n+1)
t → Xt as n → ∞, uniformly in t ∈ [0, T ] for a.a. ω. By (5.2.14)

and the Fatou lemma we have

E

[ T∫

0

|Xt − Y
(n)
t |2dt

]
≤ lim sup

m→∞
E

[ T∫

0

|Y (m)
t − Y

(n)
t |2dt

]
→ 0

as n →∞. It follows by the Itô isometry that

t∫

0

σ(s, Y (n)
s )dBs →

t∫

0

σ(s,Xs)dBs

and by the Hölder inequality that

t∫

0

b(s, Y (n)
s )ds →

t∫

0

b(s,Xs)ds

in L2(P ). Therefore, taking the limit of (5.2.15) as n →∞ we obtain (5.2.3)
for Xt. tu

5.3 Weak and Strong Solutions

The solution Xt found above is called a strong solution, because the version
Bt of Brownian motion is given in advance and the solution Xt constructed
from it is FZ

t -adapted. If we are only given the functions b(t, x) and σ(t, x)
and ask for a pair of processes ((X̃t, B̃t),Ht) on a probability space (Ω,H, P )
such that (5.2.3) holds, then the solution X̃t (or more precisely (X̃t, B̃t)) is
called a weak solution. Here Ht is an increasing family of σ-algebras such that
X̃t is Ht-adapted and B̃t is an Ht-Brownian motion, i.e. B̃t is a Brownian
motion, and B̃t is a martingale w.r.t. Ht (and so E[B̃t+h− B̃t|Ht] = 0 for all
t, h ≥ 0). Recall from Chapter 3 that this allows us to define the Itô integral
on the right hand side of (5.2.3) exactly as before, even though X̃t need not
be FZ

t -adapted.



5.3 Weak and Strong Solutions 71

A strong solution is of course also a weak solution, but the converse is not
true in general. See Example 5.3.2 below.

The uniqueness (5.2.8) that we obtain above is called strong or path-
wise uniqueness, while weak uniqueness simply means that any two solutions
(weak or strong) are identical in law, i.e. have the same finite-dimensional
distributions. See Stroock and Varadhan (1979) for results about existence
and uniqueness of weak solutions. A general discussion about strong and weak
solutions can be found in Krylov and Zvonkin (1981).

Lemma 5.3.1. If b and σ satisfy the conditions of Theorem 5.2.1 then we
have

A solution (weak or strong) of (5.2.3) is weakly unique .

Sketch of proof . Let ((X̃t, B̃t), H̃t) and ((X̂t, B̂t), Ĥt) be two weak solutions.
Let Xt and Yt be the strong solutions constructed from B̃t and B̂t, respec-
tively, as above. Then the same uniqueness argument as above applies to show
that Xt = X̃t and Yt = X̂t for all t, a.s. Therefore it suffices to show that Xt

and Yt must be identical in law. We show this by proving by induction that if
X

(k)
t , Y

(k)
t are the processes in the Picard iteration defined by (5.2.12) with

Brownian motions B̃t and B̂t, then

(X(k)
t , B̃t) and (Y (k)

t , B̂t)

have the same law for all k. tu
This observation will be useful for us in Chapter 7 and later, where we

will investigate further the properties of processes which are solutions of
stochastic differential equations (Itô diffusions).

From a modelling point of view the weak solution concept is often natural,
because it does not specify beforehand the explicit representation of the white
noise. Moreover, the concept is convenient for mathematical reasons, because
there are stochastic differential equations which have no strong solutions but
still a (weakly) unique weak solution. Here is a simple example:

Example 5.3.2 (The Tanaka equation). Consider the 1-dimensional sto-
chastic differential equation

dXt = sign(Xt)dBt ; X0 = 0 . (5.3.1)

where

sign(x) =
{
+1 if x ≥ 0
−1 if x < 0 .

Note that here σ(t, x) = σ(x) = sign(x) does not satisfy the Lipschitz con-
dition (5.2.2), so Theorem 5.2.1 does not apply. Indeed, the equation (5.3.1)
has no strong solution. To see this, let B̂t be a Brownian motion generating
the filtration F̂t and define
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Yt =

t∫

0

sign(B̂s)dB̂s .

By the Tanaka formula (4.3.12) (Exercise 4.10) we have

Yt = | B̂t| − | B̂0| − L̂t(ω) ,

where L̂t(ω) is the local time for B̂t(ω) at 0. It follows that Yt is measurable
w.r.t. the σ-algebra Gt generated by | B̂s(·)|; s ≤ t, which is clearly strictly
contained in F̂t. Hence the σ-algebra Nt generated by Ys(·); s ≤ t is also
strictly contained in F̂t.

Now suppose Xt is a strong solution of (5.3.1). Then by Theorem 8.4.2
it follows that Xt is a Brownian motion w.r.t. the measure P . (In case the
reader is worried about the possibility of a circular argument, we point out
that the proof of Theorem 8.4.2 is independent of this example!) Let Mt be
the σ-algebra generated by Xs(·); s ≤ t. Since (sign(x))2 = 1 we can rewrite
(5.3.1) as

dBt = sign(Xt)dXt .

By the above argument applied to B̂t = Xt, Yt = Bt we conclude that Ft is
strictly contained in Mt.

But this contradicts that Xt is a strong solution. Hence strong solutions
of (5.3.1) do not exist.

To find a weak solution of (5.3.1) we simply choose Xt to be any Brownian
motion B̂t. Then we define B̃t by

B̃t =

t∫

0

sign(B̂s)dB̂s =

t∫

0

sign(Xs)dXs

i.e.
dB̃t = sign(Xt)dXt .

Then
dXt = sign(Xt)dB̃t ,

so Xt is a weak solution.
Finally, weak uniqueness follows from Theorem 8.4.2, which – as noted

above – implies that any weak solution Xt must be a Brownian motion w.r.t.
P .

Exercises

5.1. Verify that the given processes solve the given corresponding stochastic
differential equations: (Bt denotes 1-dimensional Brownian motion)
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(i) Xt = eBt solves dXt = 1
2Xtdt + XtdBt

(ii) Xt = Bt

1+t ; B0 = 0 solves

dXt = − 1
1 + t

Xtdt +
1

1 + t
dBt ; X0 = 0

(iii) Xt = sin Bt with B0 = a ∈ (−π
2 , π

2 ) solves

dXt =− 1
2Xtdt +

√
1−X2

t dBt for t < inf
{
s > 0;Bs /∈[− π

2 , π
2

]}

(iv) (X1(t), X2(t)) = (t, etBt) solves
[

dX1

dX2

]
=

[
1

X2

]
dt +

[
0

eX1

]
dBt

(v) (X1(t), X2(t)) = (cosh(Bt), sinh(Bt)) solves
[

dX1

dX2

]
=

1
2

[
X1

X2

]
dt +

[
X2

X1

]
dBt .

5.2. A natural candidate for what we could call Brownian motion on the
ellipse {

(x, y);
x2

a2
+

y2

b2
= 1

}
where a > 0, b > 0

is the process Xt = (X1(t), X2(t)) defined by

X1(t) = a cosBt , X2(t) = b sin Bt

where Bt is 1-dimensional Brownian motion. Show that Xt is a solution
of the stochastic differential equation

dXt = − 1
2Xtdt + MXtdBt

where M =
[

0 −a
b

b
a 0

]
.

5.3. Let (B1, . . . , Bn) be Brownian motion in Rn, α1, . . . , αn constants.
Solve the stochastic differential equation

dXt = rXtdt + Xt

( n∑

k=1

αkdBk(t)
)
; X0 > 0 .

(This is a model for exponential growth with several independent white
noise sources in the relative growth rate).

5.4. Solve the following stochastic differential equations:
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(i)
[

dX1

dX2

]
=

[
1
0

]
dt +

[
1 0
0 X1

] [
dB1

dB2

]

(ii) dXt = Xtdt + dBt

(Hint: Multiply both sides with “the integrating factor” e−t and
compare with d(e−tXt))

(iii) dXt = −Xtdt + e−tdBt.

5.5. a) Solve the Ornstein-Uhlenbeck equation (or Langevin equation)

dXt = µXtdt + σdBt

where µ, σ are real constants, Bt ∈ R.
The solution is called the Ornstein-Uhlenbeck process. (Hint: See
Exercise 5.4 (ii).)

b) Find E[Xt] and Var[Xt]: = E[(Xt − E[Xt])2].

5.6. Solve the stochastic differential equation

dYt = r dt + αYtdBt

where r, α are real constants, Bt ∈ R.
(Hint: Multiply the equation by the ’integrating factor’

Ft = exp
(− αBt + 1

2α2t
)

. )

5.7. The mean-reverting Ornstein-Uhlenbeck process is the solution Xt of
the stochastic differential equation

dXt = (m−Xt)dt + σdBt

where m,σ are real constants, Bt ∈ R.
a) Solve this equation by proceeding as in Exercise 5.5 a).
b) Find E[Xt] and Var[Xt]: = E[(Xt − E[Xt])2].

5.8. Solve the (2-dimensional) stochastic differential equation

dX1(t) = X2(t)dt + αdB1(t)
dX2(t) = −X1(t)dt + βdB2(t)

where (B1(t), B2(t)) is 2-dimensional Brownian motion and α, β are
constants.
This is a model for a vibrating string subject to a stochastic force. See
Example 5.1.3.

5.9. Show that there is a unique strong solution Xt of the 1-dimensional
stochastic differential equation

dXt = ln(1 + X2
t )dt + X{Xt>0}XtdBt , X0 = a ∈ R .
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5.10. Let b, σ satisfy (5.2.1), (5.2.2) and let Xt be the unique strong solution
of (5.2.3). Show that

E[|Xt|2] ≤ K1 · exp(K2t) for t ≤ T (5.3.2)

where K1 = 3E[|Z|2] + 6C2T (T + 1) and K2 = 6(1 + T )C2.
(Hint: Use the argument in the proof of (5.2.10)).

Remark. With global estimates of the growth of b and σ in (5.2.1) it is
possible to improve (5.3.2) to a global estimate of E[|Xt|2]. See Exercise 7.5.

5.11. (The Brownian bridge).
For fixed a, b ∈ R consider the following 1-dimensional equation

dYt =
b− Yt

1− t
dt + dBt ; 0 ≤ t < 1 , Y0 = a . (5.3.3)

Verify that

Yt = a(1− t) + bt + (1− t)

t∫

0

dBs

1− s
; 0 ≤ t < 1 (5.3.4)

solves the equation and prove that lim
t→1

Yt = b a.s. The process Yt is

called the Brownian bridge (from a to b). For other characterizations
of Yt see Rogers and Williams (1987, pp. 86–89).

5.12. To describe the motion of a pendulum with small, random perturba-
tions in its environment we try an equation of the form

y′′(t) + (1 + εWt)y = 0 ; y(0), y′(0) given ,

where Wt = dBt

dt is 1-dimensional white noise, ε > 0 is constant.
a) Discuss this equation, for example by proceeding as in Exam-

ple 5.1.3.
b) Show that y(t) solves a stochastic Volterra equation of the form

y(t) = y(0) + y′(0) · t +

t∫

0

a(t, r)y(r)dr +

t∫

0

γ(t, r)y(r)dBr

where a(t, r) = r − t, γ(t, r) = ε(r − t).

5.13. As a model for the horizontal slow drift motions of a moored floating
platform or ship responding to incoming irregular waves John Grue
(1989) introduced the equation

x′′t + a0x
′
t + w2xt = (T0 − α0x

′
t)ηWt , (5.3.5)

where Wt is 1-dimensional white noise, a0, w, T0, α0 and η are con-
stants.
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(i) Put Xt =
[

xt

x′t

]
and rewrite the equation in the form

dXt = AXtdt + KXtdBt + MdBt ,

where

A=
[

0 1
−w2 −a0

]
, K =α0η

[
0 0
0 −1

]
and M =T0η

[
0
1

]
.

(ii) Show that Xt satisfies the integral equation

Xt =

t∫

0

eA(t−s)KXsdBs +

t∫

0

eA(t−s)MdBs if X0 = 0 .

(iii) Verify that

eAt =
e−λt

ξ
{(ξ cos ξt + λ sin ξt)I + A sin ξt}

where λ = a0
2 , ξ = (w2 − a2

0
4 )

1
2 and use this to prove that

xt = η

t∫

0

(T0 − α0ys)gt−sdBs (5.3.6)

and

yt = η

t∫

0

(T0 − α0ys)ht−sdBs , with yt: = x′t , (5.3.7)

where

gt =
1
ξ
Im(eζt)

ht =
1
ξ
Im(ζeζ̄t) , ζ = −λ + iξ (i =

√−1) .

So we can solve for yt first in (5.3.7) and then substitute in (5.3.6)
to find xt.

5.14. If (B1, B2) denotes 2-dimensional Brownian motion we may introduce
complex notation and put

B(t):= B1(t) + iB2(t) (i =
√−1) .

B(t) is called complex Brownian motion.
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(i) If F (z) = u(z) + iv(z) is an analytic function i.e. F satisfies the
Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
; z = x + iy

and we define
Zt = F (B(t))

prove that
dZt = F ′(B(t))dB(t) , (5.3.8)

where F ′ is the (complex) derivative of F . (Note that the usual
second order terms in the (real) Itô formula are not present in
(5.3.8)!)

(ii) Solve the complex stochastic differential equation

dZt = αZtdB(t) α constant) .

For more information about complex stochastic calculus involving
analytic functions see e.g. Ubøe (1987).

5.15. (Population growth in a stochastic, crowded environment)
The nonlinear stochastic differential equation

dXt = rXt(K −Xt)dt + βXtdBt ; X0 = x > 0 (5.3.9)

is often used as a model for the growth of a population of size Xt in
a stochastic, crowded environment. The constant K > 0 is called the
carrying capacity of the environment, the constant r ∈ R is a measure
of the quality of the environment and the constant β ∈ R is a measure
of the size of the noise in the system.
Verify that

Xt =
exp{(rK − 1

2β2)t + βBt}

x−1 + r
t∫
0

exp{(rK − 1
2β2)s + βBs}ds

; t ≥ 0 (5.3.10)

is the unique (strong) solution of (5.3.9). (This solution can be found by
performing a substitution (change of variables) which reduces (5.3.9)
to a linear equation. See Gard (1988), Chapter 4 for details.)

5.16. The technique used in Exercise 5.6 can be applied to more general
nonlinear stochastic differential equations of the form

dXt = f(t,Xt)dt + c(t)XtdBt , X0 = x (5.3.11)

where f :R×R → R and c:R → R are given continuous (determinis-
tic) functions. Proceed as follows:
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a) Define the ’integrating factor’

Ft = Ft(ω) = exp
(
−

t∫

0

c(s)dBs + 1
2

t∫

0

c2(s)ds

)
. (5.3.12)

Show that (5.3.11) can be written

d(FtXt) = Ft · f(t,Xt)dt . (5.3.13)

b) Now define
Yt(ω) = Ft(ω)Xt(ω) (5.3.14)

so that
Xt = F−1

t Yt . (5.3.15)

Deduce that equation (5.3.13) gets the form

dYt(ω)
dt

= Ft(ω) · f(t, F−1
t (ω)Yt(ω)) ; Y0 = x . (5.3.16)

Note that this is just a deterministic differential equation in the
function t → Yt(ω), for each ω ∈ Ω. We can therefore solve (5.3.16)
with ω as a parameter to find Yt(ω) and then obtain Xt(ω) from
(5.3.15).

c) Apply this method to solve the stochastic differential equation

dXt =
1

Xt
dt + αXtdBt ; X0 = x > 0 (5.3.17)

where α is constant.
d) Apply the method to study the solutions of the stochastic differen-

tial equation

dXt = Xγ
t dt + αXtdBt ; X0 = x > 0 (5.3.18)

where α and γ are constants.
For what values of γ do we get explosion?

5.17. (The Gronwall inequality)
Let v(t) be a nonnegative function such that

v(t) ≤ C + A

t∫

0

v(s)ds for 0 ≤ t ≤ T

for some constants C,A. Prove that

v(t) ≤ C exp(At) for 0 ≤ t ≤ T . (5.3.19)
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(Hint: We may assume A 6= 0. Define w(t) =
t∫
0

v(s)ds . Then w′(t) ≤
C + Aw(t). Deduce that

w(t) ≤ C

A
(exp(At)− 1) (5.3.20)

by considering f(t):= w(t) exp(−At).
Use (5.3.20) to deduce (5.3.19.)
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6. The Filtering Problem

6.1 Introduction

Problem 3 in the introduction is a special case of the following general filtering
problem:

Suppose the state Xt ∈ Rn at time t of a system is given by a stochastic
differential equation

dXt

dt
= b(t,Xt) + σ(t,Xt)Wt , t ≥ 0 , (6.1.1)

where b:Rn+1 → Rn, σ:Rn+1 → Rn×p satisfy conditions (5.2.1), (5.2.2) and
Wt is p-dimensional white noise. As discussed earlier the Itô interpretation
of this equation is

(system) dXt = b(t,Xt)dt + σ(t,Xt)dUt , (6.1.2)

where Ut is p-dimensional Brownian motion. We also assume that the distri-
bution of X0 is known and independent of Ut. Similarly to the 1-dimensional
situation (3.3.6) there is an explicit several-dimensional formula which ex-
presses the Stratonovich interpretation of (6.1.1):

dXt = b(t,Xt)dt + σ(t,Xt) ◦ dUt

in terms of Itô integrals as follows:

dXt = b̃(t, Xt)dt + σ(t,Xt)dUt , where

b̃i(t, x) = bi(t, x) + 1
2

p∑

j=1

n∑

k=1

∂σij

∂xk
σkj ; 1 ≤ i ≤ n . (6.1.3)

(See Stratonovich (1966)). From now on we will use the Itô interpretation
(6.1.2).

In the continuous version of the filtering problem we assume that the
observations Ht ∈ Rm are performed continuously and are of the form

Ht = c(t,Xt) + γ(t,Xt) · W̃t , (6.1.4)
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where c:Rn+1 → Rm, γ:Rn+1 → Rm×r are functions satisfying (5.2.1) and
W̃t denotes r-dimensional white noise, independent of Ut and X0.

To obtain a tractable mathematical interpretation of (6.1.4) we introduce

Zt =

t∫

0

Hsds (6.1.5)

and thereby we obtain the stochastic integral representation

(observations) dZt = c(t,Xt)dt + γ(t,Xt)dVt , Z0 = 0 (6.1.6)

where Vt is r-dimensional Brownian motion, independent of Ut and X0.
Note that if Hs is known for 0≤s≤ t, then Zs is also known for 0≤s≤ t

and conversely. So no information is lost or gained by considering Zt as our
“observations” instead of Ht. But this allows us to obtain a well-defined
mathematical model of the situation.

The filtering problem is the following:
Given the observations Zs satisfying (6.1.6) for 0 ≤ s ≤ t, what is the best

estimate X̂t of the state Xt of the system (6.1.2) based on these observations?
As we have pointed out earlier, it is necessary to find a precise mathe-

matical formulation of this problem: By saying that the estimate X̂t is based
on the observations {Zs; s ≤ t} we mean that

X̂t(·) is Gt-measurable,
where Gt is the σ-algebra generated by {Zs(·), s ≤ t} . (6.1.7)

By saying that X̂t is the best such estimate we mean that
∫

Ω

|Xt − X̂t|2dP = E[|Xt − X̂t|2] = inf{E[|Xt − Y |2]; Y ∈ K} . (6.1.8)

Here – and in the rest of this chapter – (Ω,F , P ) is the probability space
corresponding to the (p + r)-dimensional Brownian motion (Ut, Vt) starting
at 0, E denotes expectation w.r.t. P and

K: = Kt: = K(Z, t):= {Y : Ω→Rn; Y ∈L2(P ) and Y is Gt-measurable} ,
(6.1.9)

where L2(P ) = L2(Ω, P ).
Having found the mathematical formulation of our problem, we now start

to study the properties of the solution X̂t.
We first establish the following useful connection between conditional ex-

pectation and projection:

Lemma 6.1.1. Let H ⊂ F be a σ-algebra and let X ∈ L2(P ) be F-
measurable. Put N = {Y ∈ L2(P ); Y is H-measurable} and let PN denote
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the (orthogonal) projection from the Hilbert space L2(P ) into the subspace
N . Then

PN (X) = E[X|H] .

Proof. Recall (see Appendix B) that E[X|H] is by definition the P -unique
function from Ω to R such that

(i) E[X|H] is H-measurable
(ii)

∫
A

E[X|H]dP =
∫
A

XdP for all A ∈ H.

Now PN (X) is H-measurable and
∫

Ω

Y (X − PN (X))dP = 0 for all Y ∈ N .

In particular,
∫

A

(X − PN (X))dP = 0 for all A ∈ H

i.e. ∫

A

PN (X)dP =
∫

A

XdP for all A ∈ H .

Hence, by uniqueness, PN (X) = E[X|H]. tu

From the general theory of Hilbert spaces we know that the solution X̂t

of the problem (6.1.8) is given by the projection PKt(Xt). Therefore Lemma
6.1.1 leads to the following useful result:

Theorem 6.1.2.
X̂t = PKt(Xt) = E[Xt|Gt] .

This is the basis for the general Fujisaki-Kallianpur-Kunita equation of fil-
tering theory. See for example Bensoussan (1992), Davis (1984) or Kallianpur
(1980).

6.2 The 1-Dimensional Linear Filtering Problem

From now on we will concentrate on the linear case, which allows an explicit
solution in terms of a stochastic differential equation for X̂t (the Kalman-
Bucy filter):

In the linear filtering problem the system and observation equations have
the form:
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(linear system) dXt =F (t)Xtdt+C(t)dUt;
F (t)∈Rn×n, C(t)∈Rn×p (6.2.1)

(linear observations) dZt =G(t)Xtdt+D(t)dVt;
G(t)∈Rm×n, D(t)∈Rm×r (6.2.2)

To be able to focus on the main ideas in the solution of the filtering
problem, we will first consider only the 1-dimensional case:

(linear system) dXt = F (t)Xtdt + C(t)dUt; F (t), C(t) ∈ R (6.2.3)

(linear observations) dZt = G(t)Xtdt + D(t)dVt; G(t), D(t) ∈ R (6.2.4)

We assume (see (5.2.1)) that F, G,C, D are bounded on bounded intervals.
Based on our interpretation (6.1.5) of Zt we assume Z0 = 0. We also assume
that X0 is normally distributed (and independent of {Ut}, {Vt}). Finally we
assume that D(t) is bounded away from 0 on bounded intervals.

The (important) extension to the several-dimensional case (6.2.1), (6.2.2)
is technical, but does not require any essentially new ideas. Therefore we shall
only state the result for this case (in the next section) after we have discussed
the 1-dimensional situation. The reader is encouraged to work out the nec-
essary modifications for the general case for himself or consult Bensoussan
(1992), Davis (1977) or Kallianpur (1980) for a full treatment.

From now on we let Xt, Zt be processes satisfying (6.2.3), (6.2.4). Here is
an outline of the solution of the filtering problem in this case.

Step 1. Let L = L(Z, t) be the closure in L2(P ) of functions which are
linear combinations of the form

c0 + c1Zs1(ω) + · · ·+ ckZsk
(ω) , with sj ≤ t, cj ∈ R .

Let
PL denote the projection from L2(P ) onto L .

Then, with K as in (6.1.9),

X̂t = PK(Xt) = E[Xt|Gt] = PL(Xt) .

Thus, the best Z-measurable estimate of Xt coincides with the best Z-linear
estimate of Xt.

Step 2. Replace Zt by the innovation process Nt:

Nt = Zt −
t∫

0

(GX)∧s ds , where (GX)∧s = PL(Z,s)(G(s)Xs) = G(s)X̂s .

Then

(i) Nt has orthogonal increments, i.e.
E[(Nt1−Ns1)(Nt2−Ns2)] = 0 for non-overlapping intervals [s1, t1], [s2, t2].
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(ii) L(N, t) = L(Z, t), so X̂t = PL(N,t)(Xt).

Step 3. If we put

dRt =
1

D(t)
dNt ,

then Rt is a 1-dimensional Brownian motion. Moreover,

L(N, t) = L(R, t) and

X̂t = PL(N,t)(Xt) = PL(R,t)(Xt) = E[Xt] +

t∫

0

∂

∂s
E[XtRs]dRs .

Step 4. Find an expression for Xt by solving the (linear) stochastic differ-
ential equation

dXt = F (t)Xtdt + C(t)dUt .

Step 5. Substitute the formula for Xt from Step 4 into E[XtRs] and use
Step 3 to obtain a stochastic differential equation for X̂t:

dX̂t =
∂

∂s
E[XtRs]s=tdRt +

( t∫

0

∂2

∂t∂s
E[XtRs]dRs

)
dt etc.

Before we proceed to establish Steps 1–5, let us consider a simple, but moti-
vating example:

Example 6.2.1. Suppose X,W1,W2, . . . are independent real random vari-
ables, E[X] = E[Wj ] = 0 for all j, E[X2] = a2, E[W 2

j ] = m2 for all j. Put
Zj = X + Wj .

What is the best linear estimate X̂ of X based on {Zj ; j ≤ k} ? More
precisely, let

L = L(Z, k) = {c1Z1 + · · ·+ ckZk; c1, . . . , ck ∈ R} .

Then we want to find
X̂k = Pk(X) ,

where Pk denotes the projection into L(Z, k).
We use the Gram-Schmidt procedure to obtain random variables A1, A2, . . .

such that

(i) E[AiAj ] = 0 for i 6= j
(ii) L(A, k) = L(Z, k) for all k.
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Then

X̂k =
k∑

j=1

E[XAj ]
E[A2

j ]
Aj for k = 1, 2, . . . . (6.2.5)

We obtain a recursive relation between X̂k and X̂k−1 from this by observing
that

Aj = Zj − X̂j−1 , (6.2.6)

which follows from

Aj = Zj − Pj−1(Zj) = Zj − Pj−1(X) , since Pj−1(Wj) = 0 .

By (6.2.6)

E[XAj ] = E[X(Zj − X̂j−1)] = E[X(X − X̂j−1)] = E[(X − X̂j−1)2]

and
E[A2

j ] = E[(X + Wj − X̂j−1)2] = E[(X − X̂j−1)2] + m2 .

Hence

X̂k = X̂k−1 +
E[(X − X̂k−1)2]

E[(X − X̂k−1)2] + m2
(Zk − X̂k−1) . (6.2.7)

If we introduce

Zk =
1
k

k∑

j=1

Zj ,

then this can be simplified to

X̂k =
a2

a2 + 1
k ·m2

Zk . (6.2.8)

(This can be seen as follows:
Put

αk =
a2

a2 + 1
km2

, Uk = αkZk .

Then

(i) Uk ∈ L(Z, k)
(ii) X − Uk⊥L(Z, k), since

E[(X − Uk)Zi] = E[XZi]− αkE[ZkZi]

= E[X(X + Wi)]− αk
1
k

∑

j

E[ZjZi]

= a2 − 1
k

αk

∑

j

E[(X+Wj)(X+Wi)] = a2 − 1
k

αk[ka2+m2] = 0 .)
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The result can be interpreted as follows:
For large k we put X̂k ≈ Zk, while for small k the relation between a2

and m2 becomes more important. If m2 À a2, the observations are to a large
extent neglected (for small k) and X̂k is put equal to its mean value, 0. See
also Exercise 6.11.

This example gives the motivation for our approach:
We replace the process Zt by an orthogonal increment process Nt (Step 2)

in order to obtain a representation for X̂t analogous to (6.2.5). Such a rep-
resentation is obtained in Step 3, after we have identified the best linear
estimate with the best measurable estimate (Step 1) and established the con-
nection between Nt and Brownian motion.

Step 1. Z-Linear and Z-Measurable Estimates

Lemma 6.2.2. Let X, Zs; s ≤ t be random variables in L2(P ) and assume
that

(X, Zs1 , Zs2 , . . . , Zsn
) ∈ Rn+1

has a normal distribution for all s1, s2, . . . , sn ≤ t, n ≥ 1. Then

PL(X) = E[X|G] = PK(X) .

In other words, the best Z-linear estimate for X coincides with the best Z-
measurable estimate in this case.

Proof. Put X̌ = PL(X), X̃ = X − X̌. Then we claim that X̃ is independent
of G: Recall that a random variable (Y1, . . . , Yk) ∈ Rk is normal iff c1Y1 +
· · · + ckYk is normal, for all choices of c1, . . . , ck ∈ R. And an L2-limit of
normal variables is again normal (Appendix A). Therefore

(X̃, Zs1 , . . . , Zsn) is normal for all s1, . . . , sn ≤ t .

Since E[X̃Zsj ] = 0, X̃ and Zsj are uncorrelated, for 1 ≤ j ≤ n. It follows
(Appendix A) that

X̃ and (Zs1 , . . . , Zsn) are independent .

So X̃ is independent from G as claimed. But then

E[XG(X − X̌)] = E[XGX̃] = E[XG] · E[X̃] = 0 for all G ∈ G

i.e.
∫
G

XdP =
∫
G

X̌dP . Since X̌ is G-measurable, we conclude that

X̌ = E[X|G]. tu
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There is a curious interpretation of this result: Suppose X, {Zt}t∈T are
L2(P )-functions with given covariances. Among all possible distributions of

(X, Zt1 , . . . , Ztn
)

with these covariances, the normal distribution will be the “worst” w.r.t.
estimation, in the following sense: For any distribution we have

E[(X − E[X|G])2] ≤ E[(X − PL(X))2] ,

with equality for the normal distribution, by Lemma 6.2.2. (Note that the
quantity on the right hand side only depends on the covariances, not on
the distribution we might choose to obtain these covariances). For a broad
discussion of similar conclusions, based on an information theoretical game
between nature and the observer, see Topsöe (1978).

Finally, to be able to apply Lemma 6.2.2 to our filtering problem, we need
the following result:

Lemma 6.2.3.

Mt =
[

Xt

Zt

]
∈ R2 is a Gaussian process .

Proof. We may regard Mt as the solution of a 2-dimensional linear stochastic
differential equation of the form

dMt = H(t)Mtdt + K(t)dBt, M0 =
[

X0

0

]
; (6.2.9)

where H(t) ∈ R2×2, K(t) ∈ R2×2 and Bt is 2-dimensional Brownian motion.
Use Picard iteration to solve (6.2.9), i.e. put

M
(n+1)
t = M0 +

t∫

0

H(s)M (n)
s ds +

t∫

0

K(s)dBs , n = 0, 1, 2, . . . (6.2.10)

Then M
(n)
t is Gaussian for all n and M

(n)
t → Mt in L2(P ) (see the proof of

Theorem 5.2.1) and therefore Mt is Gaussian (Theorem A.7). tu

Step 2. The Innovation Process

Before we introduce the innovation process we will establish a useful repre-
sentation of the functions in the space

L(Z, T ) = the closure in L2(P ) of all linear combinations
c0 + c1Zt1 + · · ·+ ckZtk

; 0 ≤ ti ≤ T, cj ∈ R .

If f ∈ L2[0, T ], note that
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E

[( T∫

0

f(t)dZt

)2]
= E

[( T∫

0

f(t)G(t)Xtdt

)2]
+ E

[( T∫

0

f(t)D(t)dVt

)2]

+2E
[( T∫

0

f(t)G(t)Xtdt

)( T∫

0

f(t)D(t)dVt

)]
.

Since

E

[( T∫

0

f(t)G(t)Xtdt

)2]
≤ A1 ·

T∫

0

f(t)2dt by the Cauchy-Schwartz inequality,

E

[( T∫

0

f(t)D(t)dVt

)2]
=

T∫

0

f(t)2D2(t)dt by the Itô isometry

and {Xt}, {Vt} are independent, we conclude that

A0

T∫

0

f2(t)dt ≤ E

[( T∫

0

f(t)dZt

)2]
≤ A2

T∫

0

f2(t)dt , (6.2.11)

for some constants A0, A1, A2 not depending on f . We can now show

Lemma 6.2.4. L(Z, T ) = {c0 +
T∫
0

f(t)dZt; f ∈ L2[0, T ], c0 ∈ R}.

Proof. Denote the right hand side by N (Z, T ). It is enough to show that

a) N (Z, T ) ⊂ L(Z, T )
b) N (Z, T ) contains all linear combinations of the form

c0 + c1Zt1 + · · ·+ ckZtk
; 0 ≤ ti ≤ T

c) N (Z, T ) is closed in L2(P )

a): This follows from the fact that if f is continuous then

T∫

0

f(t)dZt = lim
n→∞

∑

j

f(j · 2−n) · (Z(j+1)2−n − Zj·2−n) .

b): Suppose 0 ≤ t1 < t2 < · · · < tk ≤ T . We can write

k∑

i=1

ciZti =
k−1∑

j=0

c′j∆Zj =
k−1∑

j=0

tj+1∫

tj

c′jdZt =

T∫

0

( k−1∑

j=0

c′jX[tj ,tj+1)(t)
)
dZt ,

where ∆Zj = Ztj+1 − Ztj .
c): This follows from (6.2.11) and the fact that L2[0, T ] is complete. tu
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Now we define the innovation process Nt as follows:

Nt = Zt −
t∫

0

(GX)∧s ds, where (GX)∧s = PL(Z,s)(G(s)Xs) = G(s)X̂s .

(6.2.12)
i.e.

dNt = G(t)(Xt − X̂t)dt + D(t)dVt . (6.2.13)

Lemma 6.2.5. (i) Nt has orthogonal increments

(ii) E[N2
t ] =

t∫
0

D2(s)ds

(iii) L(N, t) = L(Z, t) for all t ≥ 0
(iv) Nt is a Gaussian process

Proof. (i): If s < t and Y ∈ L(Z, s) we have

E[(Nt −Ns)Y ] = E

[( t∫

s

G(r)(Xr − X̂r

)
dr +

t∫

s

D(r)dVr)Y
]

=

t∫

s

G(r)E[(Xr − X̂r)Y ]dr + E

[( t∫

s

DdV

)
Y

]
= 0 ,

since Xr−X̂r⊥L(Z, r) ⊃ L(Z, s) for r ≥ s and V has independent increments.

(ii): By Itô’s formula, with g(t, x) = x2, we have

d(N2
t ) = 2NtdNt + 1

22(dNt)2 = 2NtdNt + D2dt .

So

E[N2
t ] = E

[ t∫

0

2NsdNs

]
+

t∫

0

D2(s)ds .

Now
t∫

0

NsdNs = lim
∆tj→0

∑
Ntj [Ntj+1 −Ntj ] ,

so since N has orthogonal increments we have

E

[ t∫

0

NsdNs

]
= 0 , and (ii) follows .

(iii): It is clear that L(N, t) ⊂ L(Z, t) for all t ≥ 0. To establish the opposite
inclusion we use Lemma 6.2.4. So choose f ∈ L2[0, t] and let us see what
functions can be obtained in the form
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t∫

0

f(s)dNs =

t∫

0

f(s)dZs −
t∫

0

f(r)G(r)X̂rdr

=

t∫

0

f(s)dZs −
t∫

0

f(r)
[ r∫

0

g(r, s)dZs

]
dr −

t∫

0

f(r)c(r)dr

=

t∫

0

[
f(s)−

t∫

s

f(r)g(r, s)dr

]
dZs −

t∫

0

f(r)c(r)dr ,

where we have used Lemma 6.2.2 and Lemma 6.2.4 to write, for each r,

(GX)∧r = c(r) +

r∫

0

g(r, s)dZs for some g(r, ·) ∈ L2[0, r], c(r) ∈ R .

From the theory of Volterra integral equations (see e.g. Davis (1977), p. 125)
there exists for all h ∈ L2[0, t] an f ∈ L2[0, t] such that

f(s)−
t∫

s

f(r)g(r, s)dr = h(s).

So by choosing h = X[0,t1] where 0 ≤ t1 ≤ t, we obtain

t∫

0

f(r)c(r)dr +

t∫

0

f(s)dNs =

t∫

0

X[0,t1](s)dZs = Zt1 ,

which shows that L(N, t) ⊃ L(Z, t).

(iv): X̂t is a limit (in L2(P )) of linear combinations of the form

M = c0 + c1Zs1 + · · ·+ ckZsk
, where sk ≤ t .

Therefore
(X̂t1 , . . . , X̂tm)

is a limit of m-dimensional random variables (M (1), . . . , M (m)) whose com-
ponents M (j) are linear combinations of this form. (M (1), . . . ,M (m)) has a
normal distribution since {Zt} is Gaussian, and therefore the limit has. Hence
{X̂t} is Gaussian. It follows that

Nt = Zt −
t∫

0

G(s)X̂sds

is Gaussian, by a similar argument. tu
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Step 3. The Innovation Process and Brownian Motion

Let Nt = Zt −
t∫
0

G(s)X̂sds be the innovation process defined in Step 2.

Recall that we have assumed that D(t) is bounded away from 0 on bounded
intervals. Define the process Rt(ω) by

dRt =
1

D(t)
dNt(ω) ; t ≥ 0, R0 = 0 . (6.2.14)

Lemma 6.2.6. Rt is a 1-dimensional Brownian motion.

Proof. Observe that

(i) Rt has continuous paths
(ii) Rt has orthogonal increments (since Nt has)
(iii) Rt is Gaussian (since Nt is)
(iv) E[Rt] = 0 and E[RtRs] = min(s, t).

To prove the last assertion in (iv), note that by Itô’s formula

d(R2
t ) = 2RtdRt + (dRt)2 = 2RtdRt + dt ,

so, since Rt has orthogonal increments,

E[R2
t ] = E[

t∫

0

ds] = t .

Therefore, if s < t,

E[RtRs] = E[(Rt −Rs)Rs] + E[R2
s] = E[R2

s] = s .

Properties (i), (iii) and (iv) constitute one of the many characterizations of a
1-dimensional Brownian motion (see Simon (1979), Theorem 4.3). (Alterna-
tively, we could easily deduce that Rt has stationary, independent increments
and therefore – by continuity – must be Brownian motion, by the result previ-
ously referred to in the beginning of Chapter 3. For a general characterization
of Brownian motion see Corollary 8.4.5.) tu

Since
L(N, t) = L(R, t)

we conclude that
X̂t = PL(R,t)(Xt) .

It turns out that the projection down to the space L(R, t) can be described
very nicely: (compare with formula (6.2.5) in Example 6.2.1)
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Lemma 6.2.7.

X̂t = E[Xt] +

t∫

0

∂

∂s
E[XtRs]dRs . (6.2.15)

Proof. From Lemma 6.2.4 we know that

X̂t = c0(t) +

t∫

0

g(s)dRs for some g ∈ L2[0, t], c0(t) ∈ R .

Taking expectations we see that c0(t) = E[X̂t] = E[Xt]. We have

(Xt − X̂t)⊥
t∫

0

f(s)dRs for all f ∈ L2[0, t] .

Therefore

E

[
Xt

t∫

0

f(s)dRs

]
= E

[
X̂t

t∫

0

f(s)dRs

]
= E

[ t∫

0

g(s)dRs

t∫

0

f(s)dRs

]

= E

[ t∫

0

g(s)f(s)ds

]
=

t∫

0

g(s)f(s)ds , for all f ∈ L2[0, t] ,

where we have used the Itô isometry. In particular, if we choose f = X[0,r]

for some r ≤ t, we obtain

E[XtRr] =

r∫

0

g(s)ds

or
g(r) =

∂

∂r
E[XtRr] , as asserted .

This completes Step 3. tu

Step 4. An Explicit Formula for Xt

This is easily obtained using Itô’s formula, as in the examples in Chapter 5.
The result is

Xt = exp
( t∫

0

F (s)ds

)[
X0 +

t∫

0

exp
(
−

s∫

0

F (u)du

)
C(s)dUs

]

= exp
( t∫

0

F (s)ds

)
X0 +

t∫

0

exp
( t∫

s

F (u)du

)
C(s)dUs .
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In particular, we note that E[Xt] = E[X0] exp(
t∫
0

F (s)ds).

More generally, if 0 ≤ r ≤ t, (see Exercise 6.12)

Xt = exp
( t∫

r

F (s)ds

)
Xr +

t∫

r

exp
( t∫

s

F (u)du

)
C(s)dUs . (6.2.16)

Step 5. The Stochastic Differential Equation for X̂t

We now combine the previous steps to obtain the solution of the filtering
problem, i.e. a stochastic differential equation for X̂t. Starting with the for-
mula from Lemma 6.2.7

X̂t = E[Xt] +

t∫

0

f(s, t)dRs ,

where
f(s, t) =

∂

∂s
E[XtRs] , (6.2.17)

we use that

Rs =

s∫

0

G(r)
D(r)

(Xr − X̂r)dr + Vs from (6.2.13) and (6.2.14))

and obtain

E[XtRs] =

s∫

0

G(r)
D(r)

E[XtX̃r]dr ,

where
X̃r = Xr − X̂r . (6.2.18)

Using formula (6.2.16) for Xt, we obtain

E[XtX̃r] = exp
( t∫

r

F (v)dv

)
E[XrX̃r] = exp

( t∫

r

F (v)dv

)
S(r) ,

where
S(r) = E[(X̃r)2] , (6.2.19)

i.e. the mean square error of the estimate at time r ≥ 0. Thus

E[XtRs] =

s∫

0

G(r)
D(r)

exp
( t∫

r

F (v)dv

)
S(r)dr
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so that

f(s, t) =
G(s)
D(s)

exp
( t∫

s

F (v)dv

)
S(s) . (6.2.20)

We claim that S(t) satisfies the (deterministic) differential equation

dS

dt
= 2F (t)S(t)− G2(t)

D2(t)
S2(t) + C2(t) (The Riccati equation) . (6.2.21)

To prove (6.2.21) note that by the Pythagorean theorem, (6.2.15) and the
Itô isometry

S(t) = E[(Xt − X̂t)2] = E[X2
t ]− 2E[XtX̂t] + E[X̂2

t ] = E[X2
t ]− E[X̂2

t ]

= T (t)−
t∫

0

f(s, t)2ds− E[Xt]2 , (6.2.22)

where
T (t) = E[X2

t ] . (6.2.23)

Now by (6.2.16) and the Itô isometry we have

T (t) = exp
(

2

t∫

0

F (s)ds

)
E[X2

0 ] +

t∫

0

exp
(

2

t∫

s

F (u)du

)
C2(s)ds ,

using that X0 is independent of {Us}s≥0. So

dT

dt
= 2F (t) · exp

(
2

t∫

0

F (s)ds

)
E[X2

0 ] + C2(t)

+

t∫

0

2F (t) exp
(

2

t∫

s

F (u)du

)
C2(s)ds

i.e.
dT

dt
= 2F (t)T (t) + C2(t) . (6.2.24)

Substituting in (6.2.22) we obtain, using Step 4,

dS

dt
=

dT

dt
− f(t, t)2 −

t∫

0

2f(s, t) · ∂

∂t
f(s, t)ds− 2F (t)E[Xt]2

= 2F (t)T (t) + C2(t)− G2(t)S2(t)
D2(t)

− 2

t∫

0

f2(s, t)F (t)ds− 2F (t)E[Xt]2

= 2F (t)S(t) + C2(t)− G2(t)S2(t)
D2(t)

, which is (6.2.21) .
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We are now ready for the stochastic differential equation for X̂t:
From the formula

X̂t = c0(t) +

t∫

0

f(s, t)dRs where c0(t) = E[Xt]

it follows that

dX̂t = c′0(t)dt + f(t, t)dRt +
( t∫

0

∂

∂t
f(s, t)dRs

)
dt , (6.2.25)

since
u∫

0

( t∫

0

∂

∂t
f(s, t)dRs

)
dt =

u∫

0

( u∫

s

∂

∂t
f(s, t)dt

)
dRs

=

u∫

0

(f(s, u)− f(s, s))dRs = X̂u − c0(u)−
u∫

0

f(s, s)dRs .

So

dX̂t = c′0(t)dt +
G(t)S(t)

D(t)
dRt +

( t∫

0

f(s, t)dRs

)
F (t)dt

or

dX̂t = c′0(t)dt + F (t) · (X̂t − c0(t))dt +
G(t)S(t)

D(t)
dRt

= F (t)X̂tdt +
G(t)S(t)

D(t)
dRt , (6.2.26)

since c′0(t) = F (t)c0(t) (Step 4).
If we substitute

dRt =
1

D(t)
[dZt −G(t)X̂tdt]

we obtain

dX̂t = (F (t)− G2(t)S(t)
D2(t)

)X̂tdt +
G(t)S(t)
D2(t)

dZt . (6.2.27)

So the conclusion is:

Theorem 6.2.8 (The 1-dimensional Kalman-Bucy filter).
The solution X̂t = E[Xt|Gt] of the 1-dimensional linear filtering problem

(linear system) dXt = F (t)Xtdt + C(t)dUt; F (t), C(t) ∈ R (6.2.3)

(linear observations) dZt = G(t)Xtdt + D(t)dVt; G(t), D(t) ∈ R (6.2.4)
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(with conditions as stated earlier) satisfies the stochastic differential equation

dX̂t =
(

F (t)− G2(t)S(t)
D2(t)

)
X̂tdt +

G(t)S(t)
D2(t)

dZt ; X̂0 = E[X0] (6.2.28)

where

S(t) = E[(Xt − X̂t)2] satisfies the (deterministic) Riccati equation
dS

dt
= 2F (t)S(t)− G2(t)

D2(t)
S2(t) + C2(t), S(0) = E[(X0 − E[X0])2] . (6.2.29)

Example 6.2.9 (Noisy observations of a constant process).
Consider the simple case

(system) dXt = 0, i.e. Xt = X0; E[X0] = 0, E[X2
0 ] = a2

(observations) dZt = Xtdt + mdVt; Z0 = 0

(corresponding to

Ht =
dZ

dt
= Xt + mWt, Wt = white noise) .

First we solve the corresponding Riccati equation for

S(t) = E[(Xt − X̂t)2]:
dS

dt
= − 1

m2
S2 , S(0) = a2

i.e.

S(t) =
a2m2

m2 + a2t
; t ≥ 0 .

This gives the following equation for X̂t:

dX̂t = − a2

m2 + a2t
X̂tdt +

a2

m2 + a2t
dZt ; X̂0 = E[X0] = 0

or

d

(
X̂t exp

( ∫
a2

m2 + a2t
dt

))
= exp

( ∫
a2

m2 + a2t
dt

)
a2

m2 + a2t
dZt

which gives

X̂t =
a2

m2 + a2t
Zt ; t ≥ 0 . (6.2.30)

This is the continuous analogue of Example 6.2.1.
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Example 6.2.10 (Noisy observations of a Brownian motion).
If we modify the preceding example slightly, so that

(system) dXt = cdUt; E[X0] = 0, E[X2
0 ] = a2, c constant

(observations) dZt = Xtdt + mdVt,

the Riccati equation becomes

dS

dt
= − 1

m2
S2 + c2, S(0) = a2

or
m2dS

m2c2 − S2
= dt, (S 6= mc) .

This gives
∣∣∣mc + s

mc− s

∣∣∣ = K exp
(

2ct

m

)
; K =

∣∣∣mc + a2

mc− a2

∣∣∣ .

Or

S(t) =





mc
K·exp( 2ct

m )−1

K·exp( 2ct
m )+1

; if S(0) < mc

mc (constant) if S(0) = mc

mc
K·exp( 2ct

m )+1

K·exp( 2ct
m )−1

if S(0) > mc .

Thus in all cases the mean square error S(t) tends to mc as t →∞ .
For simplicity let us put a = 0, m = c = 1. Then

S(t) =
exp(2t)− 1
exp(2t) + 1

= tanh(t) .

The equation for X̂t is

dX̂t = − tanh(t)X̂tdt + tanh(t)dZt , X̂0 = 0

or
d(cosh(t)X̂t) = sinh(t)dZt .

So

X̂t =
1

cosh(t)

t∫

0

sinh(s)dZs .

If we return to the interpretation of Zt :

Zt =

t∫

0

Hsds ,

where Hs are the “original” observations (see (6.1.4)), we can write
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X̂t =
1

cosh(t)

t∫

0

sinh(s)Hsds , (6.2.31)

so X̂t is approximately (for large t) a weighted average of the observations
Hs, with increasing emphasis on observations as time increases.

Remark. It is interesting to compare formula (6.2.31) with established for-
mulas in forecasting. For example, the exponentially weighted moving average
X̃n suggested by C.C. Holt in 1958 is given by

X̃n = (1− α)nZ0 + α

n∑

k=1

(1− α)n−kZk ,

where α is some constant; 0 ≤ α ≤ 1. See The Open University (1981), p. 16.
This may be written

X̃n = β−nZ0 + (β − 1)β−n−1
n∑

k=1

βkZk ,

where β = 1
1−α (assuming α < 1), which is a discrete version of (6.2.31), or –

more precisely – of the formula corresponding to (6.2.31) in the general case
when a 6= 0 and m, c are not necessarily equal to 1.

Example 6.2.11 (Estimation of a parameter).
Suppose we want to estimate the value of a (constant) parameter θ, based
on observations Zt satisfying the model

dZt = θ M(t)dt + N(t)dBt ,

where M(t), N(t) are known functions. In this case the stochastic differential
equation for θ is of course

dθ = 0 ,

so the Riccati equation for S(t) = E[(θ − θ̂t)2] is

dS

dt
= −

(
M(t)S(t)

N(t)

)2

which gives

S(t) =
(

S−1
0 +

t∫

0

M(s)2N(s)−2ds

)−1

and the Kalman-Bucy filter is

dθ̂t =
M(t)S(t)

N(t)2
(dZt −M(t)θ̂tdt) .
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This can be written

(
S−1

0 +

t∫

0

M(s)2N(s)−2ds

)
dθ̂t + M(t)2N(t)−2θ̂tdt = M(t)N(t)−2dZt .

We recoqnize the left hand side as

d(
(

S−1
0 +

t∫

0

M(s)2N(s)−2ds

)
θ̂t)

so we obtain

θ̂t =
θ̂0S

−1
0 +

t∫
0

M(s)N(s)−2dZs

S−1
0 +

t∫
0

M(s)2N(s)−2ds

.

This estimate coincides with the maximum likelihood estimate in classical
estimation theory if S−1

0 = 0. See Liptser and Shiryaev (1978).
For more information about estimates of drift parameters in diffusions

and generalizations, see for example Aase (1982), Brown and Hewitt (1975)
and Taraskin (1974).

Example 6.2.12 (Noisy observations of a population growth).
Consider a simple growth model (r constant)

dXt = rXtdt, E[X0] = b > 0 , E[(X0 − b)2] = a2 ,

with observations

dZt = Xtdt + mdVt ; m constant .

The corresponding Riccati equation

dS

dt
= 2rS − 1

m2
S2 , S(0) = a2 ,

gives the logistic curve

S(t) =
2rm2

1 + Ke−2rt
; where K = 2rm2

a2 − 1 .

So the equation for X̂t becomes

dX̂t =
(

r − S

m2

)
X̂tdt +

S

m2
dZt ; X̂0 = E[X0] = b .

For simplicity let us assume that a2 = 2rm2, so that
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S(t) = 2rm2 for all t .

(In the general case S(t) → 2rm2 as t → ∞, so this is not an unreasonable
approximation for large t). Then we get

d(exp(rt)X̂t) = exp(rt)2rdZt , X̂0 = b

or

X̂t = exp(−rt)
[ t∫

0

2r exp(rs)dZs + b

]
.

As in Example 6.2.10 this may be written

X̂t = exp(−rt)
[ t∫

0

2r exp(rs)Hsds + b

]
, if Zt =

t∫
0

Hsds . (6.2.32)

For example, assume that Hs = β (constant) for 0 ≤ s ≤ t, i.e. that our
observations (for some reason) give the same value β for all times s ≤ t.
Then

X̂t = 2β − (2β − b) exp(−rt) → 2β as t →∞ .

If Hs = β · exp(αs), s ≥ 0 (α constant), we get

X̂t = exp(−rt)
[

2rβ

r + α
(exp(r + α)t− 1) + b

]

≈ 2rβ

r + α
expαt for large t .

Thus, only if α = r, i.e. Hs = β exp(rs); s ≥ 0, does the filter “believe” the
observations in the long run. And only if α = r and β = b, i.e. Hs = b exp(rs);
s ≥ 0, does the filter “believe” the observations at all times.

Example 6.2.13 (Constant coefficients – general discussion).
Now consider the system

dXt = FXtdt + CdUt ; F, C constants 6= 0

with observations

dZt = GXtdt + DdVt ; G,D constants 6= 0 .

The corresponding Riccati equation

S′ = 2FS − G2

D2
S2 + C2 , S(0) = a2

has the solution
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S(t) =
α1 −Kα2 exp( (α2−α1)G

2t
D2 )

1−K exp( (α2−α1)G2t
D2 )

,

where

α1 = G−2(FD2 −D
√

F 2D2 + G2C2)

α2 = G−2(FD2 + D
√

F 2D2 + G2C2)

and

K =
a2 − α1

a2 − α2
.

This gives the solution for X̂t of the form

X̂t = exp
( t∫

0

H(s)ds

)
X̂0 +

G

D2

t∫

0

exp
( t∫

s

H(u)du

)
S(s)dZs ,

where

H(s) = F − G2

D2
S(s) .

For large s we have S(s) ≈ α2. This gives

X̂t ≈ X̂0 exp(
(

F − G2α2

D2

)
t) +

Gα2

D2

t∫

0

exp(
(

F − G2α2

D2

)
(t− s))dZs

= X̂0 exp(−βt) +
Gα2

D2
exp(−βt)

t∫

0

exp(βs)dZs (6.2.33)

where β = D−1
√

F 2D2 + G2C2 . So we get approximately the same be-
haviour as in the previous example.

6.3 The Multidimensional Linear Filtering Problem

Finally we formulate the solution of the n-dimensional linear filtering problem
(6.2.1), (6.2.2):

Theorem 6.3.1 (The Multi-Dimensional Kalman-Bucy Filter).
The solution X̂t = E[Xt|Gt] of the multi-dimensional linear filtering problem

(linear system) dXt =F (t)Xtdt+C(t)dUt;
F (t)∈Rn×n, C(t)∈Rn×p (6.3.1)

(linear observations) dZt =G(t)Xtdt+D(t)dVt;
G(t)∈Rm×n, D(t)∈Rm×r (6.3.2)
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satisfies the stochastic differential equation

dX̂t = (F − SGT (DDT )−1G)X̂tdt + SGT (DDT )−1dZt ; X̂0 = E[X0]
(6.3.3)

where S(t):= E[(Xt − X̂t)(Xt − X̂t)T ] ∈ Rn×n satisfies the matrix Riccati
equation

dS

dt
= FS + SFT − SGT (DDT )−1GS + CCT ;

S(0) = E[(X0 −E[X0])(X0 − E[X0])T ] . (6.3.4)

The condition on D(t) ∈ Rm×r is now that D(t)D(t)T is invertible for all t
and that (D(t)D(t)T )−1 is bounded on every bounded t-interval.

A similar solution can be found for the more general situation

(system) dXt = [F0(t) + F1(t)Xt + F2(t)Zt]dt + C(t)dUt (6.3.5)
(observations) dZt = [G0(t) + G1(t)Xt + G2(t)Zt]dt + D(t)dVt , (6.3.6)

where Xt ∈ Rn, Zt ∈ Rm and Bt = (Ut, Vt) is n + m-dimensional Brownian
motion, with appropriate dimensions on the matrix coefficients. See Ben-
soussan (1992) and Kallianpur (1980), who also treat the non-linear case.
An account of non-linear filtering theory is also given in Pardoux (1979) and
Davis (1984).

For the solution of linear filtering problems governed by more general
processes than Brownian motion (processes with orthogonal increments) see
Davis (1977).

For various applications of filtering theory see Bucy and Joseph (1968),
Jazwinski (1970), Gelb (1974), Maybeck (1979) and the references in these
books.

Exercises

6.1. (Time-varying observations of a constant)
Prove that if the (1-dimensional) system is

dXt = 0, E[X0] = 0 , E[X2
0 ] = a2

and the observation process is

dZt = G(t)Xtdt + dVt , Z0 = 0

then S(t) = E[(Xt − X̂t)2] is given by

S(t) =
1

1
S(0) +

∫ t

0
G2(s)ds

. (6.3.7)
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We say that we have exact asymptotic estimation if S(t) → 0 as t →∞,
i.e. if ∞∫

0

G2(s)ds = ∞ .

Thus for
G(s) =

1
(1 + s)p

(p > 0 constant)

we have exact asymptotic estimation iff p ≤ 1
2 .

6.2. Consider the linear 1-dimensional filtering problem with no noise in
the system:

(system) dXt = F (t)Xtdt (6.3.8)
(observations) dZt = G(t)Xtdt + D(t)dVt (6.3.9)

Put S(t) = E[(Xt − X̂t)2] as usual and assume S(0) > 0 .
a) Show that

R(t):=
1

S(t)

satisfies the linear differential equation

R′(t) = −2F (t)R(t) +
G2(t)
D2(t)

; R(0) =
1

S(0)
(6.3.10)

b) Use (6.3.10) to prove that for the filtering problem (6.3.8), (6.3.9)
we have

1
S(t)

=
1

S(0)
exp

(
−2

t∫

0

F (s)ds

)
+

t∫

0

exp
(
−2

t∫

s

F (u)du

)
G2(s)
D2(s)

ds .

(6.3.11)

6.3. In Example 6.2.12 we found that

S(t) → 2rm2 as t →∞ ,

so exact asymptotic estimation (Exercise 6.1) of Xt is not possible.
However, prove that we can obtain exact asymptotic estimation of X0,
in the sense that

E[(X0 − E[X0|Gt])2] → 0 as t →∞ .

(Hint: Note that X0 = e−rtXt and therefore E[X0|Gt] = e−rtX̂t, so
that

E[(X0 − E[X0|Gt])2] = e−2rtS(t)) .
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6.4. Consider the multi-dimensional linear filtering problem with no noise
in the system:

(system) dXt = F (t)Xtdt ;
Xt ∈ Rn , F (t) ∈ Rn×n (6.3.12)

(observations) dZt = G(t)Xtdt + D(t)dVt ;
G(t) ∈ Rm×n , D(t) ∈ Rm×r (6.3.13)

Assume that S(t) is nonsingular and define R(t) = S(t)−1. Prove that
R(t) satisfies the Lyapunov equation (compare with Exercise 6.2)

R′(t) = −R(t)F (t)−F (t)T R(t)+G(t)T (D(t)D(t)T )−1G(t) . (6.3.14)

(Hint: Note that since S(t)S−1(t) = I we have
S′(t)S−1(t) + S(t)(S−1)′(t) = 0, which gives

(S−1)′(t) = −S−1(t)S′(t)S−1(t) .)

6.5. (Prediction)
In the prediction problem one seeks to estimate the value of the system
X at a future time T based on the observations Gt up to the present
time t < T .
Prove that in the linear setup (6.2.3), (6.2.4) the predicted value

E[XT |Gt] , T > t

is given by

E[XT |Gt] = exp
( T∫

t

F (s)ds

)
· X̂t . (6.3.15)

(Hint: Use formula (6.2.16).)

6.6. (Interpolation/smoothing)
The interpolation or smoothing problem consists of estimating the
value of the system X at a time s < t, given the observations up
to time t,Gt.
With notation as in (6.2.1), (6.2.2) one can show that Ms: = E[Xs|Gt]
satisfies the differential equation

{
d
dsMs = F (s)Ms + C(s)CT (s)S−1(s)(Ms − X̂s) ; s < t

Mt = X̂t .
(6.3.16)

(See Davis (1977, Theorem 4.4.4).)
Use this result to find E[Xs|Gt] in Example 6.2.9.
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6.7. Consider the system

dXt =
[

dX1(t)
dX2(t)

]
=

[
0
0

]
, E[X0] =

[
0
0

]

with observations
[

dZ1(t)
dZ2(t)

]
=

[
X1

X1 + X2

]
dt +

[
dV1(t)
dV2(t)

]
.

Apply (6.3.14) from Exercise 6.4 to prove that
S(t):= E[(Xt − X̂t)(Xt − X̂t)T ] is given by

S(t)−1 = S−1(0) +
[

2 1
1 1

]
t

if S(0) is invertible. Then show that

dX̂t = −S(t)
[

2 1
1 1

]
X̂tdt + S(t)

[
1 1
0 1

]
dZt .

6.8. Transform the following Stratonovich equation

dXt = b(t,Xt)dt + σ(t,Xt) ◦ dBt

into the corresponding Itô equation

dXt = b̃(t,Xt)dt + σ(t,Xt)dBt

using (6.1.3):
a) [

dX1

dX2

]
=

[
1

X2 + e2X1

]
dt +

[
0

eX1

]
◦ dBt (Bt ∈ R)

b) [
dX1

dX2

]
=

[
X1

X2

]
dt +

[
X2

X1

]
◦ dBt (Bt ∈ R)

6.9. Transform the following Itô equation

dXt = b(t,Xt)dt + σ(t,Xt)dBt

into the corresponding Stratonovich equation

dXt = b̂(t,Xt)dt + σ(t,Xt) ◦ dBt ,

using (the converse of) (6.1.3):
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a) dXt = − 1
2Xtdt + KXtdBt, where

K =
[

0 −1
1 0

]
, Xt =

[
X1(t)
X2(t)

]
∈ R2 and Bt ∈ R

(i.e. Xt is Brownian motion on the unit circle (Example 5.1.4)).

b)
[

dX1

dX2

]
=

[
X1 −X2

X2 X1

] [
dB1

dB2

]
.

6.10. (On the support of an Itô diffusion)
The support of an Itô diffusion X in Rn starting at x ∈ Rn is the
smallest closed set F with the property that

Xt(ω) ∈ F for all t ≥ 0, for a.a. ω .

In Example 5.1.4 we found that Brownian motion on the unit circle,
Xt, satisfies the (Itô) stochastic differential equation

[
dX1(t)
dX2(t)

]
= − 1

2

[
X1(t)
X2(t)

]
dt +

[
0 −1
1 0

] [
X1(t)
X2(t)

]
dBt . (6.3.17)

From this equation it is not at all apparent that its solution is situ-
ated on the same circle as the starting point. However, this can be
detected by proceeding as follows: First transform the equation into
its Stratonovich form, which in Exercise 6.9 is found to be

[
dX1(t)
dX2(t)

]
=

[
0 −1
1 0

] [
X1(t)
X2(t)

]
◦ dBt . (6.3.18)

Then (formally) replace ◦dBt by φ′(t)dt, where φ is some smooth (de-
terministic) function, φ(0) = 0. This gives the deterministic equation

[
dX

(φ)
1 (t)

dX
(φ)
2 (t)

]
=

[
0 −1
1 0

]
φ′(t)dt . (6.3.19)

If (X(φ)
1 (0), X(φ)

2 (0)) = (1, 0) the solution of (6.3.19) is
[

X
(φ)
1 (t)

X
(φ)
2 (t)

]
=

[
cosφ(t)
sin φ(t)

]
.

So for any smooth φ the corresponding solution X(φ)(t) of (6.3.19)
has its support on this unit circle. We can conclude that the original
solution X(t, ω) is supported on the unit circle also, in virtue of the
Stroock-Varadhan support theorem. This theorem says that, quite gen-
erally, the support of an Itô diffusion Xt(ω) coincides with the closure
(in C([0,∞);Rn)) of {X(φ)(·); φ smooth}, where X(φ)(t) is obtained
by replacing ◦dBt by φ′(t)dt in the same way as above. See e.g. Ikeda
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and Watanabe (1989, Th. VI. 8.1). (In this special case above the
support could also have been found directly from (6.3.18)).
Use the procedure above to find the support of the process Xt ∈ R2

given by

dXt = 1
2Xtdt +

[
0 1
1 0

]
XtdBt .

6.11. Consider Example 6.2.1, but now without the assumption that
E[X] = 0. Show that

X̂k =
m2

ka2 + m2
E[X] +

a2

a2 + 1
km2

Zk ; k = 1, 2, . . .

(Compare with (6.2.8).)
(Hint: Put ξ = X − E[X], ζk = Zk − E[X]. Then apply (6.2.8) with
X replaced by ξ and Zk replaced by ζk.)

6.12. Prove formula (6.2.16).

(Hint: exp
( −

s∫
r

F (u)du) is an integrating factor for the stochastic

differential equation (6.2.3).)
6.13. Consider the 1-dimensional linear filtering problem (6.2.3), (6.2.4).

Find
E[X̂t] and E[(X̂t)2] .

(Hint: Use Theorem 6.1.2 and use the definition of the mean square
error S(t).)

6.14. Let Bt be 1-dimensional Brownian motion.
a) Give an example of a process Zt of the form

dZt = u(t, ω)dt + dBt

such that Zt is a Brownian motion w.r.t. P and u(t, ω) ∈ V is not
identically 0.
(Hint: Choose Zt to be the innovation process (6.2.13) in a linear
filtering problem with D(t) ≡ 1.)

b) Show that the filtration {Zt}t≥0 generated by a process Zt as in a)
must be strictly smaller than {Ft}t≥0, i.e. show that

Zt ⊆ Ft for all t and Zt 6= Ft for some t .

(Hint: Use Exercise 4.12.)



7. Diffusions: Basic Properties

7.1 The Markov Property

Suppose we want to describe the motion of a small particle suspended in a
moving liquid, subject to random molecular bombardments. If b(t, x) ∈R3

is the velocity of the fluid at the point x at time t, then a reasonable math-
ematical model for the position Xt of the particle at time t would be a
stochastic differential equation of the form

dXt

dt
= b(t,Xt) + σ(t,Xt)Wt , (7.1.1)

where Wt ∈ R3 denotes “white noise” and σ(t, x) ∈ R3×3. The Itô interpre-
tation of this equation is

dXt = b(t,Xt)dt + σ(t,Xt)dBt , (7.1.2)

where Bt is 3-dimensional Brownian motion, and similarly (with a correction
term added to b) for the Stratonovich interpretation (see (6.1.3)).

In a stochastic differential equation of the form

dXt = b(t,Xt)dt + σ(t,Xt)dBt , (7.1.3)

where Xt ∈ Rn, b(t, x) ∈ Rn, σ(t, x) ∈ Rn×m and Bt is m-dimensional
Brownian motion, we will call b the drift coefficient and σ – or sometimes
1
2σσT – the diffusion coefficient (see Theorem 7.3.3).

Thus the solution of a stochastic differential equation may be thought of
as the mathematical description of the motion of a small particle in a moving
fluid: Therefore such stochastic processes are called (Itô) diffusions.

In this chapter we establish some of the most basic properties and results
about Itô diffusions:

7.1 The Markov property.
7.2 The strong Markov property.
7.3 The generator A of Xt expressed in terms of b and σ.
7.4 The Dynkin formula.
7.5 The characteristic operator.
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This will give us the necessary background for the applications in the
remaining chapters.

Definition 7.1.1. A (time-homogeneous) Itô diffusion is a stochastic process
Xt(ω) = X(t, ω): [0,∞)×Ω → Rn satisfying a stochastic differential equation
of the form

dXt = b(Xt)dt + σ(Xt)dBt , t ≥ s ; Xs = x (7.1.4)

where Bt is m-dimensional Brownian motion and b:Rn → Rn, σ:Rn →
Rn×m satisfy the conditions in Theorem 5.2.1, which in this case simplify to:

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y| ; x, y ∈ Rn , (7.1.5)

where |σ|2 =
∑ |σij |2.

We will denote the (unique) solution of (7.1.4) by Xt = Xs,x
t ; t ≥ s. If

s = 0 we write Xx
t for X0,x

t . Note that we have assumed in (7.1.4) that b and
σ do not depend on t but on x only. We shall see later (Chapters 10, 11) that
the general case can be reduced to this situation. The resulting process Xt(ω)
will have the property of being time-homogeneous, in the following sense:

Note that

Xs,x
s+h = x +

s+h∫

s

b(Xs,x
u )du +

s+h∫

s

σ(Xs,x
u )dBu

= x +

h∫

0

b(Xs,x
s+v)dv +

h∫

0

σ(Xs,x
s+v)dB̃v , (u = s + v) (7.1.6)

where B̃v = Bs+v − Bs; v ≥ 0. (See Exercise 2.12). On the other hand of
course

X0,x
h = x +

h∫

0

b(X0,x
v )dv +

h∫

0

σ(X0,x
v )dBv .

Since {B̃v}v≥0 and {Bv}v≥0 have the same P 0-distributions, it follows by
weak uniqueness (Lemma 5.3.1) of the solution of the stochastic differential
equation

dXt = b(Xt)dt + σ(Xt)dBt ; X0 = x

that
{Xs,x

s+h}h≥0 and {X0,x
h }h≥0

have the same P 0-distributions, i.e. {Xt}t≥0 is time-homogeneous.

We now introduce the probability laws Qx of {Xt}t≥0, for x ∈ Rn. Intu-
itively, Qx gives the distribution of {Xt}t≥0 assuming that X0 = x. To express
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this mathematically, we let M∞ be the σ-algebra (of subsets of Ω) generated
by the random variables ω → Xt(ω) = Xy

t (ω), where t ≥ 0, y ∈ Rn.
Define Qx on the members of M by

Qx[Xt1 ∈ E1, · · · , Xtk
∈ Ek] = P 0[Xx

t1 ∈ E1, · · · , Xx
tk
∈ Ek] (7.1.7)

where Ei ⊂ Rn are Borel sets; 1 ≤ i ≤ k.
As before we let F (m)

t be the σ-algebra generated by {Br; r ≤ t}. Similarly
we let Mt be the σ-algebra generated by {Xr; r ≤ t}. We have established
earlier (see Theorem 5.2.1) that Xt is measurable with respect to F (m)

t , so
Mt ⊆ F (m)

t .
We now prove that Xt satisfies the important Markov property : The fu-

ture behaviour of the process given what has happened up to time t is the
same as the behaviour obtained when starting the process at Xt. The precise
mathematical formulation of this is the following:

Theorem 7.1.2 (The Markov property for Itô diffusions).
Let f be a bounded Borel function from Rn to R. Then, for t, h ≥ 0

Ex[f(Xt+h)|F (m)
t ](ω) = EXt(ω)[f(Xh)] . (7.1.8)

(See Appendix B for definition and basic properties of conditional ex-
pectation). Here and in the following Ex denotes the expectation w.r.t. the
probability measure Qx. Thus Ey[f(Xh)] means E[f(Xy

h)], where E denotes
the expectation w.r.t. the measure P 0. The right hand side means the func-
tion Ey[f(Xh)] evaluated at y = Xt(ω).

Proof. Since, for r ≥ t,

Xr(ω) = Xt(ω) +

r∫

t

b(Xu)du +

r∫

t

σ(Xu)dBu ,

we have by uniqueness
Xr(ω) = Xt,Xt

r (ω) .

In other words, if we define

F (x, t, r, ω) = Xt,x
r (ω) for r ≥ t ,

we have
Xr(ω) = F (Xt, t, r, ω); r ≥ t . (7.1.9)

Note that ω → F (x, t, r, ω) is independent of F (m)
t . Using (7.1.9) we may

rewrite (7.1.8) as

E[f(F (Xt, t, t + h, ω))|F (m)
t ] = E[f(F (x, 0, h, ω))]x=Xt . (7.1.10)
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Put g(x, ω) = f ◦ F (x, t, t + h, ω). Then (x, ω) → g(x, ω) is measurable. (See
Exercise 7.6). Hence we can approximate g pointwise boundedly by functions
on the form

m∑

k=1

φk(x)ψk(ω) .

Using the properties of conditional expectation (see Appendix B) we get

E[g(Xt, ω)|F (m)
t ] = E

[
lim

∑
φk(Xt)ψk(ω)|F (m)

t

]

= lim
∑

φk(Xt) · E[ψk(ω)|F (m)
t ]

= lim
∑

E[φk(y)ψk(ω)|F (m)
t ]y=Xt

= E[g(y, ω)|F (m)
t ]y=Xt

= E[g(y, ω)]y=Xt
.

Therefore, since {Xt} is time-homogeneous,

E[f(F (Xt, t, t + h, ω))|F (m)
t ] = E[f(F (y, t, t + h, ω))]y=Xt

= E[f(F (y, 0, h, ω))]y=Xt

which is (7.1.10). tu
Remark. Theorem 7.1.2 states that Xt is a Markov process w.r.t. the family
of σ-algebras {F (m)

t }t≥0. Note that since Mt ⊆ F (m)
t this implies that Xt

is also a Markov process w.r.t. the σ-algebras {Mt}t≥0. This follows from
Theorem B.3 and Theorem B.2 c)( Appendix B):

Ex[f(Xt+h)|Mt] = Ex[Ex[f(Xt+h)|F (m)
t ]|Mt]

= Ex[EXt [f(Xh)]|Mt] = EXt [f(Xh)]

since EXt [f(Xh)] is Mt-measurable.

7.2 The Strong Markov Property

Roughly, the strong Markov property states that a relation of the form (7.1.8)
continues to hold if the time t is replaced by a random time τ(ω) of a more
general type called stopping time (or Markov time):

Definition 7.2.1. Let {Nt} be an increasing family of σ-algebras (of subsets
of Ω). A function τ :Ω → [0,∞] is called a (strict) stopping time w.r.t. {Nt}
if

{ω; τ(ω) ≤ t} ∈ Nt , for all t ≥ 0 .

In other words, it should be possible to decide whether or not τ ≤ t has
occurred on the basis of the knowledge of Nt.
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Example 7.2.2. Let U ⊂ Rn be open. Then the first exit time

τU : = inf{t > 0; Xt /∈ U}

is a stopping time w.r.t. {Mt}, since

{ω; τU ≤ t} =
⋂
m

⋃
r∈Q
r<t

{ω;Xr /∈ Km} ∈ Mt

where {Km} is an increasing sequence of closed sets such that U =
⋃
m

Km .

More generally, if H ⊂ Rn is any set we define the first exit time from H,
τH , as follows

τH = inf{t > 0; Xt /∈ H} .

If we include the sets of measure 0 in Mt (which we do) then the family
{Mt} is right-continuous i.e. Mt = Mt+, where Mt+ =

⋂
s>t

Ms (see Chung

(1982, Theorem 2.3.4., p. 61)) and therefore τH is a stopping time for any
Borel set H (see Dynkin (1965 II, 4.5.C.e.), p. 111)).

Definition 7.2.3. Let τ be a stopping time w.r.t. {Nt} and let N∞ be the
smallest σ-algebra containing Nt for all t ≥ 0. Then the σ-algebra Nτ consists
of all sets N ∈ N∞ such that

N
⋂
{τ ≤ t} ∈ Nt for all t ≥ 0 .

In the case when Nt = Mt, an alternative and more intuitive description
is:

Mτ = the σ-algebra generated by {Xmin(s,τ); s ≥ 0} . (7.2.1)

(See Rao (1977, p. 2.15) or Stroock and Varadhan (1979, Lemma 1.3.3,
p. 33).) Similarly, if Nt = F (m)

t , we get

F (m)
τ = the σ-algebra generated by {Bs∧τ ; s ≥ 0} .

Theorem 7.2.4 (The strong Markov property for Itô diffusions).
Let f be a bounded Borel function on Rn, τ a stopping time w.r.t. F (m)

t ,
τ < ∞ a.s. Then

Ex[f(Xτ+h)|F (m)
τ ] = EXτ [f(Xh)] for all h ≥ 0 . (7.2.2)

Proof. We try to imitate the proof of the Markov property (Theorem 7.1.2).
For a.a. ω we have that Xτ,x

r (ω) satisfies

Xτ,x
τ+h = x +

τ+h∫

τ

b(Xτ,x
u )du +

τ+h∫

τ

σ(Xτ,x
u )dBu .
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By the strong Markov property for Brownian motion (Gihman and Skorohod
(1974a, p. 30)) the process

B̃v = Bτ+v −Bτ ; v ≥ 0

is again a Brownian motion and independent of F (m)
τ . Therefore

Xτ,x
τ+h = x +

h∫

0

b(Xτ,x
τ+v)dv +

h∫

0

σ(Xτ,x
τ+v)dB̃v .

Hence {Xτ,x
τ+h}h≥0 must coincide a.e. with the strongly unique (see (5.2.8))

solution Yh of the equation

Yh = x +

h∫

0

b(Yv)dv +

h∫

0

σ(Yv)dB̃v .

Since {Yh}h≥0 is independent of F (m)
τ , {Xτ,x

τ+h} must be independent also.
Moreover, by weak uniqueness (Lemma 5.3.1) we conclude that

{Yh}h≥0 , and hence {Xτ,x
τ+h}h≥0, has the same law as {X0,x

h }h≥0 . (7.2.3)

Put
F (x, t, r, ω) = Xt,x

r (ω) for r ≥ t .

Then (7.2.2) can be written

E[f(F (x, 0, τ + h, ω))|F (m)
τ ] = E[f(F (x, 0, h, ω))]x=X0,x

τ
.

Now, with Xt = X0,x
t ,

F (x, 0, τ + h, ω) = Xτ+h(ω) = x +

τ+h∫

0

b(Xs)ds +

τ+h∫

0

σ(Xs)dBs

= x +

τ∫

0

b(Xs)ds +

τ∫

0

σ(Xs)dBs +

τ+h∫

τ

b(Xs)ds +

τ+h∫

τ

σ(Xs)dBs

= Xτ +

τ+h∫

τ

b(Xs)ds +

τ+h∫

τ

σ(Xs)dBs

= F (Xτ , τ, τ + h, ω) .

Hence (7.2.2) gets the form

E[f(F (Xτ , τ, τ + h, ω))|F (m)
τ ] = E[f(F (x, 0, h, ω))]x=Xτ .
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Put g(x, t, r, ω) = f(F (x, t, r, ω)). As in the proof of Theorem 7.1.2 we may
assume that g has the form

g(x, t, r, ω) =
∑

k

φk(x)ψk(t, r, ω) .

Then, since Xτ,x
τ+h is independent of F (m)

τ we get, using (7.2.3)

E[g(Xτ , τ, τ + h, ω)|F (m)
τ ] =

∑

k

E[φk(Xτ )ψk(τ, τ + h, ω)|F (m)
τ ]

=
∑

k

φk(Xτ )E[ψk(τ, τ +h, ω)|F (m)
τ ]=

∑

k

E[φk(x)ψk(τ, τ +h, ω)|F (m)
τ ]x=Xτ

= E[g(x, τ, τ + h, ω)|F (m)
τ ]x=Xτ

= E[g(x, τ, τ + h, ω)]x=Xτ

= E[f(Xτ,x
τ+h)]x=Xτ

= E[f(X0,x
h )]x=Xτ

= E[f(F (x, 0, h, ω))]x=Xτ
. tu

We now extend (7.2.2) to the following:
If f1, · · · , fk are bounded Borel functions on Rn, τ an F (m)

t -stopping time,
τ < ∞ a.s. then

Ex[f1(Xτ+h1)f2(Xτ+h2) · · · fk(Xτ+hk
)|F (m)

τ ] = EXτ [f1(Xh1) · · · fk(Xhk
)]

(7.2.4)
for all 0 ≤ h1 ≤ h2 ≤ · · · ≤ hk. This follows by induction: To illustrate the
argument we prove it in the case k = 2:

Ex[f1(Xτ+h1)f2(Xτ+h2)|F (m)
τ ] = Ex[Ex[f1(Xτ+h1)f2(Xτ+h2)|Fτ+h1 ]|F (m)

τ ]
= Ex[f1(Xτ+h1)E

x[f2(Xτ+h2)|Fτ+h1 ]|F (m)
τ ]

= Ex[f1(Xτ+h1)E
Xτ+h1 [f2(Xh2−h1)]|F (m)

τ ]
= EXτ [f1(Xh1)E

Xh1 [f2(Xh2−h1)]]

= EXτ [f1(Xh1)E
x[f2(Xh2)|F (m)

h1
]] = EXτ [f1(Xh1)f2(Xh2)] , as claimed .

Next we proceed to formulate the general version we need: Let H be the
set of all realM∞-measurable functions. For t ≥ 0 we define the shift operator

θt:H → H
as follows:

If η = g1(Xt1) · · · gk(Xtk
) (gi Borel measurable, ti ≥ 0) we put

θtη = g1(Xt1+t) · · · gk(Xtk+t) .

Now extend in the natural way to all functions in H by taking limits of sums
of such functions. Then it follows from (7.2.4) that

Ex[θτη|F (m)
τ ] = EXτ [η] (7.2.5)

for all stopping times τ and all bounded η ∈ H, where

(θτη)(ω) = (θtη)(ω) if τ(ω) = t .
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Hitting distribution, harmonic measure and
the mean value property

We will apply this to the following situation: Let H ⊂ Rn be measurable and
let τH be the first exit time from H for an Itô diffusion Xt. Let α be another
stopping time, g a bounded continuous function on Rn and put

η = g(XτH
)X{τH<∞} , τα

H = inf{t > α; Xt /∈ H} .

Then we have
θαη · X{α<∞} = g(Xτα

H
)X{τα

H
<∞} . (7.2.6)

To prove (7.2.6) we approximate η by functions η(k); k = 1, 2, . . . , of the form

η(k) =
∑

j

g(Xtj )X[tj ,tj+1)(τH) , tj = j · 2−k, j = 0, 1, 2, . . .

Now

θtX[tj ,tj+1)(τH) = θtX{∀r∈(0,tj)Xr∈H&∃s∈[tj ,tj+1)Xs /∈H}
= X{∀r∈(0,tj)Xr+t∈H&∃s∈[tj ,tj+1)Xs+t /∈H}
= X{∀u∈(t,tj+t)Xu∈H&∃v∈[tj+t,tj+1+t)Xv /∈H} = X[tj+t,tj+1+t)(τ t

H) .

So we see that

θtη = lim
k

θtη
(k) = lim

k

∑

j

g(Xtj+t)X[tj+t,tj+1+t)(τ t
H)

= g(Xτt
H

) · X{τt
H

<∞} , which is (7.2.6) .

In particular, if α = τG with G ⊂⊂ H measurable, τH < ∞ a.s. Qx, then
we have τα

H = τH and so

θτGg(XτH ) = g(XτH ) . (7.2.7)
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So if f is any bounded measurable function we obtain from (7.2.5) and
(7.2.7):

Ex[f(XτH
)] = Ex[EXτG [f(XτH

)]] =
∫

∂G

Ey[f(XτH
)] ·Qx[XτG

∈ dy] (7.2.8)

for x ∈ G.
(Define µx

H(F ) = Qx(XτH
∈ F ) and approximate f in L1(µx

H) by con-
tinuous functions g satisfying (7.2.7)). In other words, the expected value of
f at XτH

when starting at x ∈ G can be obtained by integrating the ex-
pected value when starting at y ∈ ∂G with respect to the hitting distribution
(“harmonic measure”) of X on ∂G. This can be restated as follows:

Define the harmonic measure of X on ∂G, µx
G, by

µx
G(F ) = Qx[XτG

∈ F ] for F ⊂ ∂G, x ∈ G .

Then the function
φ(x) = Ex[f(XτH

)]

satisfies the mean value property:

φ(x) =
∫

∂G

φ(y)dµx
G(y) , for all x ∈ G (7.2.9)

for all Borel sets G ⊂⊂ H.

This is an important ingredient in our solution of the generalized Dirichlet
problem in Chapter 9.

7.3 The Generator of an Itô Diffusion

It is fundamental for many applications that we can associate a second order
partial differential operator A to an Itô diffusion Xt. The basic connection
between A and Xt is that A is the generator of the process Xt:

Definition 7.3.1. Let {Xt} be a (time-homogeneous) Itô diffusion in Rn.
The (infinitesimal) generator A of Xt is defined by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)
t

; x ∈ Rn .

The set of functions f :Rn → R such that the limit exists at x is denoted by
DA(x), while DA denotes the set of functions for which the limit exists for
all x ∈ Rn.
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To find the relation between A and the coefficients b, σ in the stochastic
differential equation (7.1.4) defining Xt we need the following result, which
is useful in many connections:

Lemma 7.3.2. Let Yt = Y x
t be an Itô process in Rn of the form

Y x
t (ω) = x +

t∫

0

u(s, ω)ds +

t∫

0

v(s, ω)dBs(ω)

where B is m-dimensional. Let f ∈ C2
0 (Rn), i.e. f ∈ C2(Rn) and f has

compact support, and let τ be a stopping time with respect to {F (m)
t }, and

assume that Ex[τ ] < ∞. Assume that u(t, ω) and v(t, ω) are bounded on the
set of (t, ω) such that Y (t, ω) belongs to the support of f . Then

Ex[f(Yτ )] =

f(x) + Ex

[ τ∫

0

(∑

i

ui(s, ω)
∂f

∂xi
(Ys) + 1

2

∑

i,j

(vvT )i,j(s, ω)
∂2f

∂xi∂xj
(Ys)

)
ds

]
,

where Ex is the expectation w.r.t. the natural probability law Rx for Yt start-
ing at x:

Rx[Yt1 ∈ F1, . . . , Ytk
∈ Fk] = P 0[Y x

t1 ∈ F1, . . . , Y
x
tk
∈ Fk] , Fi Borel sets .

Proof. Put Z = f(Y ) and apply Itô’s formula (To simplify the notation we
suppress the index t and let Y1, . . . , Yn and B1, . . . , Bm denote the coordinates
of Y and B, respectively)

dZ =
∑

i

∂f

∂xi
(Y )dYi + 1

2

∑

i,j

∂2f

∂xi∂xj
(Y )dYidYj

=
∑

i

ui
∂f

∂xi
dt + 1

2

∑

i,j

∂2f

∂xi∂xj
(vdB)i(vdB)j +

∑

i

∂f

∂xi
(vdB)i .

Since

(vdB)i · (vdB)j =
( ∑

k

vikdBk

)(∑
n

vjndBn

)

=
( ∑

k

vikvjk

)
dt = (vvT )ijdt ,

this gives

f(Yt) = f(Y0) +

t∫

0

( ∑

i

ui
∂f

∂xi
+ 1

2

∑

i,j

(vvT )ij
∂2f

∂xi∂xj

)
ds

+
∑

i,k

t∫

0

vik
∂f

∂xi
dBk . (7.3.1)
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Hence

Ex[f(Yτ )] = f(x) + Ex

[ τ∫

0

( ∑

i

ui
∂f

∂xi
(Y ) + 1

2

∑

i,j

(vvT )i,j
∂2f

∂xi∂xj
(Y )

)
ds

]

+
∑

i,k

Ex

[ τ∫

0

vik
∂f

∂xi
(Y )dBk

]
. (7.3.2)

If g is a bounded Borel function, |g| ≤ M say, then for all integers k we have

Ex

[ τ∧k∫

0

g(Ys)dBs

]
= Ex

[ k∫

0

X{s<τ}g(Ys)dBs

]
= 0 ,

since g(Ys) and X{s<τ} are both F (m)
s -measurable. Moreover

Ex

[( τ∫

0

g(Ys)dBs −
τ∧k∫

0

g(Ys)dBs

)2]
= Ex

[ τ∫

τ∧k

g2(Ys)ds

]

≤ M2Ex[τ − τ ∧ k] → 0 .

Therefore

0 = lim
k→∞

Ex

[ τ∧k∫

0

g(Ys)dBs

]
= Ex[

τ∫

0

g(Ys)dBs] .

Combining this with (7.3.2) we get Lemma 7.3.2.
tu

This gives immediately the formula for the generator A of an Itô diffusion:

Theorem 7.3.3. Let Xt be the Itô diffusion

dXt = b(Xt)dt + σ(Xt)dBt .

If f ∈ C2
0 (Rn) then f ∈ DA and

Af(x) =
∑

i

bi(x)
∂f

∂xi
+ 1

2

∑

i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
. (7.3.3)

Proof. This follows from Lemma 7.3.2 (with τ = t) and the definition of A.
tu
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Example 7.3.4. The n-dimensional Brownian motion is of course the solu-
tion of the stochastic differential equation

dXt = dBt ,

i.e. we have b = 0 and σ = In, the n-dimensional identity matrix. So the
generator of Bt is

Af = 1
2

∑ ∂2f

∂x2
i

; f = f(x1, . . . , xn) ∈ C2
0 (Rn)

i.e. A = 1
2∆, where ∆ is the Laplace operator.

Example 7.3.5 (The graph of Brownian motion). Let B denote 1-di-

mensional Brownian motion and let X =
(

X1

X2

)
be the solution of the

stochastic differential equation
{

dX1 = dt ; X1(0) = t0
dX2 = dB ; X2(0) = x0

i.e.

dX = bdt + σdB ; X(0) =
(

t0
X0

)
,

with b =
(

1
0

)
and σ =

(
0
1

)
. In other words, X may be regarded as the

graph of Brownian motion. The generator A of X is given by

Af =
∂f

∂t
+ 1

2

∂2f

∂x2
; f = f(t, x) ∈ C2

0 (Rn) .

From now on we will, unless otherwise stated, let A = AX denote the
generator of the Itô diffusion Xt. We let L = LX denote the differential
operator given by the right hand side of (7.3.3). From Theorem 7.3.3 we
know that AX and LX coincide on C2

0 (Rn).

7.4 The Dynkin Formula

If we combine (7.3.2) and (7.3.3) we get:

Theorem 7.4.1 (Dynkin’s formula).
Let f ∈ C2

0 (Rn). Suppose τ is a stopping time, Ex[τ ] < ∞. Then

Ex[f(Xτ )] = f(x) + Ex

[ τ∫

0

Af(Xs)ds

]
. (7.4.1)
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Remarks.

(i) Note that if τ is the first exit time of a bounded set, Ex[τ ] < ∞, then
(7.4.1) holds for any function f ∈ C2.

(ii) For a more general version of Theorem 7.4.1 see Dynkin (1965 I), p. 133.

Example 7.4.2. Consider n-dimensional Brownian motion B = (B1, . . . , Bn)
starting at a = (a1, . . . , an) ∈ Rn(n ≥ 1) and assume |a| < R. What is the
expected value of the first exit time τK of B from the ball

K = KR = {x ∈ Rn; |x| < R} ?

Choose an integer k and apply Dynkin’s formula with X = B, τ = σk =
min(k, τK), and f ∈ C2

0 such that f(x) = |x|2 for |x| ≤ R :

Ea[f(Bσk
)] = f(a) + Ea

[ σk∫

0

1
2∆f(Bs)ds

]

= |a|2 + Ea

[ σk∫

0

n · ds

]
= |a|2 + n · Ea[σk] .

Hence Ea[σk] ≤ 1
n (R2 − |a|2) for all k. So letting k → ∞ we conclude that

τK = lim σk < ∞ a.s. and

Ea[τK ] =
1
n

(R2 − |a|2) . (7.4.2)

Next we assume that n ≥ 2 and |b| > R. What is the probability that B
starting at b ever hits K?

Let αk be the first exit time from the annulus

Ak = {x; R < |x| < 2kR} ; k = 1, 2, . . .

and put
TK = inf{t > 0; Bt ∈ K} .

Let f = fn,k be a C2 function with compact support such that, if R ≤ |x|
≤ 2kR,

f(x) =
{− log |x| when n = 2
|x|2−n when n > 2 .

Then, since ∆f = 0 in Ak, we have by Dynkin’s formula

Eb[f(Bαk
)] = f(b) for all k . (7.4.3)

Put
pk = P b[|Bαk

| = R] , qk = P b[|Bαk
| = 2kR] .
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Let us now consider the two cases n = 2 and n > 2 separately:

n = 2. Then we get from (7.4.3)

− log R · pk − (log R + k · log 2)qk = − log |b| for all k . (7.4.4)

This implies that qk → 0 as k →∞, so that

P b[TK < ∞] = 1 , (7.4.5)

i.e. Brownian motion is recurrent in R2. (See Port and Stone (1979)).

n > 2. In this case (7.4.3) gives

pk ·R2−n + qk · (2kR)2−n = |b|2−n .

Since 0 ≤ qk ≤ 1 we get by letting k →∞

lim
k→∞

pk = P b[TK < ∞] =
( |b|

R

)2−n

,

i.e. Brownian motion is transient in Rn for n > 2.

7.5 The Characteristic Operator

We now introduce an operator which is closely related to the generator A,
but is more suitable in many situations, for example in the solution of the
Dirichlet problem.

Definition 7.5.1. Let {Xt} be an Itô diffusion. The characteristic operator
A = AX of {Xt} is defined by

Af(x) = lim
U↓x

Ex[f(Xτ
U

)]− f(x)
Ex[τU ]

, (7.5.1)

where the U ′s are open sets Uk decreasing to the point x, in the sense that
Uk+1 ⊂ Uk and

⋂
k

Uk = {x}, and τU = inf{t > 0; Xt /∈ U} is the first exit

time from U for Xt. The set of functions f such that the limit (7.5.1) exists
for all x ∈ Rn (and all {Uk}) is denoted by DA. If Ex[τ

U
] = ∞ for all open

U 3 x, we define Af(x) = 0.

It turns out that DA ⊆ DA always and that

Af = Af for all f ∈ DA .

(See Dynkin (1965 I, p. 143).)
We will only need that AX and LX coincide on C2. To obtain this we

first clarify a property of exit times.
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Definition 7.5.2. A point x ∈ Rn is called a trap for {Xt} if

Qx({Xt = x for all t}) = 1 .

In other words, x is trap if and only if τ{x} = ∞ a.s. Qx. For example, if
b(x0) = σ(x0) = 0, then x0 is a trap for Xt (by strong uniqueness of Xt).

Lemma 7.5.3. If x is not a trap for Xt, then there exists an open set U 3 x
such that

Ex[τ
U
] < ∞ .

Proof. See Lemma 5.5 p. 139 in Dynkin (1965 I).

Theorem 7.5.4. Let f ∈ C2. Then f ∈ DA and

Af =
∑

i

bi
∂f

∂xi
+ 1

2

∑

i,j

(σσT )ij
∂2f

∂xi∂xj
. (7.5.2)

Proof. As before we let L denote the operator defined by the right hand side
of (7.5.2). If x is a trap for {Xt} then Af(x) = 0. Choose a bounded open set
V such that x ∈ V . Modify f to f0 outside V such that f0 ∈ C2

0 (Rn). Then
f0 ∈ DA(x) and 0 = Af0(x) = Lf0(x) = Lf(x). Hence Af(x) = Lf(x) = 0
in this case. If x is not a trap, choose a bounded open set U 3 x such that
Ex[τU ] < ∞. Then by Dynkin’s formula (Theorem 7.4.1) (and the following
Remark (i)), writing τU = τ

∣∣∣∣
Ex[f(Xτ )]− f(x)

Ex[τ ]
− Lf(x)

∣∣∣∣ =
|Ex[

τ∫
0

{(Lf)(Xs)− Lf(x)}ds]|
Ex[τ ]

≤ sup
y∈U

|Lf(x)− Lf(y)| → 0 as U ↓ x ,

since Lf is a continuous function.

Remark. We have now obtained that an Itô diffusion is a continuous, strong
Markov process such that the domain of definition of its characteristic oper-
ator includes C2. Thus an Itô diffusion is a diffusion in the sense of Dynkin
(1965 I).

Example 7.5.5 (Brownian motion on the unit circle). The character-

istic operator of the process Y =
(

Y1

Y2

)
from Example 5.1.4 satisfying the

stochastic differential equations (5.1.13), i.e.




dY1 = − 1
2Y1dt− Y2dB

dY2 = − 1
2Y2dt + Y1dB
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is

Af(y1, y2) = 1
2

[
y2
2

∂2f

∂y2
1

− 2y1y2
∂2f

∂y1∂y2
+ y2

1

∂2f

∂y2
2

− y1
∂f

∂y1
− y2

∂f

∂y2

]
.

This is because dY = − 1
2Y dt + KY dB, where

K =
(

0 −1
1 0

)

so that
dY = b(Y )dt + σ(Y )dB

with

b(y1, y2) =

(
− 1

2y1

− 1
2y2

)
, σ(y1, y2) =

(−y2

y1

)

and

a = 1
2σσT = 1

2

(
y2
2 −y1y2

−y1y2 y2
1

)
.

Example 7.5.6. Let D be an open subset of Rn such that τD < ∞ a.s. Qx

for all x. Let φ be a bounded, measurable function on ∂D and define

φ̃(x) = Ex[φ(XτD )]

(φ̃ is called the X-harmonic extension of φ). Then if U is open, x ∈ U ⊂⊂ D,
we have by (7.2.8) that

Ex[φ̃(Xτ
U

)] = Ex[EXτ
U [φ(XτD )]] = Ex[φ(XτD )] = φ̃(x) .

So φ̃ ∈ DA and
Aφ̃ = 0 in D ,

in spite of the fact that in general φ̃ need not even be continuous in D (See
Example 9.2.1).

Exercises

7.1. Find the generator of the following Itô diffusions:
a) dXt = µXtdt + σdBt (The Ornstein-Uhlenbeck process) (Bt ∈ R;

µ, σ constants).
b) dXt = rXtdt + αXtdBt (The geometric Brownian motion)

(Bt ∈ R; r, α constants).
c) dYt = r dt + αYtdBt (Bt ∈ R; r, α constants)
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d) dYt =
[

dt
dXt

]
where Xt is as in a)

e)
[

dX1

dX2

]
=

[
1

X2

]
dt +

[
0

eX1

]
dBt (Bt ∈ R)

f)
[

dX1

dX2

]
=

[
1
0

]
dt +

[
1 0
0 X1

] [
dB1

dB2

]

g) X(t) = (X1, X2, · · · , Xn), where

dXk(t) = rkXkdt + Xk ·
n∑

j=1

αkjdBj ; 1 ≤ k ≤ n

((B1, · · · , Bn) is Brownian motion in Rn, rk and αkj are constants).

7.2. Find an Itô diffusion (i.e. write down the stochastic differential equa-
tion for it) whose generator is the following:
a) Af(x) = f ′(x) + f ′′(x) ; f ∈ C2

0 (R)
b) Af(t, x) = ∂f

∂t + cx∂f
∂x + 1

2α2x2 ∂2f
∂x2 ; f ∈ C2

0 (R2),
where c, α are constants.

c) Af(x1, x2) = 2x2
∂f
∂x1

+ ln(1 + x2
1 + x2

2)
∂f
∂x2

+ 1
2 (1 + x2

1)
∂2f
∂x2

1
+ x1

∂2f
∂x1∂x2

+ 1
2 · ∂2f

∂x2
2

; f ∈ C2
0 (R2).

7.3. Let Bt be Brownian motion on R, B0 = 0 and define

Xt = Xx
t = x · ect+αBt ,

where c, α are constants. Prove directly from the definition that Xt is
a Markov process.

7.4. Let Bx
t be 1-dimensional Brownian motion starting at x ∈ R+. Put

τ = inf{t > 0; Bx
t = 0} .

a) Prove that τ < ∞ a.s. P x for all x > 0. (Hint: See Example 7.4.2,
second part).

b) Prove that Ex[τ ] = ∞ for all x > 0. (Hint: See Example 7.4.2, first
part).

7.5. Let the functions b, σ satisfy condition (5.2.1) of Theorem 5.2.1, with
a constant C independent of t, i.e.

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) for all x ∈ Rn and all t ≥ 0 .

Let Xt be a solution of

dXt = b(t,Xt)dt + σ(t,Xt)dBt .
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Show that
E[|Xt|2] ≤ (1 + E[|X0|2])eKt − 1

for some constant K independent of t.
(Hint: Use Dynkin’s formula with f(x) = |x|2 and τ = t ∧ τR, where
τR = inf {t > 0; |Xt| ≥ R}, and let R →∞ to achieve the inequality

E[|Xt|2] ≤ E[|X0|2] + K ·
t∫

0

(1 + E[|Xs|2])ds ,

which is of the form (5.2.9).)

7.6. Let g(x, ω) = f ◦ F (x, t, t + h, ω) be as in the proof of Theorem 7.1.2.
Assume that f is continuous.
a) Prove that the map x → g(x, ·) is continuous from Rn into L2(P )

by using (5.2.9).
For simplicity assume that n = 1 in the following.
b) Use a) to prove that (x, ω) → g(x, ω) is measurable. (Hint: For each

m = 1, 2, . . . put ξk = ξ
(m)
k = k · 2−m, k = 1, 2, . . . Then

g(m)(x, ·):=
∑

k

g(ξk, ·) · X{ξk≤x<ξk+1}

converges to g(x, ·) in L2(P ) for each x. Deduce that g(m) → g
in L2(dmR × dP ) for all R, where dmR is Lebesgue measure on
{|x| ≤ R}. So a subsequence of g(m)(x, ω) converges to g(x, ω) for
a.a. (x, ω).)

7.7. Let Bt be Brownian motion on Rn starting at x∈Rn and let D⊂Rn

be an open ball centered at x.
a) Use Exercise 2.15 to prove that the harmonic measure µx

D of Bt is
rotation invariant (about x) on the sphere ∂D. Conclude that µx

D

coincides with normalized surface measure σ on ∂D.
b) Let φ be a bounded measurable function on a bounded open set

W ⊂ Rn and define

u(x) = Ex[φ(BτW )] for x ∈ W .

Prove that u satisfies the classical mean value property:

u(x) =
∫

∂D

u(y)dσ(y)

for all balls D centered at x with D ⊂ W .
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7.8. Let {Nt} be a right-continuous family of σ-algebras of subsets of Ω,
containing all sets of measure zero.
a) Let τ1, τ2 be stopping times (w.r.t.Nt). Prove that τ1∧τ2 and τ1∨τ2

are stopping times.
b) If {τn} is a decreasing family of stopping times prove that τ : =

lim
n

τn is a stopping time.

c) If Xt is an Itô diffusion in Rn and F ⊂ Rn is closed, prove that τF

is a stopping time w.r.t. Mt. (Hint: Consider open sets decreasing
to F ).

7.9. Let Xt be a geometric Brownian motion, i.e.

dXt = rXtdt + αXtdBt , X0 = x > 0

where Bt ∈ R; r, α are constants.
a) Find the generator A of Xt and compute Af(x) when f(x) = xγ ;

x > 0, γ constant.
b) If r < 1

2α2 then Xt → 0 as t → ∞, a.s. Qx (Example 5.1.1).
But what is the probability p that Xt, when starting from x < R,
ever hits the value R ? Use Dynkin’s formula with f(x) = xγ1 ,
γ1 = 1− 2r

α2 , to prove that

p =
(

x

R

)γ1

.

c) If r > 1
2α2 then Xt →∞ as t →∞, a.s. Qx. Put

τ = inf{t > 0;Xt ≥ R} .

Use Dynkin’s formula with f(x) = ln x, x > 0 to prove that

Ex[τ ] =
ln R

x

r − 1
2α2

.

(Hint: First consider exit times from (ρ,R), ρ > 0 and then let
ρ → 0. You need estimates for

(1− p(ρ)) ln ρ ,

where

p(ρ) = Qx[Xt reaches the value R before ρ ] ,

which you can get from the calculations in a), b).)
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7.10. Let Xt be the geometric Brownian motion

dXt = rXtdt + αXtdBt .

Find Ex[XT |Ft] for t ≤ T by
a) using the Markov property
and
b) writing Xt = x ertMt, where

Mt = exp(αBt − 1
2α2t) is a martingale .

7.11. Let Xt be an Itô diffusion in Rn and let f :Rn → R be a function such
that

Ex

[ ∞∫

0

|f(Xt)|dt

]
< ∞ for all x ∈ Rn .

Let τ be a stopping time. Use the strong Markov property to prove
that

Ex

[ ∞∫

τ

f(Xt)dt

]
= Ex[g(Xτ )] ,

where

g(y) = Ey

[ ∞∫

0

f(Xt)dt

]
.

7.12. (Local martingales)
An Nt-adapted stochastic process Z(t) ∈ Rn is called a local martin-
gale with respect to the given filtration {Nt} if there exists an increas-
ing sequence of Nt-stopping times τk such that

τk →∞ a.s. as k →∞

and
Z(t ∧ τk) is an Nt-martingale for all k .

a) Show that if Z(t) is a local martingale and there exists a constant
T ≤ ∞ such that the family {Z(τ)}τ≤T is uniformly integrable
(Appendix C) then {Z(t)}t≤T is a martingale.

b) In particular, if Z(t) is a local martingale and there exists a constant
K < ∞ such that

E[Z2(τ)] ≤ K

for all stopping times τ ≤ T , then {Z(t)}t≤T is a martingale.
c) Show that if Z(t) is a lower bounded local martingale, then Z(t) is

a supermartingale (Appendix C).
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7.13. a) Let Bt ∈ R2, B0 = x 6= 0. Fix 0 < ε < R < ∞ and define

Xt = ln |Bt∧τ | ; t ≥ 0

where
τ = inf {t > 0; |Bt| ≤ ε or |Bt| ≥ R} .

Prove that Xt is an Ft∧τ -martingale. (Hint: Use Exercise 4.8.)
Deduce that ln |Bt| is a local martingale (Exercise 7.12).

b) Let Bt ∈ Rn for n ≥ 3, B0 = x 6= 0. Fix ε > 0, R < ∞ and define

Yt = |Bt∧τ |2−n ; t ≥ 0

where
τ = inf{t > 0; |Bt| ≤ ε or |Bt| ≥ R} .

Prove that Yt is an Ft∧τ -martingale.
Deduce that |Bt|2−n is a local martingale.

7.14. (Doob’s h-transform)
Let Bt be n-dimensional Brownian motion, D ⊂ Rn a bounded open
set and h > 0 a harmonic function on D (i.e. ∆h = 0 in D). Let Xt

be the solution of the stochastic differential equation

dXt = ∇(lnh)(Xt)dt + dBt

More precisely, choose an increasing sequence {Dk} of open subsets of

D such that Dk ⊂ D and
∞⋃

k=1

Dk = D. Then for each k the equation

above can be solved (strongly) for t < τDk
. This gives in a natural way

a solution for t < τ : = lim
k→∞

τDk
.

a) Show that the generator A of Xt satisfies

Af =
∆(hf)

2h
for f ∈ C2

0 (D) .

In particular, if f = 1
h then Af = 0.

b) Use a) to show that if there exists x0 ∈ ∂D such that

lim
x→y∈∂D

h(x) =
{

0 if y 6= x0

∞ if y = x0

(i.e. h is a kernel function), then

lim
t→τ

Xt = x0 a.s.

(Hint: Consider Ex[f(XT )] for suitable stopping times T and with
f = 1

h )
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In other words, we have imposed a drift on Bt which causes the
process to exit from D at the point x0 only. This can also be for-
mulated as follows: Xt is obtained by conditioning Bt to exit from
D at x0. See Doob (1984).

7.15. Let Bt be 1-dimensional and define

F (ω) = (BT (ω)−K)+

where K > 0, T > 0 are constants.
By the Itô representation theorem (Theorem 4.3.3) we know that there
exists φ ∈ V(0, T ) such that

F (ω) = E[F ] +

T∫

0

φ(t, ω)dBt .

How do we find φ explicitly? This problem is of interest in mathe-
matical finance, where φ may be regarded as the replicating portfolio
for the contingent claim F (see Chapter 12). Using the Clark-Ocone
formula (see Karatzas and Ocone (1991) or Øksendal (1996)) one can
deduce that

φ(t, ω) = E[X[K,∞)(BT )|Ft] ; t < T . (7.5.3)

Use (7.5.3) and the Markov property of Brownian motion to prove that
for t < T we have

φ(t, ω) =
1√

2π(T − t)

∞∫

K

exp
(
− (x−Bt(ω))2

2(T − t)

)
dx . (7.5.4)

7.16. Let Bt be 1-dimensional and let f :R → R be a bounded function.
Prove that if t < T then

Ex[f(BT )|Ft] =
1√

2π(T − t)

∫

R

f(x) exp
(
− (x−Bt(ω))2

2(T − t)

)
dx .

(7.5.5)
(Compare with (7.5.4).)

7.17. Let Bt be 1-dimensional and put

Xt = (x1/3 + 1
3Bt)3 ; t ≥ 0 .

Then we have seen in Exercise 4.15 that Xt is a solution of the stochas-
tic differential equation

dXt = 1
3X

1/3
t dt + X

2/3
t dBt ; X0 = x . (7.5.6)
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Define
τ = inf{t > 0;Xt = 0}

and put
Yt =

{
Xt for t ≤ τ
0 for t > τ .

Prove that Yt is also a (strong) solution of (7.5.6). Why does not this
contradict the uniqueness assertion of Theorem 5.2.1?
(Hint: Verify that

Yt = x +

t∫

0

1
3Y 1/3

s ds +

t∫

0

Y 2/3
s dBs

for all t by splitting the integrals as follows:

t∫

0

=

t∧τ∫

0

+

t∫

t∧τ

. )

7.18. a) Let
dXt = b(Xt)dt + σ(Xt)dBt ; X0 = x

be a 1-dimensional Itô diffusion with characteristic operator A. Let
f ∈ C2(R) be a solution of the differential equation

Af(x) = b(x)f ′(x) + 1
2σ2(x)f ′′(x) = 0 ; x ∈ R . (7.5.7)

Let (a, b) ⊂ R be an open interval such that x ∈ (a, b) and put

τ = inf{t > 0; Xt 6∈ (a, b)} .

Assume that τ < ∞ a.s. Qx and define

p = P x[Xτ = b] .

Use Dynkin’s formula to prove that if f(b) 6= f(a) then

p =
f(x)− f(a)
f(b)− f(a)

. (7.5.8)

In other words, the harmonic measure µx
(a,b) of X on ∂(a, b) = {a, b}

is given by

µx
(a,b)(b) =

f(x)− f(a)
f(b)− f(a)

, µx
(a,b)(a) =

f(b)− f(x)
f(b)− f(a)

. (7.5.9)
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b) Now specialize to the process

Xt = x + Bt ; t ≥ 0 .

Prove that
p =

x− a

b− a
. (7.5.10)

c) Find p if
Xt = x + µt + σBt ; t ≥ 0

where µ, σ ∈ R are nonzero constants.

7.19. Let Bx
t be 1-dimensional Brownian motion starting at x > 0. Define

τ = τ(x, ω) = inf{t > 0; Bx
t (ω) = 0} .

From Exercise 7.4 we know that

τ < ∞ a.s. P x and Ex[τ ] = ∞ .

What is the distribution of the random variable τ(ω) ?
a) To answer this, first find the Laplace transform

g(λ):= Ex[e−λτ ] for λ > 0 .

(Hint: Let Mt = exp(−
√

2λ Bt − λt). Then

{Mt∧τ}t≥0 is a bounded martingale .

[Solution: g(λ) = exp(−
√

2λ x) .]
b) To find the density f(t) of τ it suffices to find f(t) = f(t, x) such

that ∞∫

0

e−λtf(t)dt = exp(−
√

2λ x) for all λ > 0

i.e. to find the inverse Laplace transform of g(λ). Verify that

f(t, x) =
x√
2πt3

exp
(
− x2

2t

)
; t > 0 .



8. Other Topics in Diffusion Theory

In this chapter we study some other important topics in diffusion theory and
related areas. Some of these topics are not strictly necessary for the remaining
chapters, but they are all central in the theory of stochastic analysis and
essential for further applications. The following topics will be treated:

8.1 Kolmogorov’s backward equation. The resolvent.
8.2 The Feynman-Kac formula. Killing.
8.3 The martingale problem.
8.4 When is an Itô process a diffusion?
8.5 Random time change.
8.6 The Girsanov formula.

8.1 Kolmogorov’s Backward Equation. The Resolvent

In the following we let Xt be an Itô diffusion in Rn with generator A. If we
choose f ∈ C2

0 (Rn) and τ = t in Dynkin’s formula (7.4.1) we see that

u(t, x) = Ex[f(Xt)]

is differentiable with respect to t and

∂u

∂t
= Ex[Af(Xt)] . (8.1.1)

It turns out that the right hand side of (8.1.1) can be expressed in terms of
u also:

Theorem 8.1.1 (Kolmogorov’s backward equation).
Let f ∈ C2

0 (Rn).

a) Define
u(t, x) = Ex[f(Xt)] . (8.1.2)

Then u(t, ·) ∈ DA for each t and

∂u

∂t
= Au , t > 0, x ∈ Rn (8.1.3)

u(0, x) = f(x) ; x ∈ Rn (8.1.4)
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where the right hand side is to be interpreted as A applied to the function
x → u(t, x).

b) Moreover, if w(t, x) ∈ C1,2(R × Rn) is a bounded function satisfying
(8.1.3), (8.1.4) then w(t, x) = u(t, x), given by (8.1.2).

Proof. a) Let g(x) = u(t, x). Then since t → u(t, x) is differentiable we have

Ex[g(Xr)]− g(x)
r

=
1
r
· Ex[EXr [f(Xt)]− Ex[f(Xt)]]

=
1
r
· Ex[Ex[f(Xt+r)|Fr]− Ex[f(Xt)|Fr]]

=
1
r
· Ex[f(Xt+r)− f(Xt)]

=
u(t + r, x)− u(t, x)

r
→ ∂u

∂t
as r ↓ 0 .

Hence

Au = lim
r↓0

Ex[g(Xr)]− g(x)
r

exists and ∂u
∂t = Au, as asserted .

Conversely, to prove the uniqueness statement in b) assume that a function
w(t, x) ∈ C1,2(R×Rn) satisfies (8.1.3)–(8.1.4). Then

Ãw: = −∂w

∂t
+ Aw = 0 for t > 0, x ∈ Rn (8.1.5)

and
w(0, x) = f(x) , x ∈ Rn . (8.1.6)

Fix (s, x) ∈ R × Rn. Define the process Yt in Rn+1 by Yt = (s − t,X0,x
t ),

t ≥ 0. Then Yt has generator Ã and so by (8.1.5) and Dynkin’s formula we
have, for all t ≥ 0,

Es,x[w(Yt∧τR
)] = w(s, x) + Es,x

[ t∧τR∫

0

Ãw(Yr)dr

]
= w(s, x) ,

where τR = inf{t > 0; |Xt| ≥ R}.
Letting R →∞ we get

w(s, x) = Es,x[w(Yt)] ; ∀t ≥ 0 .

In particular, choosing t = s we get

w(s, x) = Es,x[w(Ys)] = E[w(0, X0,x
s )] = E[f(X0,x

s )] = Ex[f(Xs)] .
tu
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Remark. If we introduce the operator Qt: f → E•[f(Xt)] then we have
u(t, x) = (Qtf)(x) and we may rewrite (8.1.1) and (8.1.3) as follows:

d

dt
(Qtf) = Qt(Af) ; f ∈ C2

0 (Rn) (8.1.1)′

d

dt
(Qtf) = A(Qtf) ; f ∈ C2

0 (Rn) . (8.1.3)′

Thus the equivalence of (8.1.1) and (8.1.3) amounts to saying that the oper-
ators Qt and A commute, in some sense. Arguing formally, it is tempting to
say that the solution of (8.1.1)′ and (8.1.3)′ is

Qt = etA

and therefore QtA = AQt. However, this argument would require a further
explanation, because in general A is an unbounded operator.

It is an important fact that the operator A always has an inverse, at least
if a positive multiple of the identity is subtracted from A. This inverse can
be expressed explicitly in terms of the diffusion Xt:

Definition 8.1.2. For α > 0 and g ∈ Cb(Rn) we define the resolvent oper-
ator Rα by

Rαg(x) = Ex

[ ∞∫

0

e−αtg(Xt)dt

]
. (8.1.7)

Lemma 8.1.3. Rαg is a bounded continuous function.

Proof. Since Rαg(x) =
∞∫
0

e−αtEx[g(Xt)]dt, we see that Lemma 8.1.3 is a

direct consequence of the next result:

Lemma 8.1.4. Let g be a lower bounded, measurable function on Rn and
define, for fixed t ≥ 0

u(x) = Ex[g(Xt)] .

a) If g is lower semicontinuous, then u is lower semicontinuous.
b) If g is bounded and continuous, then u is continuous. In other words, any

Itô diffusion Xt is Feller-continuous.

Proof. By (5.2.10) we have

E[|Xx
t −Xy

t |2] ≤ |y − x|2C(t) ,

where C(t) does not depend on x and y. Let {yn} be a sequence of points
converging to x. Then

Xyn

t → Xx
t in L2(Ω, P ) as n →∞ .

So, by taking a subsequence {zn} of {yn} we obtain that

Xzn
t (ω) → Xx

t (ω) for a.a. ω ∈ Ω .
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a) If g is lower bounded and lower semicontinuous, then by the Fatou lemma

u(x) = E[g(Xx
t )] ≤ E[ lim

n→∞
g(Xzn

t )] ≤ lim
n→∞

E[g(Xzn
t )] = lim

n→∞
u(zn) .

Therefore every sequence {yn} converging to x has a subsequence {zn}
such that u(x) ≤ lim

n→∞
u(zn). That proves that u is lower semicontinuous.

b) If g is bounded and continuous, the result in a) can be applied both to g
and −g. Hence both u and −u are lower semicontinuous and we conclude
that u is continuous. tu
We now prove that Rα and α−A are inverse operators:

Theorem 8.1.5. a) If f ∈ C2
0 (Rn) then Rα(α−A)f = f for all α > 0.

b) If g ∈ Cb(Rn) then Rαg ∈ DA and (α−A)Rαg = g for all α > 0.

Proof. a) If f ∈ C2
0 (Rn) then by Dynkin’s formula

Rα(α−A)f(x) = (αRαf −RαAf)(x)

= α

∞∫

0

e−αtEx[f(Xt)]dt−
∞∫

0

e−αtEx[Af(Xt)]dt

=
∞∣∣∣
0

−e−αtEx[f(Xt)] +

∞∫

0

e−αt d

dt
Ex[f(Xt)]dt−

∞∫

0

e−αtEx[Af(Xt)]dt

= Ex[f(X0)] = f(x) .

b) If g ∈ Cb(Rn) then by the strong Markov property

Ex[Rαg(Xt)] = Ex[EXt

[ ∞∫

0

e−αsg(Xs)ds

]
]

= Ex[Ex
[
θt

( ∞∫

0

e−αsg(Xs)ds

)
|Ft

]
] = Ex[Ex

[ ∞∫

0

e−αsg(Xt+s)ds|Ft

]
]

= Ex

[ ∞∫

0

e−αsg(Xt+s)ds

]
=

∞∫

0

e−αsEx[g(Xt+s)]ds .

Integration by parts gives

Ex[Rαg(Xt)] = α

∞∫

0

e−αs

t+s∫

t

Ex[g(Xv)]dv ds .

This identity implies that Rαg ∈ DA and

A(Rαg) = αRαg − g .

tu
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8.2 The Feynman-Kac Formula. Killing

With a little harder work we can obtain the following useful generalization
of Kolmogorov’s backward equation:

Theorem 8.2.1 (The Feynman-Kac formula).
Let f ∈ C2

0 (Rn) and q ∈ C(Rn). Assume that q is lower bounded.

a) Put

v(t, x) = Ex

[
exp

(
−

t∫

0

q(Xs)ds

)
f(Xt)

]
. (8.2.1)

Then
∂v

∂t
= Av − qv ; t > 0, x ∈ Rn (8.2.2)

v(0, x) = f(x) ; x ∈ Rn (8.2.3)

b) Moreover, if w(t, x) ∈ C1,2(R × Rn) is bounded on K × Rn for each
compact K ⊂ R and w solves (8.2.2), (8.2.3), then w(t, x) = v(t, x),
given by (8.2.1).

Proof. a) Let Yt = f(Xt), Zt = exp(−
t∫
0

q(Xs)ds). Then dYt is given by

(7.3.1) and
dZt = −Ztq(Xt)dt .

So
d(YtZt) = YtdZt + ZtdYt , since dZt · dYt = 0 .

Note that since YtZt is an Itô process it follows from Lemma 7.3.2 that
v(t, x) = Ex[YtZt] is differentiable w.r.t. t.

Therefore, with v(t, x) as in (8.2.1) we get
1
r
(Ex[v(t,Xr)]− v(t, x)) =

1
r
Ex[EXr [Ztf(Xt)]− Ex[Ztf(Xt)]]

=
1
r
Ex[Ex[f(Xt+r) exp

(
−

t∫

0

q(Xs+r)ds

)
|Fr]− Ex[Ztf(Xt)|Fr]]

=
1
r
Ex[Zt+r · exp

( r∫

0

q(Xs)ds

)
f(Xt+r)− Ztf(Xt)]

=
1
r
Ex[f(Xt+r)Zt+r − f(Xt)Zt]

+
1
r
Ex

[
f(Xt+r)Zt+r ·

(
exp

( r∫

0

q(Xs)ds

)
− 1

)]

→ ∂

∂t
v(t, x) + q(x)v(t, x) as r → 0 ,
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because

1
r
f(Xt+r)Zt+r

(
exp

( r∫

0

q(Xs)ds

)
− 1

)
→ f(Xt)Ztq(X0)

pointwise boundedly. That completes the proof of a).

b) Assume that w(t, x) ∈ C1,2(R×Rn) satisfies (8.2.2) and (8.2.3) and that
w(t, x) is bounded on K ×Rn for each compact K ⊂ R. Then

Âw(t, x):= −∂w

∂t
+ Aw − qw = 0 for t > 0, x ∈ Rn (8.2.4)

and
w(0, x) = f(x) ; x ∈ Rn . (8.2.5)

Fix (s, x, z) ∈ R×Rn ×Rn and define Zt = z +
t∫
0

q(Xs)ds and Ht = (s− t,

X0,x
t , Zt). Then Ht is an Itô diffusion with generator

AHφ(s, x, z) = −∂φ

∂s
+ Aφ + q(x)

∂φ

∂z
; φ ∈ C2

0 (R×Rn ×Rn) .

Hence by (8.2.4) and Dynkin’s formula we have, for all t ≥ 0, R > 0 and with
φ(s, x, z) = exp(−z)w(s, x):

Es,x,z[φ(Ht∧τR)] = φ(s, x, z) + Es,x,z

[ t∧τR∫

0

AHφ(Hr)dr

]
,

where τR = inf{t > 0; |Ht| ≥ R}.
Note that with this choice of φ we have by (8.2.4)

AHφ(s, x, z) = exp(−z)
[
− ∂w

∂s
+ Aw − q(x)w

]
= 0 .

Hence

w(s, x) = φ(s, x, 0) = Es,x,0[φ(Ht∧τR)]

= Ex
[
exp

(
−

t∧τR∫

0

q(Xr)dr

)
w(s− t ∧ τR, Xt∧τR)

]

→ Ex
[
exp

(
−

t∫

0

q(Xr)dr

)
w(s− t,Xt)

]
as R →∞ ,

since w(r, x) is bounded for (r, x) ∈ K×Rn. In particular, choosing t = s we
get
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w(s, x) = Ex
[
exp

(
−

s∫

0

q(Xr)dr

)
w(0, X0,x

s )
]

= v(s, x) , as claimed .
tu

Remark. (About killing a diffusion)
In Theorem 7.3.3 we have seen that the generator of an Itô diffusion Xt given
by

dXt = b(Xt)dt + σ(Xt)dBt (8.2.6)

is a partial differential operator L of the form

Lf =
∑

aij
∂2f

∂xi∂xj
+

∑
bi

∂f

∂xi
(8.2.7)

where [aij ] = 1
2σσT , b = [bi]. It is natural to ask if one can also find processes

whose generator has the form

Lf =
∑

aij
∂2f

∂xi∂xj
+

∑
bi

∂f

∂xi
− cf , (8.2.8)

where c(x) is a bounded and continuous function.
If c(x) ≥ 0 the answer is yes and a process X̃t with generator (8.2.8) is

obtained by killing Xt at a certain (killing) time ζ. By this we mean that
there exists a random time ζ such that if we put

X̃t = Xt if t < ζ (8.2.9)

and leave X̃t undefined if t ≥ ζ (alternatively, put X̃t = ∂ if t ≥ ζ, where
∂ /∈ Rn is some “coffin” state), then X̃t is also a strong Markov process and

Ex[f(X̃t)] = Ex[f(Xt), t < ζ] = Ex
[
f(Xt) · e

−
∫ t

0
c(Xs)ds]

(8.2.10)

for all bounded continuous functions f on Rn.
Let v(t, x) denote the right hand side of (8.2.10) with f ∈ C2

0 (Rn). Then

lim
t→0

Ex[f(X̃t)]− f(x)
t

=
∂

∂t
v(t, x)t=0 = (Av − cv)t=0 = Af(x)− c(x)f(x) ,

by the Feynman-Kac formula.
So the generator of X̃t is (8.2.8), as required. The function c(x) can be

interpreted as the killing rate:

c(x) = lim
t↓0

1
t
Qx[X0 is killed in the time interval (0, t]] .

Thus by applying such a killing procedure we can come from the special case
c = 0 in (8.2.7) to the general case (8.2.8) with c(x) ≥ 0. Therefore, for many
purposes it is enough to consider the equation (8.2.7).

If the function c(x) ≥ 0 is given, an explicit construction of the killing
time ζ such that (8.2.10) holds can be found in Karlin and Taylor (1975),
p. 314. For a more general discussion see Blumenthal and Getoor (1968),
Chap. III.
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8.3 The Martingale Problem

If dXt = b(Xt)dt + σ(Xt)dBt is an Itô diffusion in Rn with generator A and
if f ∈ C2

0 (Rn) then by (7.3.1)

f(Xt) = f(x) +

t∫

0

Af(Xs)ds +

t∫

0

∇fT (Xs)σ(Xs)dBs . (8.3.1)

Define

Mt = f(Xt)−
t∫

0

Af(Xr)dr (= f(x) +

t∫

0

∇fT (Xr)σ(Xr)dBr) . (8.3.2)

Then, since Itô integrals are martingales (w.r.t. the σ-algebras {F (m)
t }) we

have for s > t
Ex[Ms|F (m)

t ] = Mt .

It follows that

Ex[Ms|Mt] = Ex[Ex[Ms|F (m)
t ]|Mt] = Ex[Mt|Mt] = Mt ,

since Mt is Mt-measurable. We have proved:

Theorem 8.3.1. If Xt is an Itô diffusion in Rn with generator A, then for
all f ∈ C2

0 (Rn) the process

Mt = f(Xt)−
t∫

0

Af(Xr)dr

is a martingale w.r.t. {Mt}.
If we identify each ω ∈ Ω with the function

ωt = ω(t) = Xx
t (ω)

we see that the probability space (Ω,M, Qx) is identified with

((Rn)[0,∞),B, Q̃x)

where B is the Borel σ-algebra on (Rn)[0,∞) (see Chapter 2). Thus, regarding
the law of Xx

t as a probability measure Q̃x on B we can formulate Theo-
rem 8.3.1 as follows:

Theorem 8.3.1’. If Q̃x is the probability measure on B induced by the law
Qx of an Itô diffusion Xt, then for all f ∈ C2

0 (Rn) the process
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Mt = f(Xt)−
t∫

0

Af(Xr)dr (= f(ωt)−
t∫

0

Af(ωr)dr) ; ω ∈ (Rn)[0,∞)

(8.3.3)
is a Q̃x-martingale w.r.t. the Borel σ-algebras Bt of (Rn)[0,t], t ≥ 0. In other
words, the measure Q̃x solves the martingale problem for the differential
operator A, in the following sense:

Definition 8.3.2. Let L be a semi-elliptic differential operator of the form

L =
∑

bi
∂

∂xi
+

∑

i,j

aij
∂2

∂xi∂xj

where the coefficients bi, aij are locally bounded Borel measurable functions
on Rn. Then we say that a probability measure P̃ x on ((Rn)[0,∞),B) solves
the martingale problem for L (starting at x) if the process

Mt = f(ωt)−
t∫

0

Lf(ωr)dr , M0 = f(x) a.s. P̃ x

is a P̃ x martingale w.r.t. Bt, for all f ∈ C2
0 (Rn). The martingale problem

is called well posed if there is a unique measure P̃ x solving the martingale
problem.

The argument of Theorem 8.3.1 actually proves that Q̃x solves the mar-
tingale problem for A whenever Xt is a weak solution of the stochastic dif-
ferential equation

dXt = b(Xt)dt + σ(Xt)dBt . (8.3.4)

Conversely, it can be proved that if P̃ x solves the martingale problem for

L =
∑

bi
∂

∂xi
+ 1

2

∑
(σσT )ij

∂2

∂xi∂xj
(8.3.5)

starting at x, for all x ∈ Rn, then there exists a weak solution Xt of the
stochastic differential equation (8.3.4). Moreover, this weak solution Xt is a
Markov process if and only if the martingale problem for L is well posed.
(See Stroock and Varadhan (1979) or Rogers and Williams (1987)). There-
fore, if the coefficients b, σ of (8.3.4) satisfy the conditions (5.2.1), (5.2.2) of
Theorem 5.2.1, we conclude that

Q̃x is the unique solution of the martingale problem
for the operator L given by (8.3.5) . (8.3.6)

Lipschitz-continuity of the coefficients of L is not necessary for the uniqueness
of the martingale problem. For example, one of the spectacular results of
Stroock and Varadhan (1979) is that
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L =
∑

bi
∂

∂xi
+

∑
aij

∂2

∂xi∂xj

has a unique solution of the martingale problem if [aij ] is everywhere positive
definite, aij(x) is continuous, b(x) is measurable and there exists a constant
D such that

|b(x)|+ |a(x)| 12 ≤ D(1 + |x|) for all x ∈ Rn .

8.4 When is an Itô Process a Diffusion?

The Itô formula gives that if we apply a C2 function φ:U ⊂ Rn → Rn to an
Itô process Xt the result φ(Xt) is another Itô process. A natural question is:
If Xt is an Itô diffusion will φ(Xt) be an Itô diffusion too? The answer is no
in general, but it may be yes in some cases:

Example 8.4.1 (The Bessel process). Let n ≥ 2. In Example 4.2.2 we
found that the process

Rt(ω) = |B(t, ω)| = (B1(t, ω)2 + · · ·+ Bn(t, ω)2)
1
2

satisfies the equation

dRt =
n∑

i=1

BidBi

Rt
+

n− 1
2Rt

dt . (8.4.1)

However, as it stands this is not a stochastic differential equation of the form
(5.2.3), so it is not apparent from (8.4.1) that R is an Itô diffusion. But this
will follow if we can show that

Yt: =

t∫

0

n∑

i=1

Bi

|B|dBi

coincides in law with (i.e. has the same finite-dimensional distributions as)
1-dimensional Brownian motion B̃t. For then (8.4.1) can be written

dRt =
n− 1
2Rt

dt + dB̃

which is of the form (5.2.3), thus showing by weak uniqueness (Lemma 5.3.1)
that Rt is an Itô diffusion with generator

Af(x) = 1
2f ′′(x) +

n− 1
2x

f ′(x)

as claimed in Example 4.2.2. One way of seeing that the process Yt coincides
in law with 1-dimensional Brownian motion B̃t is to apply the following
result:



8.4 When is an Itô Process a Diffusion? 143

Theorem 8.4.2. An Itô process

dYt = vdBt ; Y0 = 0 with v(t, ω) ∈ Vn×m
H

coincides (in law) with n-dimensional Brownian motion if and only if

vvT (t, ω) = In for a.a. (t, ω) w.r.t. dt× dP (8.4.2)

where In is the n-dimensional identity matrix.

Note that in the example above we have

Yt =

t∫

0

vdB

with

v =
[

B1

|B| , . . . ,
Bn

|B|
]

, B =




B1
...

Bn




and since vvT = 1, we get that Yt is a 1-dimensional Brownian motion, as
required.

Theorem 8.4.2 is a special case of the following result, which gives a
necessary and sufficient condition for an Itô process to coincide in law with
a given diffusion: (We use the symbol ' for “coincides in law with”).

Theorem 8.4.3. Let Xt be an Itô diffusion given by

dXt = b(Xt)dt + σ(Xt)dBt , b ∈ Rn , σ ∈ Rn×m, X0 = x ,

and let Yt be an Itô process given by

dYt = u(t, ω)dt + v(t, ω)dBt , u ∈ Rn , v ∈ Rn×m, Y0 = x .

Then Xt ' Yt if and only if

Ex[u(t, ·)|Nt] = b(Y x
t ) and vvT (t, ω) = σσT (Y x

t ) (8.4.3)

for a.a. (t, ω) w.r.t. dt×dP , where Nt is the σ-algebra generated by Ys; s ≤ t.

Proof. Assume that (8.4.3) holds. Let

A =
∑

bi
∂

∂xi
+ 1

2

∑

i,j

(σσT )ij
∂2

∂xi∂xj

be the generator of Xt and define, for f ∈ C2
0 (Rn),

Hf(t, ω) =
∑

i

ui(t, ω)
∂f

∂xi
(Yt) + 1

2

∑

i,j

(vvT )ij(t, ω)
∂2f

∂xi∂xj
(Yt) .
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Then by Itô’s formula (see (7.3.1)) we have, for s > t,

Ex[f(Ys)|Nt] = f(Yt) + Ex

[ s∫

t

Hf(r, ω)dr|Nt

]
+ Ex

[ s∫

t

∇fT vdBr|Nt

]

= f(Yt) + Ex

[ s∫

t

Ex[Hf(r, ω)|Nr]dr|Nt

]

= f(Yt) + Ex

[ s∫

t

Af(Yr)dr|Nt

]
by (8.4.3) , (8.4.4)

where Ex denotes expectation w.r.t. the law Rx of Yt (see Lemma 7.3.2).
Therefore, if we define

Mt = f(Yt)−
t∫

0

Af(Yr)dr (8.4.5)

then, for s > t,

Ex[Ms|Nt] = f(Yt) + Ex

[ s∫

t

Af(Yr)dr|Nt

]
− Ex

[ s∫

0

Af(Yr)dr|Nt

]

= f(Yt)− Ex

[ t∫

0

Af(Yr)dr|Nt

]
= Mt .

Hence Mt is a martingale w.r.t. the σ-algebras Nt and the law Rx. By unique-
ness of the solution of the martingale problem (see (8.3.6)) we conclude that
Xt ' Yt.

Conversely, assume that Xt ' Yt. Choose f ∈ C2
0 . By Itô’s formula (7.3.1)

we have, for a.a. (t, ω) w.r.t. dt× dP ,

lim
h↓0

1
h

(Ex[f(Yt+h)|Nt]− f(Yt))

= lim
h↓0

1
h

( t+h∫

t

Ex
[∑

i

ui(s, ω)
∂f

∂xi
(Ys)

+ 1
2

∑

i,j

(vvT )ij(s, ω)
∂2f

∂xi∂xj
(Ys)|Nt

]
ds

)
(8.4.6)

=
∑

i

Ex[ui(t, ω)|Nt]
∂f

∂xi
(Yt) + 1

2

∑

i,j

Ex[(vvT )ij(t, ω)|Nt]
∂2f

∂xi∂xj
(Yt) . (8.4.7)

On the other hand, since Xt ' Yt we know that Yt is a Markov process.
Therefore (8.4.6) coincides with
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lim
h↓0

1
h

(EYt [f(Yh)]− EYt [f(Y0)])

=
∑

i

EYt

[
ui(0, ω)

∂f

∂xi
(Y0)

]
+ 1

2

∑

i,j

EYt

[
(vvT )ij(0, ω)

∂2f

∂xi∂xj
(Y0)

]

=
∑

i

EYt [ui(0, ω)]
∂f

∂xi
(Yt) + 1

2

∑

i,j

EYt [(vvT )ij(0, ω)]
∂2f

∂xi∂xj
(Yt) . (8.4.8)

Comparing (8.4.7) and (8.4.8) we conclude that

Ex[u(t, ω)|Nt] = EYt [u(0, ω)] and Ex[vvT (t, ω)|Nt] = EYt [vvT (0, ω)]
(8.4.9)

for a.a. (t, ω).
On the other hand, since the generator of Yt coincides with the generator

A of Xt we get from (8.4.8) that

EYt [u(0, ω)] = b(Yt) and EYt [vvT (0, ω)] = σσT (Yt) for a.a. (t, ω) .
(8.4.10)

Combining (8.4.9) and (8.4.10) we conclude that

Ex[u|Nt] = b(Yt) and Ex[vvT |Nt] = σσT (Yt) for a.a. (t, ω) . (8.4.11)

From this we obtain (8.4.3) by using that in fact vvT (t, ·) is always Nt-
measurable, in the following sense:

Lemma 8.4.4. Let dYt = u(t, ω)dt + v(t, ω)dBt, Y0 = x be as in Theo-
rem 8.4.3. Then there exists an Nt-adapted process W (t, ω) such that

vvT (t, ω) = W (t, ω) for a.a. (t, ω) .

Proof. By Itô’s formula we have (if Yi(t, ω) denotes component number i of
Y (t, ω))

YiYj(t, ω) = xixj +

t∫

0

YidYj(s) +

t∫

0

YjdYi(s) +

t∫

0

(vvT )ij(s, ω)ds .

Therefore, if we put

Hij(t, ω) = YiYj(t, ω)− xixj −
t∫

0

YidYj −
t∫

0

YjdYi , 1 ≤ i, j ≤ n

then Hij is Nt-adapted and

Hij(t, ω) =

t∫

0

(vvT )ij(s, ω)ds .
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Therefore

(vvT )ij(t, ω) = lim
r↓0

H(t, ω)−H(t− r, ω)
r

for a.a. t. This shows Lemma 8.4.4 and the proof of Theorem 8.4.3 is complete.
tu

Remarks. 1) One may ask if also u(t, ·) must be Nt-measurable. However,
the following example shows that this fails even in the case when v = n = 1:

Let B1, B2 be two independent 1-dimensional Brownian motions and de-
fine

dYt = B1(t)dt + dB2(t) .

Then we may regard Yt as noisy observations of the process B1(t). So by
Example 6.2.10 we have that

E[(B1(t, ω)− B̂1(t, ω))2] = tanh(t) ,

where B̂1(t, ω) = E[B1(t)|Nt] is the Kalman-Bucy filter. In particular,
B1(t, ω) cannot be Nt-measurable.

2) The process v(t, ω) need not be Nt-adapted either: Let Bt be 1-
dimensional Brownian motion and define

dYt = sign(Bt)dBt (8.4.12)

where

sign(z) =
{

1 if z > 0
−1 if z ≤ 0 .

Tanaka’s formula says that

|Bt| = |B0|+
t∫

0

sign(Bs)dBs + Lt (8.4.13)

where Lt = Lt(ω) is local time of Bt at 0, a non-decreasing process which
only increases when Bt = 0 (see Exercise 4.10). Therefore the σ-algebra
Nt generated by {Ys; s ≤ t} is contained in the σ-algebra Ht generated by
{|Bs|; s ≤ t}. It follows that v(t, ω) = sign(Bt) cannot be Nt-adapted.

Corollary 8.4.5 (How to recognize a Brownian motion).
Let

dYt = u(t, ω)dt + v(t, ω)dBt

be an Itô process in Rn. Then Yt is a Brownian motion if and only if

Ex[u(t, ·)|Nt] = 0 and vvT (t, ω) = In (8.4.14)

for a.a. (t, ω).
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Remark. Using Theorem 8.4.3 one may now proceed to investigate when
the image Yt = φ(Xt) of an Itô diffusion Xt by a C2-function φ coincides in
law with an Itô diffusion Zt. Applying the criterion (8.4.3) one obtains the
following result:

φ(Xt) ∼ Zt if and only if

A[foφ] = Â[f ]oφ (8.4.15)

for all second order polynomials f(x1, . . . , xn) =
∑

aixi +
∑

cijxixj (and
hence for all f ∈ C2

0 ) where A and Â are the generators of Xt and Zt re-
spectively. (Here o denotes function composition: (f ◦ φ)(x) = f(φ(x)).) For
generalizations of this result, see Csink and Øksendal (1983), and Csink,
Fitzsimmons and Øksendal (1990).

8.5 Random Time Change

Let c(t, ω) ≥ 0 be an Ft-adapted process. Define

βt = β(t, ω) =

t∫

0

c(s, ω)ds . (8.5.1)

We will say that βt is a (random) time change with time change rate c(t, ω).
Note that β(t, ω) is also Ft-adapted and for each ω the map t → βt(ω) is

non-decreasing. Define αt = α(t, ω) by

αt = inf{s;βs > t} . (8.5.2)

Then αt is a right-inverse of βt, for each ω :

β(α(t, ω), ω) = t for all t ≥ 0 . (8.5.3)

Moreover, t → αt(ω) is right-continuous.
If c(s, ω) > 0 for a.a. (s, ω) then t → βt(ω) is strictly increasing, t → αt(ω)

is continuous and αt is also a left-inverse of βt:

α(β(t, ω), ω) = t for all t ≥ 0 . (8.5.4)

In general ω → α(t, ω) is an {Fs}-stopping time for each t, since

{ω; α(t, ω) < s} = {ω; t < β(s, ω)} ∈ Fs . (8.5.5)

We now ask the question: Suppose Xt is an Itô diffusion and Yt an Itô process
as in Theorem 8.4.3. When does there exist a time change βt such that
Yαt ' Xt ? (Note that αt is only defined up to time β∞. If β∞ < ∞ we
interpret Yαt ' Xt to mean that Yαt has the same law as Xt up to time β∞).

Here is a partial answer (see Øksendal (1990)):
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Theorem 8.5.1. Let Xt, Yt be as in Theorem 8.4.3 and let βt be a time
change with right inverse αt as in (8.5.1), (8.5.2) above. Assume that

u(t, ω) = c(t, ω)b(Yt) and vvT (t, ω) = c(t, ω) · σσT (Yt) (8.5.6)

for a.a. t, ω. Then
Yαt ' Xt .

This result allows us to recognize time changes of Brownian motion:

Theorem 8.5.2. Let dYt = v(t, ω)dBt, v ∈ Rn×m, Bt ∈ Rm be an Itô
integral in Rn, Y0 = 0 and assume that

vvT (t, ω) = c(t, ω)In (8.5.7)

for some process c(t, ω) ≥ 0. Let αt, βt be as in (8.5.1), (8.5.2). Then

Yαt
is an n-dimensional Brownian motion .

Corollary 8.5.3. Let dYt =
n∑

i=1

vi(t, ω)dBi(t, ω), Y0 = 0, where B =

(B1, . . . , Bn) is a Brownian motion in Rn. Then

B̂t: = Yαt is a 1-dimensional Brownian motion ,

where αt is defined by (8.5.2) and

βs =

s∫

0

{ n∑

i=1

v2
i (r, ω)

}
dr . (8.5.8)

Corollary 8.5.4. Let Yt, βs be as in Corollary 8.5.3. Assume that

n∑

i=1

v2
i (r, ω) > 0 for a.a. (r, ω) . (8.5.9)

Then there exists a Brownian motion B̂t such that

Yt = B̂βt . (8.5.10)

Proof. Let
B̂t = Yαt (8.5.11)

be the Brownian motion from Corollary 8.5.3. By (8.5.9) βt is strictly increas-
ing and hence (8.5.4) holds, So choosing t = βs in (8.5.11) we get (8.5.10).

tu
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Corollary 8.5.5. Let c(t, ω) ≥ 0 be given and define

dYt =

t∫

0

√
c(s, ω) dBs ,

where Bs is an n-dimensional Brownian motion. Then

Yαt
is also an n-dimensional Brownian motion .

We now use this to prove that a time change of an Itô integral is again an
Itô integral, but driven by a different Brownian motion B̃t. First we construct
B̃t:

Lemma 8.5.6. Suppose s → α(s, ω) is continuous, α(0, ω) = 0 for a.a. ω.
Fix t > 0 such that βt < ∞ a.s. and assume that E[αt] < ∞. For k = 1, 2, . . .
put

tj =
{

j · 2−k if j · 2−k ≤ αt

t if j · 2−k > αt

and choose rj such that αrj = tj. Suppose f(s, ω) ≥ 0 is Fs-adapted, bounded
and s-continuous for a.a. ω. Then

lim
k→∞

∑

j

f(αj , ω)∆Bαj =

αt∫

0

f(s, ω)dBs a.s. , (8.5.12)

where αj = αrj , ∆Bαj = Bαj+1 −Bαj and the limit is in L2(Ω,P ).

Proof. For all k we have

E

[( ∑

j

f(αj , ω)∆Bαj −
αt∫

0

f(s, ω)dBs

)2
]

= E

[( ∑

j

αj+1∫

αj

(f(αj , ω)− f(s, ω)dBs

)2
]

=
∑

j

E
[( αj+1∫

αj

(f(αj , ω)− f(s, ω))dBs

)2]

=
∑

j

E

[ αj+1∫

αj

(f(αj , ω)− f(s, ω))2ds

]
= E

[ αt∫

0

(f − fk)2ds

]
,

where fk(s, ω) =
∑
j

f(tj , ω)X[tj ,tj+1)(s) is the elementary approximation to

f . (See Corollary 3.1.8). This implies (8.5.12). tu
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We now use this to establish a general time change formula for Itô inte-
grals. An alternative proof in the case n = m = 1 can be found in McKean
(1969, §2.8).

Theorem 8.5.7 (Time change formula for Itô integrals).
Suppose c(s, ω) and α(s, ω) are s-continuous, α(0, ω) = 0 for a.a. ω and that
E[αt] < ∞. Let Bs be an m-dimensional Brownian motion and let v(s, ω) ∈
Vn×m
H be bounded and s-continuous. Define

B̃t = lim
k→∞

∑

j

√
c(αj , ω) ∆Bαj

=

αt∫

0

√
c(s, ω) dBs . (8.5.13)

Then B̃t is an (m-dimensional) F (m)
αt -Brownian motion (i.e. B̃t is a Brown-

ian motion and B̃t is a martingale w.r.t. F (m)
αt ) and

αt∫

0

v(s, ω)dBs =

t∫

0

v(αr, ω)
√

α′r(ω) dB̃r a.s. P , (8.5.14)

where α′r(ω) is the derivative of α(r, ω) w.r.t. r, so that

α′r(ω) =
1

c(αr, ω)
for a.a. r ≥ 0, a.a. ω ∈ Ω . (8.5.15)

Proof. The existence of the limit in (8.5.13) and the second identity in (8.5.13)
follow by applying Lemma 8.5.6 to the function

f(s, ω) =
√

c(s, ω) .

Then by Corollary 8.5.5 we have that B̃t is an F (m)
αt -Brownian motion. It

remains to prove (8.5.14):

αt∫

0

v(s, ω)dBs = lim
k→∞

∑

j

v(αj , ω)∆Bαj

= lim
k→∞

∑

j

v(αj , ω)

√
1

c(αj , ω)

√
c(αj , ω) ∆Bαj

= lim
k→∞

∑

j

v(αj , ω)

√
1

c(αj , ω)
∆B̃j

=

t∫

0

v(αr, ω)

√
1

c(αr, ω)
dB̃r

and the proof is complete. tu
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Example 8.5.8 (Brownian motion on the unit sphere in Rn; n>2).

In Examples 5.1.4 and 7.5.5 we constructed Brownian motion on the unit
circle. It is not obvious how to extend the method used there to obtain Brow-
nian motion on the unit sphere S of Rn; n ≥ 3. However, we may proceed as
follows: Apply the function φ:Rn \ {0} → S defined by

φ(x) = x · |x|−1 ; x ∈ Rn \ {0}

to n-dimensional Brownian motion B = (B1, . . . , Bn). The result is a stochas-
tic integral Y = (Y1, . . . , Yn) = φ(B) which by Itô’s formula is given by

dYi =
|B|2 −B2

i

|B|3 dBi −
∑

j 6=i

BjBi

|B|3 dBj − n− 1
2

· Bi

|B|3 dt ; i = 1, 2, . . . , n .

(8.5.16)
Hence

dY =
1
|B| · σ(Y )dB +

1
|B|2 b(Y )dt ,

where

σ = [σij ] ∈ Rn×n , with σij(Y ) = δij − YiYj ; 1 ≤ i, j ≤ n

and

b(y) = −n− 1
2

·




y1
...

yn


 ∈ Rn , (y1, . . . , yn are the coordinates of y ∈ Rn) .

Now perform the following time change: Define

Zt(ω) = Yα(t,ω)(ω)

where

αt = β−1
t , β(t, ω) =

t∫

0

1
|B|2 ds .

Then Z is again an Itô process and by Theorem 8.5.7

dZ = σ(Z)dB̃ + b(Z)dt .

Hence Z is a diffusion with characteristic operator

Af(y) = 1
2

(
∆f(y)−

∑

i,j

yiyj
∂2f

∂yi∂yj

)
− n− 1

2
·
∑

i

yi
∂f

∂yi
; |y| = 1 .

(8.5.17)
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Thus, φ(B) = B
|B| is – after a suitable change of time scale – equal to a

diffusion Z living on the unit sphere S of Rn. Note that Z is invariant under
orthogonal transformations in Rn (since B is). It is reasonable to call Z
Brownian motion on the unit sphere S. For other constructions see Itô and
McKean (1965, p. 269 (§7.15)) and Stroock (1971).

More generally, given a Riemannian manifold M with metric tensor g =
[gij ] one may define a Brownian motion on M as a diffusion on M whose
characteristic operator A in local coordinates xi is given by 1

2 times the
Laplace-Beltrami operator (here [gij ] = [gij ]−1)

∆M =
1√

det(g)
·
∑

i

∂

∂xi

(√
det(g)

∑

j

gij ∂

∂xj

)
. (8.5.18)

See for example Meyer (1966, p. 256–270), McKean (1969, §4.3). The subject
of stochastic differential equations on manifolds is also treated in Ikeda and
Watanabe (1989), Emery (1989) and Elworthy (1982).

Example 8.5.9 (Harmonic and analytic functions).
Let B = (B1, B2) be 2-dimensional Brownian motion. Let us investigate what
happens if we apply a C2 function

φ(x1, x2) = (u(x1, x2), v(x1, x2))

to B:
Put Y = (Y1, Y2) = φ(B1, B2) and apply Itô’s formula:

dY1 = u′1(B1, B2)dB1 + u′2(B1, B2)dB2 + 1
2 [u′′11(B1, B2) + u′′22(B1, B2)]dt

and

dY2 = v′1(B1, B2)dB1 + v′2(B1, B2)dB2 + 1
2 [v′′11(B1, B2) + v′′22(B1, B2)]dt ,

where u′1 = ∂u
∂x1

etc. So

dY = b(B1, B2)dt + σ(B1, B2)dB ,

with b = 1
2

(
∆u
∆v

)
, σ =

(
u′1 u′2
v′1 v′2

)
= Dφ (the derivative of φ).

So Y = φ(B1, B2) is a martingale if (and, in fact, only if) φ is harmonic,
i.e. ∆φ = 0. If φ is harmonic, we get by Corollary 8.5.3 that

φ(B1, B2) = (B̃(1)
β1

, B̃
(2)
β2

)

where B̃(1) and B̃(2) are two (not necessarily independent) versions of 1-
dimensional Brownian motion, and

β1(t, ω) =

t∫

0

|∇u|2(B1, B2)ds , β2(t, ω) =

t∫

0

|∇v|2(B1, B2)ds .
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Since

σσT =

( |∇u|2 ∇u · ∇v

∇u · ∇v |∇v|2
)

we see that if (in addition to ∆u = ∆v = 0)

|∇u|2 = |∇v|2 and ∇u · ∇v = 0 (8.5.19)

then

Yt = Y0 +

t∫

0

σdB

with
σσT = |∇u|2(B1, B2)I2 , Y0 = φ(B1(0), B2(0)) .

Therefore, if we let

βt = β(t, ω) =

t∫

0

|∇u|2(B1, B2)ds , αt = β−1
t

we obtain by Theorem 8.5.2 that Yαt is a 2-dimensional Brownian motion.
Conditions (8.5.19) – in addition to ∆u = ∆v = 0 – are easily seen to be
equivalent to requiring that the function φ(x + iy) = φ(x, y) regarded as a
complex function is either analytic or conjugate analytic.

Thus we have proved a theorem of P. Lévy that φ(B1, B2) is – after a
change of time scale – again Brownian motion in the plane if and only if
φ is either analytic or conjugate analytic. For extensions of this result see
Bernard, Campbell and Davie (1979), Csink and Øksendal (1983) and Csink,
Fitzsimmons and Øksendal (1990).

8.6 The Girsanov Theorem

We end this chapter by discussing a result, the Girsanov theorem, which
is fundamental in the general theory of stochastic analysis. It is also very
important in many applications, for example in economics (see Chapter 12).

Basically the Girsanov theorem says that if we change the drift coefficient
of a given Itô process (with a nondegenerate diffusion coefficient), then the
law of the process will not change dramatically. In fact, the law of the new
process will be absolutely continuous w.r.t. the law of the original process
and we can compute explicitly the Radon-Nikodym derivative.

We now make this precise. First we state (without proof) the useful Lévy
characterization of Brownian motion. A proof can be found in e.g. Ikeda &
Watanabe (1989), Theorem II.6.1, or in Karatzas & Shreve (1991), Theo-
rem 3.3.16.



154 8. Other Topics in Diffusion Theory

Theorem 8.6.1 (The Lévy characterization of Brownian motion).
Let X(t) = (X1(t), . . . , Xn(t)) be a continuous stochastic process on a proba-
bility space (Ω,H, Q) with values in Rn. Then the following, a) and b), are
equivalent

a) X(t) is a Brownian motion w.r.t. Q, i.e. the law of X(t) w.r.t. Q is the
same as the law of an n-dimensional Brownian motion.

b) (i) X(t) = (X1(t), . . . , Xn(t)) is a martingale w.r.t. Q (and w.r.t. its
own filtration) and

(ii) Xi(t)Xj(t)−δijt is a martingale w.r.t. Q (and w.r.t. its own filtration)
for all i, j ∈ {1, 2, . . . , n}.

Remark. In this Theorem one may replace condition (ii) by the condition

(ii)’ The cross-variation processes 〈Xi, Xj〉t satisfy the identity

〈Xi, Xj〉t(ω) = δijt a.s., 1 ≤ i, j ≤ n (8.6.1)

where

〈Xi, Xj〉t = 1
4 [〈Xi + Xj , Xi + Xj〉t − 〈Xi −Xj , Xi −Xj〉t] , (8.6.2)

〈Y, Y 〉t being the quadratic variation process. (See Exercise 4.7.)

Next we need an auxiliary result about conditional expectation:

Lemma 8.6.2. Let µ and ν be two probability measures on a measurable
space (Ω,G) such that dν(ω) = f(ω)dµ(ω) for some f ∈ L1(µ). Let X be a
random variable on (Ω,G) such that

Eν [|X|] =
∫

Ω

|X(ω)|f(ω)dµ(ω) < ∞ .

Let H be a σ-algebra, H ⊂ G. Then

Eν [X|H] · Eµ[f |H] = Eµ[fX|H] a.s. (8.6.3)

Proof. By the definition of conditional expectation (Appendix B) we have
that if H ∈ H then

∫

H

Eν [X|H]fdµ =
∫

H

Eν [X|H]dν =
∫

H

Xdν

=
∫

H

Xfdµ =
∫

H

Eµ[fX|H]dµ (8.6.4)

On the other hand, by Theorem B.3 (Appendix B) we have
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∫

H

Eν [X|H]fdµ = Eµ[Eν [X|H]f · XH ] = Eµ[Eµ[Eν [X|H]f · XH |H]]

= Eµ[XHEν [X|H] · Eµ[f |H]] =
∫

H

Eν [X|H] · Eµ[f |H]dµ . (8.6.5)

Combining (8.6.4) and (8.6.5) we get
∫

N

Eν [X|H] · Eµ[f |H]dµ =
∫

H

Eµ[fX|H]dµ .

Since this holds for all H ∈ H, (8.6.3) follows. tu
We can now prove the first version of the Girsanov formula:

Theorem 8.6.3 (The Girsanov theorem I).
Let Y (t) ∈ Rn be an Itô process of the form

dY (t) = a(t, ω)dt + dB(t) ; t ≤ T, Y0 = 0 .

where T ≤ ∞ is a given constant and B(t) is n-dimensional Brownian mo-
tion. Put

Mt = exp
(
−

t∫

0

a(s, ω)dBs − 1
2

t∫

0

a2(s, ω)ds

)
; t ≤ T . (8.6.6)

Assume that a(s, ω) satisfies Novikov’s condition

E
[
exp

(
1
2

T∫

0

a2(s, ω)ds

)]
< ∞ (8.6.7)

where E = EP is the expectation w.r.t. P . Define the measure Q on (Ω,F (n)
T )

by
dQ(ω) = MT (ω)dP (ω) . (8.6.8)

Then Y (t) is an n-dimensional Brownian motion w.r.t. the probability law
Q, for t ≤ T .

Remarks.

(1) The transformation P → Q given by (8.6.9) is called the Girsanov trans-
formation of measures.

(2) As pointed out in Exercise 4.4 the Novikov condition (8.6.7) is sufficient to
guarantee that {Mt}t≤T is a martingale (w.r.t. F (n)

t and P ). Actually,
the result holds if we only assume that {Mt}t≤T is a martingale. See
Karatzas and Shreve (1991).
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(3) Note that since Mt is a martingale we actually have that

MT dP = MtdP on F (n)
t ; t ≤ T . (8.6.9)

To see this, let f be a bounded F (n)
t -measurable function. Then by The-

orem B.3 we have∫

Ω

f(ω)MT (ω)dP (ω) = E[fMT ] = E[E[fMT |Ft]]

= E[fE[MT |Ft]] = E[fMt] =
∫

Ω

f(ω)Mt(ω)dP (ω) .

Proof of Theorem 8.6.3. For simplicity we assume that a(s, ω) is bounded.
In view of Theorem 8.6.1 we have to verify that

(i) Y (t) = (Y1(t), . . . , Yn(t)) is a martingale w.r.t. Q (8.6.10)
and
(ii) Yi(t)Yj(t)− δijt is a martingale w.r.t. Q,

for all i, j ∈ {1, 2, . . . , n} . (8.6.11)

To verify (i) we put K(t) = MtY (t) and use Itô’s formula to get (see
Exercises 4.3, 4.4)

dKi(t) = MtdYi(t) + Yi(t)dMt + dYi(t)dMt

= Mt(ai(t)dt + dBi(t)) + Yi(t)Mt

( n∑

k=1

−ak(t)dBk(t)
)

+(dBi(t))
(
−Mt

n∑

k=1

ak(t)dBk(t)
)

= Mt(dBi(t)− Yi(t)
n∑

k=1

ak(t)dBk(t)) = Mt γ(i)(t)dB(t) (8.6.12)

where γ(i)(t) = (γ(i)
1 (t), . . . , γ(i)

n (t)), with

γ
(i)
j (t) =

{−Yi(t)aj(t) for j 6= i
1− Yi(t)ai(t) for j = i .

Hence Ki(t) is a martingale w.r.t. P , so by Lemma 8.6.2 we get, for t > s,

EQ[Yi(t)|Fs] =
E[MtYi(t)|Fs]

E[Mt|Fs]
=

E[Ki(t)|Fs]
Ms

=
Ki(s)
Ms

= Yi(s) ,

which shows that Yi(t) is a martingale w.r.t. Q. This proves (i). The proof of
(ii) is similar and is left to the reader. tu
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Remark. Theorem 8.6.3 states that for all Borel sets F1, . . . , Fk ⊂ Rn and
all t1, t2, . . . , tk ≤ T , k = 1, 2, . . . we have

Q[Y (t1) ∈ F1, . . . , Y (tk) ∈ Fk] = P [B(t1) ∈ F1, . . . , B(tk) ∈ Fk] (8.6.13)

An equivalent way of expressing (8.6.8) is to say that Q ¿ P (Q is absolutely
continuous w.r.t. P ) with Radon-Nikodym derivative

dQ

dP
= MT on F (n)

T . (8.6.14)

Note that MT (ω) > 0 a.s., so we also have that P ¿ Q. Hence the two
measures Q and P are equivalent. Therefore we get from (8.6.13)

P [Y (t1) ∈ F1, . . . , Y (tk) ∈ Fk] > 0
⇐⇒ Q[Y (t1) ∈ F1, . . . , Y (tk) ∈ Fk] > 0
⇐⇒ P [B(t1) ∈ F1, . . . , B(tk) ∈ Fk] > 0 ; t1, . . . , tk ∈ [0, T ] (8.6.15)

Theorem 8.6.4 (The Girsanov theorem II).
Let Y (t) ∈ Rn be an Itô process of the form

dY (t) = β(t, ω)dt + θ(t, ω)dB(t) ; t ≤ T (8.6.16)

where B(t) ∈ Rm, β(t, ω) ∈ Rn and θ(t, ω) ∈ Rn×m. Suppose there exist
processes u(t, ω) ∈ Wm

H and α(t, ω) ∈ Wn
H such that

θ(t, ω)u(t, ω) = β(t, ω)− α(t, ω) (8.6.17)

and assume that u(t, ω) satisfies Novikov’s condition

E

[
exp

(
1
2

T∫

0

u2(s, ω)ds

)]
< ∞ . (8.6.18)

Put

Mt = exp
(
−

t∫

0

u(s, ω)dBs − 1
2

t∫

0

u2(s, ω)ds

)
; t ≤ T (8.6.19)

and
dQ(ω) = MT (ω)dP (ω) on F (m)

T . (8.6.20)

Then

B̂(t): =

t∫

0

u(s, ω)ds + B(t) ; t ≤ T (8.6.21)

is a Brownian motion w.r.t. Q and in terms of B̂(t) the process Y (t) has the
stochastic integral representation

dY (t) = α(t, ω)dt + θ(t, ω)dB̂(t) . (8.6.22)
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Proof. It follows from Theorem 8.6.3 that B̂(t) is a Brownian motion w.r.t.
Q. So, substituting (8.6.21) in (8.6.16) we get, by (8.6.17),

dY (t) = β(t, ω)dt + θ(t, ω)(dB̂(t)− u(t, ω)dt)

= [β(t, ω)− θ(t, ω)u(t, ω)]dt + θ(t, ω)dB̂(t)

= α(t, ω)dt + θ(t, ω)dB̂(t) . tu
Note that if n = m and θ ∈ Rn×n is invertible, then the process u(t, ω)

satisfying (8.6.17) is given uniquely by

u(t, ω) = θ−1(t, ω)[β(t, ω)− α(t, ω)] . (8.6.23)

Finally we formulate a diffusion version:

Theorem 8.6.5 (The Girsanov theorem III).
Let X(t) = Xx(t) ∈ Rn and Y (t) = Y x(t) ∈ Rn be an Itô diffusion and an
Itô process, respectively, of the forms

dX(t) = b(X(t))dt + σ(X(t))dB(t) ; t ≤ T, X(0) = x (8.6.24)
dY (t) = [γ(t, ω) + b(Y (t))]dt + σ(Y (t))dB(t) ; t ≤ T, Y (0) = x (8.6.25)

where the functions b:Rn → Rn and σ:Rn → Rn×m satisfy the conditions
of Theorem 5.2.1 and γ(t, ω) ∈ Wn

H, x ∈ Rn. Suppose there exists a process
u(t, ω) ∈ Wm

H such that

σ(Y (t))u(t, ω) = γ(t, ω) (8.6.26)

and assume that u(t, ω) satisfies Novikov’s condition

E
[
exp

(
1
2

T∫

0

u2(s, ω)ds

)]
< ∞ . (8.6.27)

Define Mt, Q and B̂(t) as in (8.6.19), (8.6.20) and (8.6.21). Then

dY (t) = b(Y (t))dt + σ(Y (t))dB̂(t) . (8.6.28)

Therefore,

the Q-law of Y x(t) is the same as
the P -law of Xx(t); t ≤ T . (8.6.29)

Proof. The representation (8.6.28) follows by applying Theorem 8.6.4 to the
case θ(t, ω) = σ(Y (t)), β(t, ω) = γ(t, ω)+b(Y (t)), α(t, ω) = b(Y (t)). Then the
conclusion (8.6.29) follows from the weak uniqueness of solutions of stochastic
differential equations (Lemma 5.3.1). tu
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The Girsanov theorem III can be used to produce weak solutions of
stochastic differential equations. To illustrate this, suppose Yt is a known
weak or strong solution to the equation

dYt = b(Yt)dt + σ(Yt)dB(t)

where b:Rn → Rn, σ:Rn → Rn×m and B(t) ∈ Rm. We wish to find a weak
solution X(t) of a related equation

dXt = a(Xt)dt + σ(Xt)dB(t) (8.6.30)

where the drift function is changed to a:Rn → Rn. Suppose we can find a
function u0:Rn → Rm such that

σ(y)u0(y) = b(y)− a(y) ; y ∈ Rn .

(If n = m and σ is invertible we choose

u0 = σ−1 · (b− a) .)

Then if u(t, ω) = u0(Yt(ω)) satisfies Novikov’s conditions, we have, with Q

and B̂t = B̂(t) as in (8.6.20) and (8.6.21), that

dYt = a(Yt)dt + σ(Yt)dB̂t . (8.6.31)

Thus we have found a Brownian motion (B̂t, Q) such that Yt satisfies (8.6.31).
Therefore (Yt, B̂t) is a weak solution of (8.6.30).

Example 8.6.6. Let a:Rn → Rn be a bounded, measurable function. Then
we can construct a weak solution Xt = Xx

t of the stochastic differential
equation

dXt = a(Xt)dt + dBt ; X0 = x ∈ Rn . (8.6.32)

We proceed according to the procedure above, with σ = I, b = 0 and

dYt = dBt ; Y0 = x .

Choose
u0 = σ−1 · (b− a) = −a

and define

Mt = exp
{
−

t∫

0

u0(Ys)dBs − 1
2

t∫

0

u2
0(Ys)ds

}

i.e.

Mt = exp
{ t∫

0

a(Bs)dBs − 1
2

t∫

0

a2(Bs)ds

}
.
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Fix T < ∞ and put
dQ = MT dP on F (m)

T .

Then

B̂t: = −
t∫

0

a(Bs)ds + Bt

is a Brownian motion w.r.t. Q for t ≤ T and

dBt = dYt = a(Yt)dt + dB̂t .

Hence if we set Y0 = x the pair (Yt, B̂t) is a weak solution of (8.6.32) for
t ≤ T . By weak uniqueness the Q-law of Yt = Bt coincides with the P -law of
Xx

t , so that

E[f1(Xx
t1) . . . fk(Xx

tk
)] = EQ[f1(Yt1) . . . fk(Ytk

)]
= E[MT f1(Bt1) . . . fk(Btk

)] (8.6.33)

for all f1, . . . , fk ∈ C0(Rn); t1, . . . , tk ≤ T .

Exercises

8.1. Let ∆ denote the Laplace operator on Rn.
a) Write down (in terms of Brownian motion) a bounded solution g

of the Cauchy problem
{

∂g(t, x)
∂t

− 1
2∆xg(t, x) = 0 for t > 0, x ∈ Rn

g(0, x) = φ(x)

where φ ∈ C2
0 is given. (From general theory it is known that the

solution is unique.)
b) Let ψ ∈ Cb(Rn) and α > 0. Find a bounded solution u of the

equation
(α− 1

2∆)u = ψ in Rn .

Prove that the solution is unique.

8.2. Show that the solution u(t, x) of the initial value problem

∂u

∂t
= 1

2β2x2 ∂2u

∂x2
+ α x

∂u

∂x
; t > 0, x ∈ R

u(0, x) = f(x) (f ∈ C2
0 (R) given)

can be expressed as follows:
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u(t, x) = E[f(x · exp{βBt + (α− 1
2β2)t}]

=
1√
2πt

∫

R

f(x · exp{βy + (α− 1
2β2)t} exp

(
− y2

2t

)
dy ; t > 0 .

8.3. (Kolmogorov’s forward equation)
Let Xt be an Itô diffusion in Rn with generator

Af(y) =
∑

i,j

aij(y)
∂2f

∂yi∂yj
+

∑

i

bi(y)
∂f

∂yi
; f ∈ C2

0

and assume that the transition measure of Xt has a density pt(x, y),
i.e. that

Ex[f(Xt)] =
∫

Rn

f(y)pt(x, y)dy ; f ∈ C2
0 . (8.6.34)

Assume that y → pt(x, y) is smooth for each t, x. Prove that pt(x, y)
satisfies the Kolmogorov forward equation

d

dt
pt(x, y) = A∗ypt(x, y) for all x, y , (8.6.35)

where A∗y operates on the variable y and is given by

A∗yφ(y) =
∑

i,j

∂2

∂yi∂yj
(aijφ)−

∑

i

∂

∂yi
(biφ) ; φ ∈ C2 (8.6.36)

(i.e. A∗y is the adjoint of Ay.)
(Hint: By (8.6.34) and Dynkin’s formula we have

∫

Rn

f(y)pt(x, y)dy = f(x) +

t∫

0

∫

Rn

Ayf(y)ps(x, y)dy ds ; f ∈ C2
0 .

Now differentiate w.r.t. t and use that

〈Aφ,ψ〉 = 〈φ,A∗ψ〉 for φ ∈ C2
0 , ψ ∈ C2 ,

where 〈·, ·〉 denotes inner product in L2(dy).)
8.4. Let Bt be n-dimensional Brownian motion (n ≥ 1) and let F be a

Borel set in Rn. Prove that the expected total length of time t that
Bt stays in F is zero if and only if the Lebesgue measure of F is zero.
Hint: Consider the resolvent Rα for α > 0 and then let α → 0.

8.5. Show that the solution u(t, x) of the initial value problem
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{
∂u
∂t = ρ u + 1

2∆u t > 0 ; x ∈ Rn

u(0, x) = f(x) (f ∈ C2
0 (Rn) given)

(where ρ ∈ R is a constant) can be expressed by

u(t, x) = (2πt)−n/2 exp(ρt)
∫

Rn

f(y) exp
(
− (x− y)2

2t

)
dy .

8.6. In connection with the deduction of the Black & Scholes formula for
the price of an option (see Chapter 12) the following partial differential
equation appears:

{
∂u
∂t = −ρ u + αx∂u

∂x + 1
2β2x2 ∂2u

∂x2 ; t > 0 , x ∈ R

u(0, x) = (x−K)+ ; x ∈ R ,

where ρ > 0, α, β and K > 0 are constants and

(x−K)+ = max(x−K, 0) .

Use the Feynman-Kac formula to prove that the solution u of this
equation is given by

u(t, x) =
e−ρt

√
2πt

∫

R

(x · exp{(α− 1
2β2)t + βy} −K)+e

− y2

2t dy ; t > 0 .

(This expression can be simplified further. See Exercise 12.13.)

8.7. Let Xt be a sum of Itô integrals of the form

Xt =
n∑

k=1

t∫

0

vk(s, ω)dBk(s) ,

where (B1, . . . , Bn) is n-dimensional Brownian motion. Assume that

βt: =

t∫

0

n∑

k=1

v2
k(s, ω)ds →∞ as t →∞, a.s.

Prove that
lim sup

t→∞
Xt√

2βt log log βt
= 1 a.s.

(Hint: Use the law of iterated logarithm.)
8.8. Let Zt be a 1-dimensional Itô process of the form

dZt = u(t, ω)dt + dBt .
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Let Gt be the σ-algebra generated by {Zs(·); s ≤ t} and define

dNt = (u(t, ω)− E[u|Gt])dt + dBt .

Use Corollary 8.4.5 to prove that Nt is a Brownian motion. (If we inter-
pret Zt as the observation process, then Nt is the innovation process.
See Lemma 6.2.6.)

8.9. Define α(t) = 1
2 ln(1 + 2

3 t3). If Bt is a Brownian motion, prove that
there exists another Brownian motion B̃r such that

αt∫

0

esdBs =

t∫

0

rdB̃r .

8.10. Let Bt be a Brownian motion in R. Show that

Xt: = B2
t

is a weak solution of the stochastic differential equation

dXt = dt + 2
√
|Xt|dB̃t . (8.6.37)

(Hint: Use Itô’s formula to express Xt as a stochastic integral and
compare with (8.6.37) by using Corollary 8.4.5.)

8.11. a) Let Y (t) = t + B(t); t ≥ 0 . For each T > 0 find a probability
measure QT on FT such that QT ∼ P and {Y (t)}t≤T is Brownian
motion w.r.t. QT . Use (8.6.9) to prove that there exists a probability
measure Q on F∞ such that

Q|FT = QT for all T > 0 .

b) Show that
P

(
lim

t→∞
Y (t) = ∞

)
= 1

while
Q

(
lim

t→∞
Y (t) = ∞

)
= 0 .

Why does not this contradict the Girsanov theorem?
8.12. Let

dY (t) =
[

0
1

]
dt +

[
1 3
−1 −2

] [
dB1(t)
dB2(t)

]
; t ≤ T .

Find a probability measure Q on F (2)
T such that Q ∼ P and such that

dY (t) =
[

1 3
−1 −2

] [
dB̃1(t)
dB̃2(t)

]
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where

B̃(t):=
[−3t

t

]
+

[
B1(t)
B2(t)

]

is a Brownian motion w.r.t. Q.

8.13. Let b:R → R be a Lipschitz-continuous function and define
Xt = Xx

t ∈ R by

dXt = b(Xt)dt + dBt, X0 = x ∈ R .

a) Use the Girsanov theorem to prove that for all M < ∞, x ∈ R and
t > 0 we have

P [Xx
t ≥ M ] > 0 .

b) Choose b(x) = −r where r > 0 is constant. Prove that for all x

Xx
t → −∞ as t →∞ a.s.

Compare this with the result in a).

8.14. (Polar sets for the graph of Brownian motion)
Let Bt be 1-dimensional Brownian motion starting at x ∈ R.
a) Prove that for every fixed time t0 > 0 we have

P x[Bt0 = 0] = 0 .

b) Prove that for every (non-trivial) closed interval J ⊂ R+ we have

P x[∃t ∈ J such that Bt = 0] > 0 .

(Hint: If J = [t1, t2] consider P x[Bt1 < 0 & Bt2 > 0] and then use
the intermediate value theorem.)

c) In view of a) and b) it is natural to ask what closed sets F ⊂ R+

have the property that

P x[∃t ∈ F such that Bt = 0] = 0 . (8.6.38)

To investigate this question more closely we introduce the graph
Xt of Brownian motion, given by

dXt =
[

1
0

]
dt +

[
0
1

]
dBt ; X0 =

[
t0
x0

]

i.e.

Xt = Xt0,x0
t =

[
t0 + t
Bx0

t

]
where Bx0

0 = x0 a.s.

Then F satisfies (8.6.38) iff K: = F ×{0} polar for Xt, in the sense
that
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P t0,x0 [∃t > 0 ; Xt ∈ K] = 0 for all t0, x0 . (8.6.39)

The key to finding polar sets for a diffusion is to consider its Green
operator R, which is simply the resolvent Rα with α = 0 :

Rf(t0, x0) = Et0,x0

[ ∞∫

t0

f(Xs)ds

]
for f ∈ C0(R2) .

Show that

Rf(t0, x0) =
∫

R2

G(t0, x0; t, x)f(t, x)dt dx ,

where

G(t0, x0; t, x)= X
t>t0

· (2π(t− t0))−
1
2 exp

(
− |x− x0|2

2(t− t0)

)
(8.6.40)

(G is the Green function of Xt.)
d) The capacity of K,C(K) = CG(K), is defined by

C(K) = sup{µ(K); µ ∈ MG(K)} ,

where MG(K)={µ; µ measure on K s.t.
∫
K

G(t0, x0; t, x)dµ(t, x)≤1

for all t0, x0}.
A general result from stochastic potential theory states that

P t0,x0 [Xt hits K] = 0 ⇔ C(K) = 0 . (8.6.41)

See e.g. Blumenthal and Getoor (1968, Prop. VI.4.3). Use this to
prove that

Λ 1
2
(F ) = 0 ⇒ P x0 [∃t ∈ F such that Bt = 0] = 0 ,

where Λ 1
2

denotes 1/2-dimensional Hausdorff measure (Folland
(1984, §10.2)).

8.15. Let f ∈ C2
0 (Rn) and α(x) = (α1(x), . . . , αn(x)) with αi ∈ C2

0 (Rn) be
given functions and consider the partial differential equation





∂u
∂t =

n∑
i=1

αi(x) ∂u
∂xi

+ 1
2

n∑
i=1

∂2u
∂x2

i

; t > 0, x ∈ Rn

u(0, x) = f(x) ; x ∈ Rn .

a) Use the Girsanov theorem to show that the unique bounded solution
u(t, x) of this equation can be expressed by

u(t, x) = Ex
[
exp

( t∫

0

α(Bs)dBs − 1
2

t∫

0

α2(Bs)ds

)
f(Bt)

]
,

where Ex is the expectation w.r.t. P x.
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b) Now assume that α is a gradient, i.e. that there exists γ ∈ C1(Rn)
such that

∇γ = α .

Assume for simplicity that γ ∈ C2
0 (Rn). Use Itô’s formula to prove

that (see Exercise 4.8)

u(t, x) = exp
(
− γ(x))Ex

[
exp

{
− 1

2

t∫

0

(∇γ2(Bs)

+∆γ(Bs)
)
ds

}
exp(γ(Bt))f(Bt)

]
.

c) Put v(t, x) = exp(γ(x))u(t, x). Use the Feynman-Kac formula to
show that v(t, x) satisfies the partial differential equation

{
∂v
∂t = − 1

2 (∇γ2 + ∆γ) · v + 1
2∆v ; t > 0 ; x ∈ Rn

v(0, x) = exp(γ(x))f(x) ; x ∈ Rn .

(See also Exercise 8.16.)

8.16. (A connection between B.m. with drift and killed B.m.)
Let Bt denote Brownian motion in Rn and consider the diffusion Xt

in Rn defined by

dXt = ∇h(Xt)dt + dBt ; X0 = x ∈ Rn . (8.6.42)

where h ∈ C1
0 (Rn).

a) There is an important connection between this process and the
process Yt obtained by killing Bt at a certain rate V . More precisely,
first prove that for f ∈ C0(Rn) we have

Ex[f(Xt)] = Ex
[
exp

(
−

t∫

0

V (Bs)ds

)
· exp(h(Bt)−h(x)) ·f(Bt)

]
,

(8.6.43)
where

V (x) = 1
2 |∇h(x)|2 + 1

2∆h(x) . (8.6.44)
(Hint: Use the Girsanov theorem to express the left hand side of
(8.6.43) in terms of Bt. Then use the Itô formula on Zt = h(Bt) to
achieve (8.6.44).)

b) Then use the Feynman-Kac formula to restate (8.6.43) as follows
(assuming V ≥ 0):

TX
t (f, x) = exp(−h(x)) · TY

t (f · exp h, x) ,

where TX
t , TY

t denote the transition operators of the processes X
and Y , respectively, i.e.

TX
t (f, x) = Ex[f(Xt)] and similarly for Y .



9. Applications to Boundary Value Problems

9.1 The Combined Dirichlet-Poisson Problem.
Uniqueness

We now use results from the preceding chapters to solve the following gener-
alization of the Dirichlet problem stated in the introduction:

Let D be a domain (open connected set) in Rn and let L denote a semi-
elliptic partial differential operator on C2(Rn) of the form

L =
n∑

i=1

bi(x)
∂

∂xi
+

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
(9.1.1)

where bi(x) and aij(x) = aji(x) are continuous functions (see below). (By
saying that L is semi-elliptic (resp. elliptic) we mean that all the eigenvalues
of the symmetric matrix a(x) = [aij(x)]ni,j=1 are non-negative (resp. positive)
for all x.)

The Combined Dirichlet-Poisson Problem

Let φ ∈ C(∂D) and g ∈ C(D) be given functions. Find w ∈ C2(D) such that

(i) Lw = −g in D (9.1.2)

and

(ii) lim
x→y
x∈D

w(x) = φ(y) for all y ∈ ∂D . (9.1.3)

The idea of the solution is the following: First we find an Itô diffusion {Xt}
whose generator A coincides with L on C2

0 (Rn). To achieve this we simply
choose σ(x) ∈ Rn×n such that

1
2σ(x)σT (x) = [aij(x)] . (9.1.4)

We assume that σ(x) and b(x) = [bi(x)] satisfy conditions (5.2.1) and (5.2.2)
of Theorem 5.2.1. (For example, if each aij ∈ C2(D) is bounded and has
bounded first and second partial derivatives, then such a square root σ can
be found. See Fleming and Rishel (1975).) Next we let Xt be the solution of
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dXt = b(Xt)dt + σ(Xt)dBt (9.1.5)

where Bt is n-dimensional Brownian motion. As usual we let Ex denote
expectation with respect to the probability law Qx of Xt starting at x ∈ Rn.
Then our candidate for the solution w of (9.1.2), (9.1.3) is

w(x) = Ex[φ(Xτ
D

) · X{τ
D

<∞}] + Ex

[ τ
D∫

0

g(Xt)dt

]
(9.1.6)

provided that φ is bounded and

Ex

[ τ
D∫

0

|g(Xt)|dt

]
< ∞ for all x . (9.1.7)

The Dirichlet-Poisson problem consists of two parts:

(i) Existence of solution.
(ii) Uniqueness of solution.

The uniqueness problem turns out to be simpler and therefore we handle
this first. In this section we prove two easy and useful uniqueness results.
Then in the next sections we discuss the existence of solution and other
uniqueness questions.

Theorem 9.1.1 (Uniqueness theorem (1)).
Suppose φ is bounded and g satisfies (9.1.7). Suppose w ∈ C2(D) is bounded
and satisfies

(i) Lw = −g in D (9.1.8)

and

(ii)’ limt↑τ
D

w(Xt) = φ(Xτ
D

) · X{τ
D

<∞} a.s. Qx for all x . (9.1.9)

Then

w(x) = Ex[φ(Xτ
D

) · X{τ
D

<∞}] + Ex

[ τ
D∫

0

g(Xt)dt

]
. (9.1.10)

Proof. Let {Dk}∞k=1 be an increasing sequence of open sets Dk such that

Dk ⊂⊂ D and D =
∞⋃

k=1

Dk. Define

αk = k ∧ τDk
; k = 1, 2, . . .

Then by the Dynkin formula and (9.1.8)
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w(x) = Ex[w(Xαk
)]− Ex

[ αk∫

0

Lw(Xt)dt

]

= Ex[w(Xαk
)] + Ex

[ αk∫

0

g(Xt)dt

]
. (9.1.11)

By (9.1.9) w(Xαk
) → φ(Xτ

D
) · X{τ

D
<∞} pointwise boundedly a.s. Qx. Hence

Ex[w(Xαk
)] → Ex[φ(Xτ

D
) · X{τ

D
<∞}] as k →∞ . (9.1.12)

Moreover,

Ex

[ αk∫

0

g(Xt)dt

]
→ Ex

[ τ
D∫

0

g(Xt)dt

]
as k →∞ , (9.1.13)

since
αk∫

0

g(Xt)dt →
τ
D∫

0

g(Xt)dt a.s.

and

∣∣∣∣
αk∫

0

g(Xt)dt

∣∣∣∣ ≤
τ
D∫

0

|g(Xt)|dt , which is Qx-integrable by (9.1.7).

Combining (9.1.12) and (9.1.13) with (9.1.11) we get (9.1.10). tu
An immediate consequence is:

Corollary 9.1.2 (Uniqueness theorem (2)).
Suppose φ is bounded and g satisfies (9.1.7). Suppose

τD < ∞ a.s. Qx for all x . (9.1.14)

Then if w ∈ C2(D) is a bounded solution of the combined Dirichlet-Poisson
problem (9.1.2), (9.1.3) we have

w(x) = Ex[φ(Xτ
D

)] + Ex

[ τ
D∫

0

g(Xt)dt

]
. (9.1.15)

9.2 The Dirichlet Problem. Regular Points

We now consider the more complicated question of existence of solution. It
is convenient to split the combined Dirichlet-Poisson problem in two parts:
The Dirichlet problem and the Poisson problem:
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The Dirichlet Problem

Let φ ∈ C(∂D) be a given function. Find u ∈ C2(D) such that

(I) Lu = 0 in D (9.2.1)

and

(II) lim
x→y
x∈D

u(x) = φ(y) for all y ∈ ∂D . (9.2.2)

The Poisson Problem

Let g ∈ C(D) be a given function. Find v ∈ C2(D) such that

(a) Lv = −g in D (9.2.3)

and

(b) lim
x→y
x∈D

v(x) = 0 for all y ∈ ∂D . (9.2.4)

Note that if u and v solve the Dirichlet and the Poisson problem, respectively,
then w: = u + v solves the combined Dirichlet-Poisson problem.

We first consider the Dirichlet problem and proceed to study the Poisson
problem in the next section.

For simplicity we assume in this section that (9.1.14) holds.

In view of Corollary 9.1.2 the question of existence of a solution of the
Dirichlet problem (9.2.1), (9.2.2) can be restated as follows: When is

u(x):= Ex[φ(Xτ
D

)] (9.2.5)

a solution?
Unfortunately, in general this function u need not be in C2(U). In fact,

it need not even be continuous. Moreover, it need not satisfy (9.2.2), either.
Consider the following example:

Example 9.2.1. Let X(t) = (X1(t), X2(t)) be the solution of the equations

dX1(t) = dt

dX2(t) = 0

so that X(t) = X(0) + t(1, 0) ∈ R2; t ≥ 0. Let

D = ((0, 1)× (0, 1)) ∪ ((0, 2)× (0, 1
2 ))

and let φ be a continuous function on ∂D such that

φ = 1 on {1} × [ 12 , 1] and
φ = 0 on {2} × [0, 1

2 ]
φ = 0 on {0} × [0, 1] .
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Then

u(t, x) = Et,x[φ(Xτ
D

)] =





1 if x ∈ (1
2 , 1)

0 if x ∈ (0, 1
2 ) ,

so u is not even continuous. Moreover,

lim
t→0+

u(t, x) = 1 6= φ(0, x) if 1
2 < x < 1

so (9.2.2) does not hold.
However, the function u(x) defined by (9.2.5) will solve the Dirichlet prob-

lem in a weaker, stochastic sense: The boundary condition (9.2.2) is replaced
by the stochastic (pathwise) boundary condition (9.1.9) and the condition
(9.2.1) (Lu = 0) is replaced by a condition related to the condition

Au = 0

where A is the characteristic operator of Xt (Section 7.5).

We now explain this in more detail:

Definition 9.2.2. Let f be a locally bounded, measurable function on D.
Then f is called X-harmonic in D if

f(x) = Ex[f(XτU
)]

for all x ∈ D and all bounded open sets U with U ⊂ D.

We make two important observations:

Lemma 9.2.3.
a) Let f be X-harmonic in D. Then Af = 0 in D.
b) Conversely, suppose f ∈ C2(D) and Af = 0 in D. Then f is X-harmonic.

Proof.
a) follows directly from the formula for A.
b) follows from the Dynkin formula: Choose U as in Definition 9.2.2. Then
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Ex[f(XτU
)] = lim

k→∞
Ex[f(XτU∧k)]

= f(x) + lim
k→∞

Ex

[ τU∧k∫

0

(Lf)(Xs)ds

]
= f(x) ,

since Lf = Af = 0 in U . tu
The most important examples of X-harmonic functions are given in the

next result:

Lemma 9.2.4. Let φ be a bounded measurable function on ∂D and put

u(x) = Ex[φ(Xτ
D

)] ; x ∈ D .

Then u is X-harmonic. Thus, in particular, Au = 0.

Proof. From the mean value property (7.2.9) we have, if V ⊂ D

u(x) =
∫

∂V

u(y)Qx[XτV ∈ dy] = Ex[u(XτV )] .

tu
We are now ready to formulate the weak, stochastic version:

The Stochastic Dirichlet Problem

Given a bounded measurable function φ on ∂D, find a function u on D such
that

(i)s u is X-harmonic (9.2.6)
(ii)s lim

t↑τ
D

u(Xt) = φ(Xτ
D

) a.s. Qx, x ∈ D . (9.2.7)

We first solve the stochastic Dirichlet problem (9.2.6), (9.2.7) and then
relate it to the original problem (9.2.1), (9.2.2).

Theorem 9.2.5 (Solution of the stochastic Dirichlet problem).
Let φ be a bounded measurable function on ∂D.

a) (Existence) Define
u(x) = Ex[φ(Xτ

D
)] . (9.2.8)

Then u solves the stochastic Dirichlet problem (9.2.6), (9.2.7).
b) (Uniqueness) Suppose g is a bounded function on D such that

(1) g is X-harmonic
(2) lim

t↑τ
D

g(Xt) = φ(Xτ
D

) a.s. Qx, x ∈ D.

Then g(x) = Ex[φ(Xτ
D

)], x ∈ D.
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Proof. a) It follows from Lemma 9.2.4 that (i)s holds. Fix x ∈ D. Let {Dk}
be an increasing sequence of open sets such that Dk ⊂⊂ D and D =

⋃
k

Dk.

Put τk = τDk
, τ = τ

D
. Then by the strong Markov property

u(Xτk
) = EXτk [φ(Xτ )] = Ex[θτk

(φ(Xτ ))|Fτk
]

= Ex[φ(Xτ )|Fτk
] . (9.2.9)

Now Mk = Ex[φ(Xτ )|Fτk
] is a bounded (discrete time) martingale so by the

martingale convergence theorem Corollary C.9 (Appendix C) we get that

lim
k→∞

u(Xτk
) = lim

k→∞
Ex[φ(Xτ )|Fτk

] = φ(Xτ ) (9.2.10)

both pointwise for a.a. ω and in Lp(Qx), for all p < ∞. Moreover, by (9.2.9)
it follows that for each k the process

Nt = u(Xτk∨(t∧τk+1))− u(Xτk
) ; t ≥ 0

is a martingale w.r.t. Gt = Fτk∨(t∧τk+1).
So by the martingale inequality

Qx
[

sup
τk≤r≤τk+1

|u(Xr)− u(Xτk
)| > ε

]
≤ 1

ε2
Ex[|u(Xτk+1)− u(Xτk

)|2]

→ 0 as k →∞, for all ε > 0 . (9.2.11)

From (9.2.10) and (9.2.11) we conclude that (ii)s holds.

b) Let Dk, τk be as in a). Then since g is X-harmonic we have

g(x) = Ex[g(Xτk
)]

for all k. So by (2) and bounded convergence

g(x) = lim
k→∞

Ex[g(Xτk
)] = Ex[φ(Xτ

D
)] , as asserted .

tu
Finally we return to the original Dirichlet problem (9.2.1), (9.2.2). We

have already seen that a solution need not exist. However, it turns out that
for a large class of processes Xt we do get a solution (for all D) if we reduce
the requirement in (9.2.2) to hold only for a subset of the boundary points
y ∈ ∂D called the regular boundary points. Before we define regular points
and state the result precisely, we need the following auxiliary lemmas:

(As before we let Mt and M∞ denote the σ-algebras generated by Xs;
s ≤ t and by Xs; s ≥ 0 respectively).

Lemma 9.2.6 (The 0–1 law). Let H ∈ ⋂
t>0

Mt. Then either Qx(H) = 0

or Qx(H) = 1.
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Proof. From the strong Markov property (7.2.5) we have

Ex[θtη|Mt] = EXt [η]

for all bounded, M∞-measurable η:Ω → R. This implies that
∫

H

θtη · dQx =
∫

H

EXt [η]dQx , for all t .

First assume that η = ηk = g1(Xt1) · · · gk(Xtk
), where each gi is bounded

and continuous. Then letting t → 0 we obtain
∫

H

ηdQx = lim
t→0

∫

H

θtηdQx = lim
t→0

∫

H

EXt [η]dQx = Qx(H)Ex[η]

by Feller continuity (Lemma 8.1.4) and bounded convergence. Approximating
the general η by functions ηk as above we conclude that

∫

H

ηdQx = Qx(H)Ex[η]

for all bounded M∞-measurable η. If we put η = X
H

we obtain Qx(H) =
(Qx(H))2, which completes the proof. tu
Corollary 9.2.7. Let y ∈ Rn. Then

either Qy[τD = 0] = 0 or Qy[τD = 0] = 1 .

Proof. H = {ω; τD = 0} ∈ ⋂
t>0

Mt . tu

In other words, either a.a. paths Xt starting from y stay within D for a
positive period of time or a.a. paths Xt starting from y leave D immediately.
In the last case we call the point y regular, i.e.

Definition 9.2.8. A point y ∈ ∂D is called regular for D (w.r.t. Xt) if

Qy[τ
D

= 0] = 1 .

Otherwise the point y is called irregular.

Example 9.2.9. Corollary 9.2.7 may seem hard to believe at first glance. For
example, if Xt is a 2-dimensional Brownian motion Bt and D is the square
[0, 1]× [0, 1] one might think that, starting from (1

2 , 0), say, half of the paths
will stay in the upper half plane and half in the lower, for a positive period of
time. However, Corollary 9.2.7 says that this is not the case: Either they all
stay in D initially or they all leave D immediately. Symmetry considerations



9.2 The Dirichlet Problem. Regular Points 175

imply that the first alternative is impossible. Thus ( 1
2 , 0), and similarly all

the other points of ∂D, are regular for D w.r.t. Bt.

Example 9.2.10. Let D = [0, 1]×[0, 1] and let L be the parabolic differential
operator

Lf(t, x) =
∂f

∂t
+

1
2
· ∂2f

∂x2
; (t, x) ∈ R2 .

(See Example 7.3.5)
Here

b =
(

1
0

)
and a = [aij ] =

1
2

(
0 0
0 1

)
.

So, for example, if we choose σ =
(

0 0
1 0

)
, we have 1

2σσT = a. This gives the

following stochastic differential equation for the Itô diffusion Xt associated
with L:

dXt =
(

1
0

)
dt +

(
0 0
1 0

)(
dB

(1)
t

dB
(2)
t

)
.

In other words,

Xt =
(

t + t0
Bt

)
, X0 =

(
t0
x

)

where Bt is 1-dimensional Brownian motion. So we end up with the graph
of Brownian motion, which we started with in Example 7.3.5. In the case it
is not hard to see that the irregular points of ∂D consist of the open line
{0} × (0, 1), the rest of the boundary points being regular.
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Example 9.2.11. Let ∆ = {(x, y); x2 + y2 < 1} ⊂ R2 and let {∆n} be
a sequence of disjoint open discs in ∆ centered at (2−n, 0), respectively,
n = 1, 2, . . . . Put

D = ∆ \
( ∞⋃

n=1

∆n

)
.

Then it is easy to see that all the points of ∂∆ ∪
∞⋃

n=1
∂∆n are regular for

D w.r.t. 2-dimensional Brownian motion Bt, using a similar argument as in
Example 9.2.9. But what about the point 0? The answer depends on the sizes
of the discs ∆n. More precisely, if rn is the radius of ∆n then 0 is a regular
point for D if and only if

∞∑
n=1

n

log 1
rn

= ∞ . (9.2.12)

This is a consequence of the famous Wiener criterion. See Port and Stone
(1979), p. 225.

Having defined regular points we now formulate the announced general-
ized version of the Dirichlet problem:

The Generalized Dirichlet Problem

Given a domain D ⊂ Rn and L and φ as before, find a function u ∈ C2(D)
such that

(i) Lu = 0 in D (9.2.13)

and

(ii) lim
x→y
x∈D

u(x) = φ(y) for all regular y ∈ ∂D . (9.2.14)
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First we establish that if a solution of this problem exists, it must be the
solution of the stochastic Dirichlet problem found in Theorem 9.2.5, provided
that Xt satisfies Hunt’s condition (H):

(H): Every semipolar set for Xt is polar for Xt . (9.2.15)

A semipolar set is a countable union of thin sets and a measurable set G ⊂ Rn

is called thin (for Xt) if Qx[TG = 0] = 0 for all x, where TG = inf{t > 0;Xt ∈
G} is the first hitting time of G. (Intuitively: For all starting points the
process does not hit G immediately, a.s). A measurable set F ⊂ Rn is called
polar (for Xt) if Qx[TF < ∞] = 0 for all x. (Intuitively: For all starting
points the process never hits F , a.s.). Clearly every polar set is semipolar,
but the converse need not to be true (consider the process in Example 9.2.1).
However, condition (H) does hold for Brownian motion (See Blumenthal and
Getoor (1968)). It follows from the Girsanov theorem that condition (H) holds
for all Itô diffusions whose diffusion coefficient matrix has a bounded inverse
and whose drift coefficient satisfies the Novikov condition for all T < ∞.

We also need the following result, the proof of which can be found in
Blumenthal and Getoor (1968, Prop. II.3.3):

Lemma 9.2.12. Let U ⊂ D be open and let I denote the set of irregular
points of U . Then I is a semipolar set.

Theorem 9.2.13. Suppose Xt satisfies Hunt’s condition (H). Let φ be a
bounded continuous function on ∂D. Suppose there exists a bounded u ∈
C2(D) such that

(i) Lu = 0 in D
(ii)s lim

x→y
x∈D

u(x) = φ(y) for all regular y ∈ ∂D

Then u(x) = Ex[φ(Xτ
D

)].

Proof. Let {Dk} be as in the proof Theorem 9.1.1. By Lemma 9.2.3 b) u is
X-harmonic and therefore

u(x) = Ex[u(Xτk
)] for all x ∈ Dk and all k .

If k → ∞ then Xτk
→ Xτ

D
and so u(Xτk

) → φ(Xτ
D

) if Xτ
D

is regular.
From the Lemma 9.2.12 we know that the set I of irregular points of ∂D is
semipolar. So by condition (H) the set I is polar and therefore Xτ

D
/∈ I a.s.

Qx. Hence

u(x) = lim Ex[u(Xτk
)] = Ex[φ(Xτ

D
)] , as claimed . tu

Under what conditions is the solution u of the stochastic Dirichlet problem
(9.2.6), (9.2.7) also a solution of the generalized Dirichlet problem (9.2.13),
(9.2.14)? This is a difficult question and we will content ourselves with the
following partial answer:
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Theorem 9.2.14. Suppose L is uniformly elliptic in D, i.e. the eigenvalues
of [aij ] are bounded away from 0 in D. Let φ be a bounded continuous function
on ∂D. Put

u(x) = Ex[φ(Xτ
D

)] .

Then u ∈ C2+α(D) for all α < 1 and u solves the Dirichlet problem (9.2.13),
(9.2.14), i.e.

(i) Lu = 0 in D.
(ii)r lim

x→y
x∈D

u(x) = φ(y) for all regular y ∈ ∂D .

Remark. If k is an integer, α > 0 and G is an open set Ck+α(G) denotes the
set of functions on G whose partial derivatives up to k’th order is Lipschitz
(Hölder) continuous with exponent α.

Proof. Choose an open ball ∆ with ∆ ⊂ D and let f ∈ C(∂∆). Then, from
the general theory of partial differential equations, for all α < 1 there exists
a continuous function u on ∆ such that u|∆ ∈ C2+α(∆) and

Lu = 0 in ∆ (9.2.16)
u = f on ∂∆ (9.2.17)

(see e.g. Dynkin (1965 II, p. 226)). Since u|∆ ∈ C2+α(∆) we have: If K is
any compact subset of ∆ there exists a constant C only depending on K and
the Cα-norms of the coefficients of L such that

‖u‖C2+α(K) ≤ C(‖Lu‖Cα(∆) + ‖u‖C(∆)) . (9.2.18)

(See Bers, John and Schechter (1964, Theorem 3, p. 232).) Combining
(9.2.16), (9.2.17) and (9.2.18) we obtain

‖u‖C2+α(K) ≤ C‖f‖C(∂∆) . (9.2.19)

By uniqueness (Theorem 9.2.13) we know that

u(x) =
∫

f(y)dµx(y) , (9.2.20)

where dµx = Qx[Xτ∆
∈ dy] is the first exit distribution of Xt from ∆. From

(9.2.19) it follows that
∣∣∣
∫

fdµx1 −
∫

fdµx2

∣∣∣ ≤ C‖f‖C(∂∆)|x1 − x2|α ; x1, x2 ∈ K . (9.2.21)

By approximating a given continuous function on ∂∆ uniformly by functions
in C∞(∂∆) we see that (9.2.21) holds for all functions f ∈ C(∂∆). Therefore

‖µx1 − µx2‖ ≤ C|x1 − x2|α ; x1, x2 ∈ K (9.2.22)
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where ‖ ‖ denotes the operator norm on measures on ∂∆. So if g is any
bounded measurable function on ∂∆ we know that the function

ĝ(x) =
∫

g(y)dµx(y) = Ex[g(Xτ∆)]

belongs to the class Cα(K). Since u(x) = Ex[u(XτU
)] for all open sets U

with U ⊂ D and x ∈ U (Lemma 9.2.4) this applies to g = u and we conclude
that u ∈ Cα(M) for any compact subset M of D.

We may therefore apply the solution to the problem (9.2.16), (9.2.17) once
more, this time with f = u and this way we obtain that

u(x) = Ex[u(Xτ
D

)] belongs to C2+α(M)

for any compact M ⊂ D. Therefore (i) holds by Lemma 9.2.3 a).
To obtain (ii)r we apply a theorem from the theory of parabolic differential

equations: The Kolmogorov backward equation

Lv =
∂v

∂t

has a fundamental solution v = p(t, x, y) jointly continuous in t, x, y for t > 0
and bounded in x, y for each fixed t > 0 (See Dynkin (1965 II), Theorem 0.4
p. 227). It follows (by bounded convergence) that the process Xt is a strong
Feller process, in the sense that the function

x → Ex[f(Xt)] =
∫

Rn

f(y)p(t, x, y)dy

is continuous, for all t > 0 and all bounded, measurable functions f . In general
we have:

If Xt is a strong Feller Itô diffusion and D ⊂ Rn is open then
lim
x→y
x∈D

Ex[φ(Xτ
D

)] = φ(y)

for all regular y ∈ ∂D and bounded φ ∈ C(∂D) . (9.2.23)

(See Theorem 13.3 p. 32–33 in Dynkin (1965 II)).
Therefore u satisfies property (ii)r and the proof is complete. tu

Example 9.2.15. We have already seen (Example 9.2.1) that condition
(9.1.3) does not hold in general. This example shows that it need not hold
even when L is elliptic: Consider Example 9.2.11 again, in the case when the
point 0 is not regular. Choose φ ∈ C(∂D) such that

φ(0) = 1, 0 ≤ φ(y) < 1 for y ∈ ∂D \ {0} .

Since {0} is polar for Bt (see Exercise 9.7 a) we have B0
τ
D
6= 0 a.s and therefore
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u(0) = E0[φ(Bτ
D

)] < 1 .

By a slight extension of the mean value property (7.2.9) (see Exercise 9.4)
we get

E0[u(Xσk
)] = E0[φ(Xτ

D
)] = u(0) < 1 (9.2.24)

where

σk = inf
{

t > 0;Bt /∈ D ∩
{
|x| < 1

k

}}
, k = 1, 2, . . .

This implies that it is impossible that u(x) → 1 as x → 0. Therefore (9.1.3)
does not hold in this case.

In general one can show that the regular points for Brownian motion
are exactly the regular points in the classical potential theoretic sense, i.e.
the points y on ∂D where the limit of the generalized Perron-Wiener-Brelot
solution coincide with φ(y), for all φ ∈ C(∂D). See Doob (1984), Port and
Stone (1979) or Rao (1977).

Example 9.2.16. Let D denote the infinite strip

D = {(t, x) ∈ R2; x < R} , where R ∈ R

and let L be the differential operator

Lf(t, x) =
∂f

∂t
+

1
2

∂2f

∂x2
; f ∈ C2(D) .

An Itô diffusion whose generator coincides with L on C2
0 (R2) is (see Exam-

ple 9.2.10)
Xt = (s + t, Bt) ; t ≥ 0 ,

and all the points of ∂D are regular for this process. It is not hard to see that
in this case (9.1.14) holds, i.e.

τD < ∞ a.s.
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(see Exercise 7.4).
Assume that φ is a bounded continuous function on ∂D = {(t, R); t ∈ R}.

Then by Theorem 9.2.5 the function

u(s, x) = Es,x[φ(Xτ
D

)]

is the solution of the stochastic Dirichlet problem (9.2.6), (9.2.7), where Es,x

denotes expectation w.r.t. the probability law Qs,x for X starting at (s, x).
Does u also solve the problem (9.2.13), (9.2.14)? Using the Laplace transform
it is possible to find the distribution of the first exit point on ∂D for X, i.e.
to find the distribution of the first time t = τ̂ that Bt reaches the value R.
(See Karlin and Taylor (1975), p. 363. See also Exercise 7.19.) The result is

P x[τ̂ ∈ dt] = g(x, t)dt ,

where

g(x, t) =
{

(R− x)(2πt3)−1 exp(− (R−x)2

2t ) ; t > 0
0 ; t ≤ 0 .

(9.2.25)

Thus the solution u may be written

u(s, x) =

∞∫

0

φ(s + t, R)g(x, t)dt =

∞∫

s

φ(r,R)g(x, r − s)dr .

From the explicit formula for u it is clear that ∂u
∂s and ∂2u

∂x2 are continuous
and we conclude that Lu = 0 in D by Lemma 9.2.3. So u satisfies (9.2.13).
What about property (9.2.14)? It is not hard to see that for t > 0

Et0,x[f(Xt)] = (2πt)−
1
2

∫

R

f(t0 + t, y) exp
(
− |x− y|2

2t

)
dy

for all bounded, (t, x)-measurable functions f . (See (2.2.2)). Therefore Xt is
not a strong Feller process, so we cannot appeal to (9.2.23) to obtain (9.2.14).
However, it is easy to verify directly that if |y| = R, t1 > 0 then for all ε > 0
there exists δ > 0 such that |x−y| < δ, |t− t1| < δ ⇒ Qt,x[Xτ

D
∈ N ] ≥ 1− ε,

where N = [t1 − ε, t1 + ε]× {y}. And this is easily seen to imply (9.2.14).

Remark. As the above example (and Example 9.2.1) shows, an Itô diffusion
need not be a strong Feller process. However, we have seen that it is always
a Feller process (Lemma 8.1.4).

9.3 The Poisson Problem

Let L =
∑

aij
∂2

∂xi∂xj
+

∑
bi

∂
∂xi

be a semi-elliptic partial differential operator
on a domain D ⊂ Rn as before and let Xt be an associated Itô diffusion,
described by (9.1.4) and (9.1.5). In this section we study the Poisson problem
(9.2.3), (9.2.4). For the same reasons as in Section 9.2 we generalize the
problem to the following:
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The Generalized Poisson Problem

Given a continuous function g on D find a C2 function v in D such that

a) Lv = −g in D (9.3.1)
b) lim

x→y
x∈D

v(x) = 0 for all regular y ∈ ∂D (9.3.2)

Again we will first study a stochastic version of the problem and then in-
vestigate the relation between the corresponding stochastic solution and the
solution (if it exists) of (9.3.1), (9.3.2):

Theorem 9.3.1 (Solution of the stochastic Poisson problem).
Assume that

Ex

[ τ
D∫

0

|g(Xs)|ds

]
< ∞ for all x ∈ D . (9.3.3)

(This occurs, for example, if g is bounded and Ex[τ
D

] < ∞ for all x ∈ D).
Define

v(x) = Ex

[ τ
D∫

0

g(Xs)ds

]
. (9.3.4)

Then
Av = −g in D , (9.3.5)

and
lim
t↑τ

D

v(Xt) = 0 a.s. Qx, for all x ∈ D . (9.3.6)

Proof. Choose U open, x ∈ U ⊂⊂ D. Put η =
τ
D∫
0

g(Xs)ds, τ = τU .

Then by the strong Markov property (7.2.5)

Ex[v(Xτ )]− v(x)
Ex[τ ]

=
1

Ex[τ ]
(Ex[EXτ [η]]− Ex[η])

=
1

Ex[τ ]
(Ex[Ex[θτη|Fτ ]]− Ex[η]) =

1
Ex[τ ]

(Ex[θτη − η]) .

Approximate η by sums of the form

η(k) =
∑

g(Xti)X{ti<τ
D
}∆ti .

Since
θtη

(k) =
∑

g(Xti+t)X{ti+t<τt
D
}∆ti for all k

(see the argument for (7.2.6)) we see that
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θτη =

τ
D∫

τ

g(Xs)ds . (9.3.7)

Therefore

Ex[v(Xτ )]− v(x)
Ex[τ ]

=
−1

Ex[τ ]
Ex

[ τ∫

0

g(Xs)ds

]
→ −g(x) as U ↓ x ,

since g is continuous. This proves (9.3.5).

Put H(x) = Ex[
τ
D∫
0

|g(Xs)|ds]. Let Dk, τk be as in the proof of Theo-

rem 9.2.5. Then by the same argument as above we get

Ex[H(Xτk∧t)] = Ex[Ex[

τ
D∫

τk∧t

|g(Xs)|ds|Fτk∧t]]

= Ex

[ τ
D∫

τk∧t

|g(Xs)|ds

]
→ 0 as t → τ

D
, k →∞

by dominated convergence. This implies (9.3.6). tu

Remark. For functions g satisfying (9.3.3) define the operator R by

(Rg)(x) = ǧ(x) = Ex

[ τ
D∫

0

g(Xs)ds

]
.

Then (9.3.5) can be written

A(Rg) = −g (9.3.8)

i.e. the operator −R is a right inverse of the operator A. Similarly, if we
define

Rαg(x) = Ex

[ τ
D∫

0

g(Xs)e−αsds

]
for α ≥ 0 (9.3.9)

then the same method of proof as in Theorem 8.1.5 gives that

(A− α)Rαg = −g ; α ≥ 0 . (9.3.10)

(If α > 0 then the assumption (9.3.3) can be replaced by the assumption that
g is bounded (and continuous as before)).

Thus we may regard the operator Rα as a generalization of the resolvent
operator Rα discussed in Chapter 8, and formula (9.3.10) as the analogue of
Theorem 8.1.5 b).
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Next we establish that if a solution v of the generalized problem (9.3.1),
(9.3.2) exists, then v is the solution (9.3.4) of the stochastic problem (9.3.5),
(9.3.6):

Theorem 9.3.2 (Uniqueness theorem for the Poisson equation).
Assume that Xt satisfies Hunt’s condition (H) ((9.2.15)). Assume that (9.3.3)
holds and that there exists a function v ∈ C2(D) and a constant C such that

|v(x)| ≤ C
(
1 + Ex

[ τ
D∫

0

|g(Xs)|ds

])
for all x ∈ D (9.3.11)

and with the properties

Lv = −g in D , (9.3.12)

lim
x→y
x∈D

v(x) = 0 for all regular points y ∈ ∂D . (9.3.13)

Then v(x) = Ex[
τ
D∫
0

g(Xs)ds].

Proof. Let Dk, τk be as in the proof of Theorem 9.2.5. Then by Dynkin’s
formula

Ex[v(Xτk
)]− v(x) = Ex

[ τk∫

0

(Lv)(Xs)ds

]
= −Ex

[ τk∫

0

g(Xs)ds

]
.

By dominated convergence we obtain

v(x) = lim
k→∞

(
Ex[v(Xτk

)] + Ex

[ τk∫

0

g(Xs)ds

])
= Ex

[ τ
D∫

0

g(Xs)ds

]
,

since Xτ
D

is a regular point a.s. by condition (H) and Lemma 9.2.12. tu
Finally we combine the Dirichlet and Poisson problem and obtain the

following result:

Theorem 9.3.3. (Solution of the combined stochastic Dirichlet and
Poisson problem).
Assume that (9.1.14) holds. Let φ ∈ C(∂D) be bounded and let g ∈ C(D)
satisfy

Ex

[ τ
D∫

0

|g(Xs)|ds

]
< ∞ for all x ∈ D . (9.3.14)

Define
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w(x) = Ex[φ(Xτ
D

)] + Ex

[ τ
D∫

0

g(Xs)ds

]
, x ∈ D . (9.3.15)

a) Then
Aw = −g in D (9.3.16)

and
lim
t↑τ

D

w(Xt) = φ(Xτ
D

) a.s. Qx, for all x ∈ D . (9.3.17)

b) Moreover, if there exists a function w1 ∈ C2(D) and a constant C such
that

|w1(x)| < C
(
1 + Ex

[ τ
D∫

0

|g(Xs)|ds

])
, x ∈ D , (9.3.18)

and w1 satisfies (9.3.16) and (9.3.17), then w1 = w.

Remark. With an approach similar to the one used in Theorem 9.2.14 one
can prove that if L is uniformly elliptic in D and g ∈ Cα(D) (for some α > 0)
is bounded, then the function w given by (9.3.15) solves the Dirichlet-Poisson
problem, i.e.

Lw = −g in D (9.3.19)

and
lim
x→y
x∈D

w(x) = φ(y) for all regular y ∈ ∂D . (9.3.20)

The Green Measure

The solution v given by the formula (9.3.4) may be rewritten as follows:

Definition 9.3.4. The Green measure (of Xt w.r.t. D at x), G(x, ·) is de-
fined by

G(x,H) = Ex

[ τ
D∫

0

XH(Xs)ds

]
, H ⊂ Rn Borel set (9.3.21)

or

∫
f(y)G(x, dy) = Ex

[ τ
D∫

0

f(Xs)ds

]
, f bounded, continuous . (9.3.22)
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In other words, G(x,H) is the expected length of time the process stays
in H before it exits from D. If Xt is Brownian motion, then

G(x,H) =
∫

H

G(x, y)dy ,

where G(x, y) is the classical Green function w.r.t. D and dy denotes Lebesque
measure. See Doob (1984), Port and Stone (1979) or Rao (1977). See also
Example 9.3.6 below.

Note that using the Fubini theorem we obtain the following relation
between the Green measure G and the transition measure for Xt in D,
QD

t (x,H) = Qx[Xt ∈ H, t < τ
D

]:

G(x,H) = Ex

[ ∞∫

0

XH(Xs) · X[0,τ
D

)(s)ds

]
=

∞∫

0

QD
t (x,H)dt . (9.3.23)

From (9.3.22) we get

v(x) = Ex

[ τ
D∫

0

g(Xs)ds

]
=

∫

D

g(y)G(x, dy) , (9.3.24)

which is the familiar formula for the solution of the Poisson equation in the
classical case.

Also note that by using the Green function, we may regard the Dynkin
formula as a generalization of the classical Green formula:

Corollary 9.3.5 (The Green formula). Let Ex[τD ] < ∞ for all x ∈ D
and assume that f ∈ C2

0 (Rn). Then

f(x) = Ex[f(Xτ
D

)]−
∫

D

(LXf)(y)G(x, dy) . (9.3.25)

In particular, if f ∈ C2
0 (D) we have

f(x) = −
∫

D

(LXf)(y)G(x, dy) . (9.3.26)

(As before LX =
∑

bi
∂

∂xi
+ 1

2

∑
(σσT )ij

∂2

∂xi∂xj
when

dXt = b(Xt)dt + σ(Xt)dBt . )

Proof. By Dynkin’s formula and (9.3.24) we have

Ex[f(Xτ
D

)] = f(x) + Ex

[ τ
D∫

0

(LXf)(Xs)ds

]
= f(x) +

∫

D

(LXf)(y)G(x, dy) .
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Remark. Combining (9.3.8) with (9.3.26) we see that if Ex[τK ] < ∞ for all
compacts K ⊂ D and all x ∈ D, then −R is the inverse of the operator A
on C2

0 (D) :

A(Rf) = R(Af) = −f , for all f ∈ C2
0 (D) . (9.3.27)

More generally, for all α ≥ 0 we get the following analogue of Theorem 8.1.5:

(A− α)(Rαf) = Rα(A− α)f = −f for all f ∈ C2
0 (D) . (9.3.28)

The first part of this is already established in (9.3.10) and the second part
follows from the following useful extension of the Dynkin formula

Ex[e−ατf(Xτ )] = f(x) + Ex

[ τ∫

0

e−αs(A− α)f(Xs)ds

]
. (9.3.29)

If α > 0 this is valid for all stopping times τ ≤ ∞ and all f ∈ C2
0 (Rn). (See

Exercise 9.6.)

Example 9.3.6. If Xt = Bt is 1-dimensional Brownian motion in a bounded
interval (a, b) ⊂ R then we can compute the Green function G(x, y) explicitly.
To this end, choose a bounded continuous function g: (a, b) → R and let us
compute

v(x): = Ex

[ τ
D∫

0

g(Bt)dt

]
.

By Corollary 9.1.2 we know that v is the solution of the differential equation

1
2v′′(x) = −g(x) ; x ∈ (a, b)
v(a) = v(b) = 0 .

Integrating twice and using the boundary conditions we get

v(x) =
2(x− a)

b− a

b∫

a

( y∫

a

g(z)dz

)
dy − 2

x∫

a

( y∫

a

g(z)dz

)
dy .

Changing the order of integration we can rewrite this as

v(x) =

b∫

a

g(y)G(x, y)dy

where

G(x, y) =
2(x− a)(b− y)

b− a
− 2(x− y) · X(−∞,x)(y) . (9.3.30)
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We conclude that the Green function of Brownian motion in the interval
(a, b) is given by (9.3.30).

In higher dimension n the Green function y → G(x, y) of Brownian mo-
tion starting at x will not be continuous at x. It will have a logarithmic
singularity (i.e. a singularity of order ln 1

|x−y| ) for n = 2 and a singularity of
the order |x− y|2−n for n > 2.

Exercises

9.1. In each of the cases below find an Itô diffusion whose generator coin-
cides with L on C2

0 :

a) Lf(t, x) = α∂f
∂t + 1

2β2 ∂2f
∂x2 ; α, β constants

b) Lf(x1, x2) = a ∂f
∂x1

+ b ∂f
∂x2

+ 1
2 (∂2f

∂x2
1

+ ∂2f
∂x2

2
) ; a, b constants

c) Lf(x) = αxf ′(x) + 1
2β2f ′′(x) ; α, β constants

d) Lf(x) = αf ′(x) + 1
2β2x2f ′′(x) ; α, β constants

e) Lf(x1, x2) = ln(1+x2
1)

∂f
∂x1

+x2
∂f
∂x2

+x2
2

∂2f
∂x2

1
+2x1x2

∂2f
∂x1∂x2

+2x2
1

∂2f
∂x2

2
.

9.2. Use Theorem 9.3.3 to find the bounded solutions of the following
boundary value problems:

(i)

{
∂u
∂t + 1

2 · ∂2u
∂x2 = eρtφ(x) ; 0 < t < T, x ∈ R

u(T, x) = ψ(x) ; x ∈ R

where φ, ψ are given bounded, continuous functions.

(ii)
{

αxu′(x) + 1
2β2x2u′′(x) = 0 ; 0 < x < x0

u(x0) = x2
0

where α, β are given constants, α ≥ 1
2β2.
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(iii) If α < 1
2β2 there are infinitely many bounded solutions of (ii),

and an additional boundary condition e.g. at x = 0 is needed to
provide uniqueness. Explain this in view of Theorem 9.3.3.

9.3. Write down (using Brownian motion) and compare the solutions u(t, x)
of the following two boundary value problems:

a)

{
∂u
∂t + 1

2∆u = 0 for 0 < t < T, x ∈ Rn

u(T, x) = φ(x) for x ∈ Rn .

b)

{
∂u
∂t − 1

2∆u = 0 for 0 < t < T, x ∈ Rn

u(0, x) = ψ(x) for x ∈ Rn .

9.4. Let G and H be bounded open subsets of Rn, G ⊂ H, and let Bt be
n-dimensional Brownian motion. Use the property (H) for Bt to prove
that

inf{t > 0; Bt /∈ H} = inf{t > τG; Bt /∈ H}
i.e., with the terminology of (7.2.6),

τH = τα
H where α = τG .

Use this to prove that if Xt = Bt then the mean value property (7.2.9)
holds for all bounded open G ⊂ H, i.e. it is not necessary to require
G ⊂⊂ H in this case. This verifies the statement (9.2.24).

9.5. (The eigenvalues of the Laplacian)
Let D ⊂ Rn be open, bounded and let λ ∈ R.
a) Suppose there exists a solution u ∈ C2(D)∩C(D), u not identically

zero, such that {− 1
2∆u = λu in D
u = 0 on ∂D .

(9.3.31)

Show that we must have λ > 0. (Hint: If 1
2∆u = −λu in D then

〈 12∆u, u〉 = 〈−λu, u〉
where

〈u, v〉 =
∫

D

u(x)v(x)dx .

Now use integration by parts.)
b) It can be shown that if D is smooth then there exist 0 < λ0 < λ1 <
· · · < λn < · · · where λn →∞ such that (9.3.31) holds for λ = λn,
n = 0, 1, 2, . . ., and for no other values of λ. The numbers {λn} are
called the eigenvalues of the operator − 1

2∆ in the domain D and
the corresponding (nontrivial) solutions un of (9.3.31) are called the
eigenfunctions. There is an interesting probabilistic interpretation
of the lowest eigenvalue λ0. The following result indicates this:
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Put τ = τ
D

= inf{t > 0; Bt /∈ D}, choose ρ > 0 and define

wρ(x) = Ex[exp(ρτ)] ; x ∈ D .

Prove that if wρ(x) < ∞ for all x ∈ D then ρ is not an eigenvalue
for − 1

2∆. (Hint: Let u be a solution of (9.3.31) with λ = ρ. Apply
Dynkin’s formula to the process dYt = (dt, dBt) and the function
f(t, x) = eρtu(x) to deduce that u(x) = 0 for x ∈ D).

c) Conclude that

λ0 ≥ sup{ρ; Ex[exp(ρτ)] < ∞ for all x ∈ D} .

(We have in fact equality here. See for example Durrett (1984),
Chap. 8B).

9.6. Prove formula (9.3.29), for example by applying the Dynkin formula
to the process

dYt =
[

dt
dXt

]

and the function g(y) = g(t, x) = e−αtf(x).

9.7. a) Let Bt be Brownian motion in R2. Prove that

P x[∃t > 0; Bt = y] = 0 for all x, y ∈ R2 .

(Hint: First assume x 6= y. We may choose y = 0. One possible
approach would be to apply Dynkin’s formula with f(u) = ln |u|
and τ = inf{t > 0; |Bt| ≤ ρ or |Bt| ≥ R}, where 0 < ρ < R. Let
ρ → 0 and then R → ∞. If x = y consider P x[∃t > ε; Bt = x] and
use the Markov property.)

b) Let Bt = (B(1)
t , B

(2)
t ) be Brownian motion in R2. Prove that

B̃t = (−B
(1)
t , B

(2)
t ) is also a Brownian motion.

c) Prove that 0 ∈ R2 is a regular boundary point (for Brownian mo-
tion) of the plane region

D = {(x1, x2) ∈ R2; x2
1 + x2

2 < 1} \ {(x1, 0); x1 ≥ 0} .

d) Prove that 0 ∈ R3 is an irregular boundary point (for Brownian
motion) of the 3-dimensional region

U = {(x1, x2, x3) ∈ R3, x2
1 + x2

2 + x2
3 < 1} \ {(x1, 0, 0); x1 ≥ 0} .
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9.8. a) Find an Itô diffusion Xt and a measurable set G which is semipolar
but not polar for Xt.

b) Find an Itô diffusion Xt and a countable family of thin sets Hk;

k = 1, 2, . . . such that
∞⋃

k=1

Hk is not thin.

9.9. a) Let Xt be an Itô diffusion in Rn and assume that g is a non-constant
locally bounded real Xt-harmonic function on a connected open
set G ⊂ Rn. Prove that g satisfies the following weak form of the
maximum principle: g does not have a (local or global) maximum
at any point of G. (Similarly g satisfies the minimum principle).

b) Give an example to show that a non-constant bounded Xt-harmonic
function g can have a (non-strict) global maximum. (Hint: Consider
uniform motion to the right.)

9.10. Find the (stochastic) solution f(t, x) of the boundary value problem




K(x)e−ρt + ∂f
∂t + αx∂f

∂x + 1
2β2x2 ∂2f

∂x2 = 0 for x > 0, 0 < t < T

f(T, x) = e−ρT φ(x) for x > 0

where K, φ are given functions and T, ρ, α, β are constants, ρ>0, T >0.
(Hint: Consider dYt = (dt, dXt) where Xt is a geometric Brownian
motion).

9.11. a) The Poisson kernel is defined by

Pr(θ) =
1− r2

1− 2r cos θ + r2
=

1− |z|2
|1− z|2

where r ≥ 0, θ ∈ [0, 2π], z = reiθ ∈ C (i =
√−1 ).

The Poisson formula states that if D denotes the open unit disk in
the plane R2 = C and h ∈ C(D ) satisfies ∆h = 0 in D then

h(reiθ) =
1
2π

2π∫

0

Pr(t− θ)h(eit)dt .
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Prove that the probability that Brownian motion, starting from
z ∈ D, first exits from D at a set F ⊂ ∂D is given by

1
2π

∫

F

Pr(t− θ)dt , where z = reiθ .

b) The function

w = φ(z) = i
1 + z

1− z

maps the disc D = {|z| < 1} conformally onto the half plane H =
{w = u+iv; v > 0}, φ(∂D) = R and φ(0) = i. Use Example 8.5.9 to
prove that if µ denotes the harmonic measure for Brownian motion
at the point i = (0, 1) for the half plane H then

∫

R

f(ξ)dµ(ξ) =
1
2π

2π∫

0

f(φ(eit))dt =
1

2πi

∫

∂D

f(φ(z))
z

dz .

c) Substitute w = φ(z) (i.e. z = ψ(w):= φ−1(w) = w−i
w+i ) in the inte-

gral above to show that

∫

R

f(ξ)dµ(ξ) =
1
π

∫

∂H

f(w)
dw

|w − i|2 =
1
π

∞∫

−∞
f(x)

dx

x2 + 1
.

d) Show that the harmonic measure µw
H for Brownian motion in H at

the point w = u + iv ∈ H is given by

dµw
H(x) =

1
π
· v

(x− u)2 + v2
dx .

9.12. (A Feynman-Kac formula for boundary value problems)
Let Xt be an Itô diffusion on Rn whose generator coincides with a
given partial differential operator L on C2

0 (Rn). Let D, φ and g be as
in Theorem 9.3.3 and let q(x) ≥ 0 be a continuous function on Rn.
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Consider the boundary value problem: Find h ∈ C2(D) ∩ C(D ) such
that {

Lh(x)− q(x)h(x) = −g(x) on D

lim
x→y

h(x) = φ(y) ; y ∈ ∂D .

Show that if a bounded solution h exists, then

h(x) = Ex

[ τ
D∫

0

e
−
∫ t

0
q(Xs)ds

g(Xt)dt + e
−
∫ τ

D

0
q(Xs)ds

φ(Xτ
D

)
]

.

(Compare with the Feynman-Kac formula.)
Hint: Proceed as in the proof of Theorem 8.2.1 b).

For more information on stochastic solutions of boundary value problems
see Freidlin (1985).

9.13. Let D = (a, b) be a bounded interval.
a) For x ∈ R define

Xt = Xx
t = x + µt + σBt ; t ≥ 0

where µ, σ are constants, σ 6= 0. Use Corollary 9.1.2 to compute

w(x):= Ex[φ(Xτ
D

)] + Ex

[ τ
D∫

0

g(Xt)dt

]

when φ: {a, b} → R and g: (a, b) → R are given functions, g
bounded and continuous.

b) Use the results in a) to compute the Green function G(x, y) of the
process Xt.
(Hint: Choose φ = 0 and proceed as in Example 9.3.6.)

9.14. Let D = (a, b) ⊂ (0,∞) be a bounded interval and let

dXt = rXtdt + αXtdBt ; X0 = x ∈ (a, b)

be a geometric Brownian motion.
a) Use Corollary 9.1.2 to find

Qx[Xτ
D

= b] .

(Hint: Choose g = 0 and φ(a) = 0, φ(b) = 1.)
b) Use Corollary 9.1.2 to compute

w(x) = Ex[φ(Xτ
D

)] + Ex

[ τ
D∫

0

g(Xt)dt

]
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for given functions φ: {a, b} → R and g: (a, b) → R, g bounded and
continuous.
(Hint: The substitution t = ln x, w(x) = h(lnx) transforms the
differential equation

1
2α2x2w′′(x) + rxw′(x) = −g(x) ; x > 0

into the differential equation

1
2α2h′′(t) + (r − 1

2α2)h′(t) = −g(et) ; t ∈ R .)

9.15. a) Let D = (a, b) ⊂ R be a bounded interval and let Xt = Bt be
1-dimensional Brownian motion. Use Corollary 9.1.2 to compute

h(x) = Ex[e−ρτ
D ψ(Bτ

D
)] + Ex

[ τ
D∫

0

e−ρtB2
t dt

]

for a given function ψ: {a, b} → R, when ρ > 0 is constant.
(Hint: Consider the Itô diffusion

dYt =
[

dY
(1)
t

dY
(2)
t

]
=

[
dt

dBt

]
=

[
1
0

]
dt +

[
0
1

]
dBt ; Y0 = y = (s, x) .

Then
h(x) = w(0, x)

where

w(s, x) = w(y) = Ey[φ(Yτ
D

)] + Ey

[ τ
D∫

0

g(Yt)dt

]

with φ(y) = φ(s, x) = e−ρsψ(x)
and g(y) = g(s, x) = e−ρsx2 .
Note that

τD = inf{t > 0; Bt 6∈ (a, b)} = inf{t > 0; Y
(2)
t 6∈ (a, b)}

= inf{t > 0; Yt 6∈ R× (a, b)} .

To find w(s, x) solve the boundary value problem




1
2

∂2w
∂x2 + ∂w

∂s = −e−ρsx2 ; a < x < b

w(s, a) = e−ρsψ(a) , w(s, b) = e−ρsψ(b) .

To this end, try w(s, x) = e−ρsh(x).)
b) Use the method in a) to find Ex[e−ρτ

D ].
(Compare with Exercise 7.19.)



10. Application to Optimal Stopping

10.1 The Time-Homogeneous Case

Problem 5 in the introduction is a special case of a problem of the following
type:

Problem 10.1.1 (The optimal stopping problem).
Let Xt be an Itô diffusion on Rn and let g (the reward function) be a given
function on Rn, satisfying

a) g(ξ) ≥ 0 for all ξ ∈ Rn (10.1.1)
b) g is continuous.

Find a stopping time τ∗ = τ∗(x, ω) (called an optimal stopping time) for
{Xt} such that

Ex[g(Xτ∗)] = sup
τ

Ex[g(Xτ )] for all x ∈ Rn , (10.1.2)

the sup being taken over all stopping times τ for {Xt}. We also want to find
the corresponding optimal expected reward

g∗(x) = Ex[g(Xτ∗)] . (10.1.3)

Here g(Xτ ) is to be interpreted as 0 at the points ω ∈ Ω where τ(ω) = ∞
and as usual Ex denotes the expectation with respect to the probability law
Qx of the process Xt; t ≥ 0 starting at X0 = x ∈ Rn.

We may regard Xt as the state of a game at time t, each ω corresponds
to one sample of the game. For each time t we have the option of stopping
the game, thereby obtaining the reward g(Xt), or continue the game in the
hope that stopping it at a later time will give a bigger reward. The problem
is of course that we do not know what state the game is in at future times,
only the probability distribution of the “future”. Mathematically, this means
that the possible “stopping” times we consider really are stopping times in
the sense of Definition 7.2.1: The decision whether τ ≤ t or not should only
depend on the behaviour of the Brownian motion Br (driving the process X)
up to time t, or perhaps only on the behaviour of Xr up to time t. So, among
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all possible stopping times τ we are asking for the optimal one, τ∗, which
gives the best result “in the long run”, i.e. the biggest expected reward in
the sense of (10.1.2).

In the following we will outline how a solution to this problem can be
obtained using the material from the preceding chapter. Later in this chapter
we shall see that our discussion of problem (10.1.2)–(10.1.3) also covers the
apparently more general problems

g∗(s, x) = sup
τ

E(s,x)[g(τ,Xτ )] = E(s,x)[g(τ∗, Xτ∗)] (10.1.4)

and

G∗(s, x) = sup
τ

E(s,x)

[ τ∫

0

f(t,Xt)dt + g(τ, Xτ )
]

= E(s,x)

[ τ∗∫

0

f(t,Xt)dt + g(τ∗, Xτ∗)
]

(10.1.5)

where f is a given reward rate function (satisfying certain conditions).

We shall also discuss possible extensions of problem (10.1.2)–(10.1.3) to
cases where g is not necessarily continuous or where g may assume negative
values.

A basic concept in the solution of (10.1.2)–(10.1.3) is the following:

Definition 10.1.2. A measurable function f :Rn → [0,∞] is called super-
meanvalued (w.r.t. Xt) if

f(x) ≥ Ex[f(Xτ )] (10.1.6)

for all stopping times τ and all x ∈ Rn.
If, in addition, f is also lower semicontinuous, then f is called l.s.c. su-

perharmonic or just superharmonic (w.r.t. Xt).

Note that if f :Rn → [0,∞] is lower semicontinuous then by the Fatou
lemma

f(x) ≤ Ex[ lim
k→∞

f(Xτk
)] ≤ lim

k→∞
Ex[f(Xτk

)] , (10.1.7)

for any sequence {τk} of stopping times such that τk → 0 a.s. P . Combining
this with (10.1.6) we see that if f is (l.s.c.) superharmonic, then

f(x) = lim
k→∞

Ex[f(Xτk
)] for all x , (10.1.8)

for all such sequences τk.
Remarks. 1) In the literature (see e.g. Dynkin (1965 II)) one often finds
a weaker concept of Xt-superharmonicity, defined by the supermeanvalued
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property (10.1.6) plus the stochastic continuity requirement (10.1.8). This
weaker concept corresponds to the Xt-harmonicity defined in Chapter 9.

2) If f ∈ C2(Rn) it follows from Dynkin’s formula that f is superhar-
monic w.r.t. Xt if and only if

Af ≤ 0

where A is the characteristic operator of Xt. This is often a useful criterion
(See e.g. Example 10.2.1).

3) If Xt = Bt is Brownian motion in Rn then the superharmonic func-
tions for Xt coincide with the (nonnegative) superharmonic functions in clas-
sical potential theory. See Doob (1984) or Port and Stone (1979).

We state some useful properties of superharmonic and supermeanvalued
functions.

Lemma 10.1.3. a) If f is superharmonic (supermeanvalued) and α > 0,
then αf is superharmonic (supermeanvalued).

b) If f1, f2 are superharmonic (supermeanvalued), then f1 + f2 is superhar-
monic (supermeanvalued).

c) If {fj}j∈J is a family of supermeanvalued functions, then f(x):= inf
j∈J

{fj(x)}
is supermeanvalued if it is measurable (J is any set).

d) If f1, f2, · · · are superharmonic (supermeanvalued) functions and fk ↑ f
pointwise, then f is superharmonic (supermeanvalued).

e) If f is supermeanvalued and σ ≤ τ are stopping times, then Ex[f(Xσ)] ≥
Ex[f(Xτ )].

f) If f is supermeanvalued and H is a Borel set, then f̃(x):= Ex[f(XτH )] is
supermeanvalued.

Proof of Lemma 10.1.3.

a) and b) are straightforward.
c) Suppose fj is supermeanvalued for all j ∈ J . Then

fj(x) ≥ Ex[fj(Xτ )] ≥ Ex[f(Xτ )] for all j .

So f(x) = inf fj(x) ≥ Ex[f(Xτ )], as required.
d) Suppose fj is supermeanvalued, fj ↑ f . Then

f(x) ≥ fj(x) ≥ Ex[fj(Xτ )] for all j, so
f(x) ≥ lim

j→∞
Ex[fj(Xτ )] = Ex[f(Xτ )] ,

by monotone convergence. Hence f is supermeanvalued. If each fj is also
lower semicontinuous then if yk → x as k →∞ we have

fj(x) ≤ lim
k→∞

fj(yk) ≤ lim
k→∞

f(yk) for each j .

Hence, by letting j →∞,
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f(x) ≤ lim
k→∞

f(yk) .

e) If f is supermeanvalued we have by the Markov property when t > s

Ex[f(Xt)|Fs] = EXs [f(Xt−s)] ≤ f(Xs) , (10.1.9)

i.e. the process
ζt = f(Xt)

is a supermartingale w.r.t. the σ-algebras Ft generated by {Br; r ≤ t}.
(Appendix C). Therefore, by Doob’s optional sampling theorem (see Gih-
man and Skorohod (1975, Theorem 6 p. 11)) we have

Ex[f(Xσ)] ≥ Ex[f(Xτ )]

for all stopping times σ, τ with σ ≤ τ a.s. Qx.
f) Suppose f is supermeanvalued. By the strong Markov property (7.2.2)

and formula (7.2.6) we have, for any stopping time α,

Ex[f̃(Xα)] = Ex[EXα [f(XτH
)]] = Ex[Ex[θαf(XτH

)|Fα]]
= Ex[θαf(XτH

)] = Ex[f(Xτα
H

)] (10.1.10)

where τα
H = inf{t > α; Xt /∈ H}. Since τα

H ≥ τH we have by e)

Ex[f̃(Xα)] ≤ Ex[f(XτH
)] = f̃(x) ,

so f̃ is supermeanvalued. tu
The following concepts are fundamental:

Definition 10.1.4. Let h be a real measurable function on Rn. If f is a
superharmonic (supermeanvalued) function and f ≥ h we say that f is a
superharmonic (supermeanvalued) majorant of h (w.r.t. Xt). The function

h(x) = inf
f

f(x); x ∈ Rn , (10.1.11)

the inf being taken over all supermeanvalued majorants f of h, is called the
least supermeanvalued majorant of h.

Similarly, suppose there exists a function ĥ such that

(i) ĥ is a superharmonic majorant of h and
(ii) if f is any other superharmonic majorant of h then ĥ ≤ f .

Then ĥ is called the least superharmonic majorant of h.
Note that by Lemma 10.1.3 c) the function h is supermeanvalued if it is

measurable. Moreover, if h is lower semicontinuous, then ĥ exists and ĥ = h.
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Later we will prove that if g is nonnegative (or lower bounded) and lower
semicontinuous, then ĝ exists and ĝ = g (Theorem 10.1.7).

Let g ≥ 0 and let f be a supermeanvalued majorant of g. Then if τ is a
stopping time

f(x) ≥ Ex[f(Xτ )] ≥ Ex[g(Xτ )] .

So
f(x) ≥ sup

τ
Ex[g(Xτ )] = g∗(x) .

Therefore we always have

ĝ(x) ≥ g∗(x) for all x ∈ Rn . (10.1.12)

What is not so easy to see is that the converse inequality also holds, i.e. that
in fact

ĝ = g∗ . (10.1.13)

We will prove this after we have established a useful iterative procedure for
calculating ĝ. Before we give such a procedure let us introduce a concept
which is related to superharmonic functions:

Definition 10.1.5. A lower semicontinuous function f :Rn → [0,∞] is
called excessive (w.r.t. Xt) if

f(x) ≥ Ex[f(Xs)] for all s ≥ 0, x ∈ Rn . (10.1.14)

It is clear that a superharmonic function must be excessive. What is not
so obvious, is that the converse also holds:

Theorem 10.1.6. Let f :Rn → [0,∞]. Then f is excessive w.r.t. Xt if and
only if f is superharmonic w.r.t. Xt.

Proof in a special case. Let L be the differential operator associated to
X (given by the right hand side of (7.3.3)), so that L coincides with the
generator A of X on C2

0 . We only prove the theorem in the special case when
f ∈ C2(Rn) and Lf is bounded: Then by Dynkin’s formula we have

Ex[f(Xt)] = f(x) + Ex

[ t∫

0

Lf(Xr)dr

]
for all t ≥ 0 ,

so if f is excessive then Lf ≤ 0. Therefore, if τ is a stopping time we get

Ex[f(Xt∧τ )] ≤ f(x) for all t ≥ 0 .

Letting t →∞ we see that f is superharmonic. tu
A proof in the general case can be found in Dynkin (1965 II, p. 5).
The first iterative procedure for the least superharmonic majorant ĝ of g

is the following:
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Theorem 10.1.7. (Construction of the least superharmonic majo-
rant).
Let g = g0 be a nonnegative, lower semicontinuous function on Rn and define
inductively

gn(x) = sup
t∈Sn

Ex[gn−1(Xt)] , (10.1.15)

where Sn = {k · 2−n; 0 ≤ k ≤ 4n}, n = 1, 2, . . . . Then gn ↑ ĝ and ĝ is the
least superharmonic majorant of g. Moreover, ĝ = g.

Proof. Note that {gn} is increasing. Define ǧ(x) = lim
n→∞

gn(x). Then

ǧ(x) ≥ gn(x) ≥ Ex[gn−1(Xt)] for all n and all t ∈ Sn .

Hence
ǧ(x) ≥ lim

n→∞
Ex[gn−1(Xt)] = Ex[ǧ(Xt)] (10.1.16)

for all t ∈ S =
∞⋃

n=1
Sn .

Since ǧ is an increasing limit of lower semicontinuous functions (Lemma 8.1.4)
ǧ is lower semicontinuous. Fix t ∈ R and choose tk ∈ S such that tk → t.
Then by (10.1.16), the Fatou lemma and lower semicontinuity

ǧ(x) ≥ lim
k→∞

Ex[ǧ(Xtk
)] ≥ Ex[ lim

k→∞
ǧ(Xtk

)] ≥ Ex[ǧ(Xt)] .

So ǧ is an excessive function. Therefore ǧ is superharmonic by Theorem 10.1.6
and hence ǧ is a superharmonic majorant of g. On the other hand, if f is any
supermeanvalued majorant of g, then clearly by induction

f(x) ≥ gn(x) for all n

and so f(x) ≥ ǧ(x). This proves that ǧ is the least supermeanvalued majorant
g of g. So ǧ = ĝ. tu

It is a consequence of Theorem 10.1.7 that we may replace the finite sets
Sn by the whole interval [0,∞]:

Corollary 10.1.8. Define h0 = g and inductively

hn(x) = sup
t≥0

Ex[hn−1(Xt)] ; n = 1, 2, . . .

Then hn ↑ ĝ.

Proof. Let h = lim hn. Then clearly h ≥ ǧ = ĝ. On the other hand, since ĝ is
excessive we have

ĝ(x) ≥ sup
t≥0

Ex[ĝ(Xt)].

So by induction
ĝ ≥ hn for all n .

Thus ĝ = h and the proof is complete.
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We are now ready for our first main result on the optimal stopping prob-
lem. The following result is basically due to Dynkin (1963) (and, in a mar-
tingale context, Snell (1952)):

Theorem 10.1.9 (Existence theorem for optimal stopping).
Let g∗ denote the optimal reward and ĝ the least superharmonic majorant of
a continuous reward function g ≥ 0.

a) Then
g∗(x) = ĝ(x) . (10.1.17)

b) For ε > 0 let
Dε = {x; g(x) < ĝ(x)− ε} . (10.1.18)

Suppose g is bounded. Then stopping at the first time τε of exit from Dε

is close to being optimal, in the sense that

|g∗(x)− Ex[g(Xτε
)]| ≤ 2ε (10.1.19)

for all x.
c) For arbitrary continuous g ≥ 0 let

D = {x; g(x) < g∗(x)} (the continuation region) . (10.1.20)

For N = 1, 2, . . . define gN = g ∧ N , DN = {x; gN (x) < ĝN (x)} and
σN = τDN . Then DN ⊂ DN+1, DN ⊂ D ∩ g−1([0, N)), D =

⋃
N

DN . If

σN < ∞ a.s. Qx for all N then

g∗(x) = lim
N→∞

Ex[g(XσN
)] . (10.1.21)

d) In particular, if τD < ∞ a.s. Qx and the family {g(XσN
)}N is uniformly

integrable w.r.t. Qx (Appendix C), then

g∗(x) = Ex[g(XτD
)]

and τ∗ = τD is an optimal stopping time.

Proof. First assume that g is bounded and define

g̃ε(x) = Ex[ĝ(Xτε)] for ε > 0 . (10.1.22)

Then g̃ε is supermeanvalued by Lemma 10.1.3 f). We claim that

g(x) ≤ g̃ε(x) + ε for all x . (10.1.23)

To see this suppose
β: = sup

x
{g(x)− g̃ε(x)} > ε . (10.1.24)

Then for all η > 0 we can find x0 such that
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g(x0)− g̃ε(x0) ≥ β − η . (10.1.25)

On the other hand, since g̃ε +β is a supermeanvalued majorant of g, we have

ĝ(x0) ≤ g̃ε(x0) + β . (10.1.26)

Combining (10.1.25) and (10.1.26) we get

ĝ(x0) ≤ g(x0) + η . (10.1.27)

Consider the two possible cases:

Case 1: τε > 0 a.s. Qx0 . Then by (10.1.27) and the definition of Dε

g(x0) + η ≥ ĝ(x0) ≥ Ex0 [ĝ(Xt∧τε)] ≥ Ex0 [(g(Xt) + ε)X{t<τε} ] for all t > 0 .

Hence by the Fatou lemma and lower semicontinuity of g

g(x0) + η ≥ lim
t→0

Ex0 [(g(Xt) + ε)X{t<τε}]

≥ Ex0 [ lim
t→0

(g(Xt) + ε)X{t<τε}] ≥ g(x0) + ε .

This is a contradiction if η < ε.

Case 2: τε = 0 a.s. Qx0 . Then g̃ε(x0) = ĝ(x0), so g(x0) ≤ g̃ε(x0), contra-
dicting (10.1.25) for η < β.

Therefore (10.1.24) leads to a contradiction. Thus (10.1.23) is proved and
we conclude that g̃ε + ε is a supermeanvalued majorant of g. Therefore

ĝ ≤ g̃ε + ε = E[ĝ(Xτε)] + ε ≤ E[(g + ε)(Xτε)] + ε ≤ g∗ + 2ε (10.1.28)

and since ε was arbitrary we have by (10.1.12)

ĝ = g∗ .

If g is not bounded, let

g
N

= min(N, g) , N = 1, 2, . . .

and as before let ĝN be the least superharmonic majorant of gN . Then

g∗ ≥ g∗
N

= ĝN ↑ h as N →∞ , where h ≥ ĝ

since h is a superharmonic majorant of g. Thus h = ĝ = g∗ and this proves
(10.1.17) for general g. From (10.1.28) and (10.1.17) we obtain (10.1.19).

Finally, to obtain c) and d) let us again first assume that g is bounded.
Then, since

τε ↑ τD as ε ↓ 0
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and τD < ∞ a.s we have

Ex[g(Xτε)] → Ex[g(XτD )] as ε ↓ 0 , (10.1.29)

and hence by (10.1.28) and (10.1.17)

g∗(x) = Ex[g(XτD
)] if g is bounded . (10.1.30)

Finally, if g is not bounded define

h = lim
N→∞

ĝ
N

.

Then h is superharmonic by Lemma 10.1.3 d) and since ĝ
N
≤ ĝ for all N we

have h ≤ ĝ. On the other hand g
N
≤ ĝ

N
≤ h for all N and therefore g ≤ h.

Since ĝ is the least superharmonic majorant of g we conclude that

h = ĝ . (10.1.31)

Hence by (10.1.30), (10.1.31) we obtain (10.1.21):

g∗(x) = lim
N→∞

ĝ
N

(x) = lim
N→∞

Ex[g
N

(XσN
)] ≤ lim

N→∞
Ex[g(XσN

)] ≤ g∗(x) .

Note that ĝ
N
≤N everywhere, so if g

N
(x)<ĝ

N
(x) then g

N
(x)<N and there-

fore g(x) = g
N

(x) < ĝ
N

(x) ≤ ĝ(x) and g
N+1(x) = g

N
(x) < ĝ

N
(x) ≤ ĝ

N+1(x).
Hence DN ⊂ D ∩ {x; g(x) < N} and DN ⊂ DN+1 for all N . So by (10.1.31)
we conclude that D is the increasing union of the sets DN ; N = 1, 2, . . .
Therefore

τD = lim
N→∞

σN .

So by (10.1.21) and uniform integrability we have

ĝ(x) = lim
N→∞

ĝN (x) = lim
N→∞

Ex[gN (XσN )]

= Ex[ lim
N→∞

g
N

(XσN
)] = Ex[g(XτD

)] ,

and the proof of Theorem 10.1.9 is complete. tu
Remarks.

1) Note that the sets D, Dε and DN are open, since ĝ = g∗ is lower semicon-
tinuous and g is continuous.

2) By inspecting the proof of a) we see that (10.1.17) holds under the weaker
assumption that g ≥ 0 is lower semicontinuous.

The following consequence of Theorem 10.1.9 is often useful:

Corollary 10.1.10. Suppose there exists a Borel set H such that

g̃
H

(x):= Ex[g(XτH
)]

is a supermeanvalued majorant of g. Then

g∗(x) = g̃H (x) , so τ∗ = τH is optimal .
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Proof. If g̃
H

is a supermeanvalued majorant of g then clearly

g(x) ≤ g̃
H

(x) .

On the other hand we of course have

g̃
H

(x) ≤ sup
τ

Ex[g(Xτ )] = g∗(x) ,

so g∗ = g̃H by Theorem 10.1.7 and Theorem 10.1.9 a). tu
Corollary 10.1.11. Let

D = {x; g(x) < ĝ(x)}
and put

g̃(x) = g̃D (x) = Ex[g(XτD )] .

If g̃ ≥ g then g̃ = g∗.

Proof. Since XτD
/∈ D we have g(XτD

) ≥ ĝ(XτD
) and therefore g(XτD

) =
ĝ(XτD

), a.s. Qx. So g̃(x) = Ex[ĝ(XτD
)] is supermeanvalued since ĝ is, and

the result follows from Corollary 10.1.10. tu
Theorem 10.1.9 gives a sufficient condition for the existence of an optimal

stopping time τ∗. Unfortunately, τ∗ need not exist in general. For example,
if

Xt = t for t ≥ 0 (deterministic)

and

g(ξ) =
ξ2

1 + ξ2
; ξ ∈ R

then g∗(x) = 1, but there is no stopping time τ such that

Ex[g(Xτ )] = 1 .

However, we can prove that if an optimal stopping time τ∗ exists, then the
stopping time given in Theorem 10.1.9 is optimal:

Theorem 10.1.12 (Uniqueness theorem for optimal stopping).
Define as before

D = {x; g(x) < g∗(x)} ⊂ Rn .

Suppose there exists an optimal stopping time τ∗ = τ∗(x, ω) for the problem
(10.1.2) for all x. Then

τ∗ ≥ τD for all x ∈ D (10.1.32)

and
g∗(x) = Ex[g(XτD

)] for all x ∈ Rn . (10.1.33)

Hence τD is an optimal stopping time for the problem (10.1.2).
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Proof. Choose x ∈ D. Let τ be an Ft-stopping time and assume
Qx[τ < τD] > 0. Since g(Xτ ) < g∗(Xτ ) if τ < τD and g ≤ g∗ always, we have

Ex[g(Xτ )] =
∫

τ<τD

g(Xτ )dQx +
∫

τ≥τD

g(Xτ )dQx

<

∫

τ<τD

g∗(Xτ )dQx +
∫

τ≥τD

g∗(Xτ )dQx = Ex[g∗(Xτ )] ≤ g∗(x) ,

since g∗ is superharmonic. This proves (10.1.32).
To obtain (10.1.33) we first choose x ∈ D. Since ĝ is superharmonic we

have by (10.1.32) and Lemma 10.1.3 e)

g∗(x) = Ex[g(Xτ∗)] ≤ Ex[ĝ(Xτ∗)] ≤ Ex[ĝ(XτD
)]

= Ex[g(XτD
)] ≤ g∗(x) , which proves (10.1.33) for x ∈ D .

Next, choose x ∈ ∂D to be an irregular boundary point of D. Then τD > 0
a.s. Qx. Let {αk} be a sequence of stopping times such that 0 < αk < τD

and αk → 0 a.s. Qx, as k → ∞. Then Xαk
∈ D so by (10.1.32), (7.2.6) and

the strong Markov property (7.2.2)

Ex[g(XτD )]=Ex[θαk
g(XτD )]=Ex[EXαk [g(XτD )]]=Ex[g∗(Xαk

)] for all k .

Hence by lower semicontinuity and the Fatou lemma

g∗(x) ≤ Ex[ lim
k→∞

g∗(Xαk
)] ≤ lim

k→∞
Ex[g∗(Xαk

)] = Ex[g(XτD
)] .

Finally, if x ∈ ∂D is a regular boundary point of D or if x 6∈ D we have
τD = 0 a.s. Qx and hence g∗(x) = Ex[g(XτD )]. tu
Remark. The following observation is sometimes useful:

Let A be the characteristic operator of X. Assume g ∈ C2(Rn). Define

U = {x;Ag(x) > 0} . (10.1.34)

Then, with D as before, (10.1.20),

U ⊂ D . (10.1.35)

Consequently, from (10.1.32) we conclude that it is never optimal to stop the
process before it exits from U . But there may be cases when U 6= D, so that
it is optimal to proceed beyond U before stopping. (This is in fact the typical
situation.) See e.g. Example 10.2.2.

To prove (10.1.35) choose x ∈ U and let τ0 be the first exit time from a
bounded open set W 3 x, W ⊂ U . Then by Dynkin’s formula, for u > 0

Ex[g(Xτ0∧u)] = g(x) + Ex

[ τ0∧u∫

0

Ag(Xs)ds

]
> g(x)

so g(x) < g∗(x) and therefore x ∈ D.
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Example 10.1.13. Let Xt = Bt be a Brownian motion in R2. Using that Bt

is recurrent in R2 (Example 7.4.2) one can show that the only (nonnegative)
superharmonic functions in R2 are the constants (Exercise 10.2).

Therefore

g∗(x) = ‖g‖∞: = sup{g(y); y ∈ R2} for all x .

So if g is unbounded then g∗ = ∞ and no optimal stopping time exists.
Assume therefore that g is bounded. The continuation region is

D = {x; g(x) < ‖g‖∞} ,

so if ∂D is a polar set i.e. cap (∂D) = 0, where cap denotes the logarithmic
capacity (see Port and Stone (1979)), then τD = ∞ a.s. and no optimal
stopping exists. On the other hand, if cap(∂D) > 0 then τD < ∞ a.s. and

Ex[g(BτD
)] = ‖g‖∞ = g∗(x) ,

so τ∗ = τD is optimal.

Example 10.1.14. The situation is different in Rn for n ≥ 3.

a) To illustrate this let Xt = Bt be Brownian motion in R3 and let the
reward function be

g(ξ) =
{ |ξ|−1 for |ξ| ≥ 1

1 for |ξ| < 1
; ξ ∈ R3 .

Then g is superharmonic (in the classical sense) in R3, so g∗ = g every-
where and the best policy is to stop immediately, no matter where the
starting point is.

b) Let us change g to

h(x) =
{ |x|−α for |x| ≥ 1

1 for |x| < 1

for some α > 1. Let H = {x; |x| > 1} and define

h̃(x) = Ex[h(BτH )] = P x[τH < ∞] .

Then by Example 7.4.2

h̃(x) =
{

1 if |x| ≤ 1
|x|−1 if |x| > 1 ,

i.e. h̃ = g (defined in a)), which is a superharmonic majorant of h. There-
fore by Corollary 10.1.10

h∗ = h̃ = g ,

H = D and τ∗ = τH is an optimal stopping time.
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Reward Functions Assuming Negative Values

The results we have obtained so far regarding the problem (10.1.2)–(10.1.3)
are based on the assumptions (10.1.1). To some extent these assumptions
can be relaxed, although neither can be removed completely. For example,
we have noted that Theorem 10.1.9 a) still holds if g ≥ 0 is only assumed to
be lower semicontinuous.

The nonnegativity assumption on g can also be relaxed. First of all, note
that if g is bounded below, say g ≥ −M where M > 0 is a constant, then we
can put

g1 = g + M ≥ 0

and apply the theory to g1. Since

Ex[g(Xτ )] = Ex[g1(Xτ )]−M if τ < ∞ a.s. ,

we have g∗(x) = g∗1(x) −M , so the problem can be reduced to the optimal
stopping problem for the nonnegative function g1. (See Exercise 10.4.)

If g is not bounded below, then problem (10.1.2)–(10.1.3) is not well-
defined unless

Ex[g−(Xτ )] < ∞ for all τ (10.1.36)

where
g−(x) = −min(g(x), 0) .

If we assume that g satisfies the stronger condition that

the family {g−(Xτ ); τ stopping time} is uniformly integrable (10.1.37)

then basically all the theory from the nonnegative case carries over. We re-
fer to the reader to Shiryaev (1978) for more information. See also Theo-
rem 10.4.1.

10.2 The Time-Inhomogeneous Case

Let us now consider the case when the reward function g depends on both
time and space, i.e.

g = g(t, x):R×Rn → [0,∞) , g is continuous . (10.2.1)

Then the problem is to find g0(x) and τ∗ such that

g0(x) = sup
τ

Ex[g(τ,Xτ )] = Ex[g(τ∗, Xτ∗)] . (10.2.2)

To reduce this case to the original case (10.1.2)–(10.1.3) we proceed as follows:
Suppose the Itô diffusion Xt = Xx

t has the form
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dXt = b(Xt)dt + σ(Xt)dBt ; t ≥ 0 , X0 = x

where b:Rn → Rn and σ:Rn → Rn×m are given functions satisfying the con-
ditions of Theorem 5.2.1 and Bt is m-dimensional Brownian motion. Define
the Itô diffusion Yt = Y

(s,x)
t in Rn+1 by

Yt =
[

s + t
Xx

t

]
; t ≥ 0 . (10.2.3)

Then

dYt =
[

1
b(Xt)

]
dt +

[
0

σ(Xt)

]
dBt = b̂(Yt)dt + σ̂(Yt)dBt (10.2.4)

where

b̂(η) = b̂(t, ξ) =
[

1
b(ξ)

]
∈ Rn+1 , σ̂(η) = σ̂(t, ξ) =




0 · · · 0
- - - -
σ(ξ)


∈ R(n+1)×m ,

with η = (t, ξ) ∈ R×Rn.
So Yt is an Itô diffusion starting at y = (s, x). Let Ry = R(s,x) denote the

probability law of {Yt} and let Ey = E(s,x) denote the expectation w.r.t. Ry.
In terms of Yt the problem (10.2.2) can be written

g0(x) = g∗(0, x) = sup
τ

E(0,x)[g(Yτ )] = E(0,x)[g(Yτ∗)] (10.2.5)

which is a special case of the problem

g∗(s, x) = sup
τ

E(s,x)[g(Yτ )] = E(s,x)[g(Yτ∗)] , (10.2.6)

which is of the form (10.1.2)–(10.1.3) with Xt replaced by Yt.
Note that the characteristic operator Â of Yt is given by

Âφ(s, x) =
∂φ

∂s
(s, x) +Aφ(s, x) ; φ ∈ C2(R×Rn) (10.2.7)

where A is the characteristic operator of Xt (working on the x-variables).

Example 10.2.1. Let Xt = Bt be 1-dimensional Brownian motion and let
the reward function be

g(t, ξ) = e−αt+βξ ; ξ ∈ R

where α, β ≥ 0 are constants. The characteristic operator Â of Y s,x
t =

[
s+t
B

x
t

]

is given by

Âf(s, x) =
∂f

∂s
+

1
2
· ∂2f

∂x2
; f ∈ C2 .
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Thus
Ag = (−α + 1

2β2)g ,

so if β2 ≤ 2α then g∗ = g and the best policy is to stop immediately. If
β2 > 2α we have

U : = {(s, x); Âg(s, x) > 0} = R2

and therefore by (10.1.35) D = R2 and hence τ∗ does not exist. If β2 > 2α
we can use Theorem 10.1.7 to prove that g∗ = ∞:

sup
t∈Sn

E(s,x)[g(Yt)] = sup
t∈Sn

E[e−α(s+t)+βBx
t ]

= sup
t∈Sn

[e−α(s+t) · eβx+ 1
2 β2t] (see the remark following (5.1.6))

= sup
t∈Sn

g(s, x) · e(−α+ 1
2 β2)t = g(s, x) · exp((−α + 1

2β2)2n) ,

so gn(s, x) →∞ as n →∞.
Hence no optimal stopping exists in this case.

Example 10.2.2. (When is the right time to sell the stocks?)
We now return to a specified version of Problem 5 in the introduction:

Suppose the price Xt at time t of a person’s assets (e.g. a house, stocks,
oil ...) varies according to a stochastic differential equation of the form

dXt = rXtdt + αXtdBt, X0 = x > 0 ,

where Bt is 1-dimensional Brownian motion and r, α are known constants.
(The problem of estimating α and r from a series of observations can be
approached using the quadratic variation 〈X,X〉t of the process {Xt} (Ex-
ercise 4.7) and filtering theory (Example 6.2.11), respectively. Suppose that
connected to the sale of the assets there is a fixed fee/tax or transaction cost
a > 0. Then if the person decides to sell at time t the discounted net of the
sale is

e−ρt(Xt − a) ,

where ρ > 0 is given discounting factor. The problem is to find a stopping
time τ that maximizes

E(s,x)[e−ρτ (Xτ − a)] = E(s,x)[g(τ, Xτ )] ,

where
g(t, ξ) = e−ρt(ξ − a) .

The characteristic operator Â of the process Yt = (s + t,Xt) is given by

Âf(s, x) =
∂f

∂s
+ rx

∂f

∂x
+ 1

2α2x2 ∂2f

∂x2
; f ∈ C2(R2) .
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Hence Âg(s, x) = −ρe−ρs(x− a) + rxe−ρs = e−ρs((r − ρ)x + ρa). So

U : = {(s, x); Âg(s, x) > 0} =
{

R×R+ if r ≥ ρ
{(s, x); x < aρ

ρ−r} if r < ρ .

So if r ≥ ρ we have U = D = R ×R+ so τ∗ does not exist. If r > ρ then
g∗ = ∞ while if r = ρ then

g∗(s, x) = xe−ρs .

(The proofs of these statements are left as Exercise 10.5.)

It remains to examine the case r < ρ. (If we regard ρ as the sum of
interest rate, inflation and tax etc., this is not an unreasonable assumption
in applications.) First we establish that the region D must be invariant w.r.t.
t, in the sense that

D + (t0, 0) = D for all t0 . (10.2.8)

To prove (10.2.8) consider

D + (t0, 0) = {(t + t0, x); (t, x) ∈ D} = {(s, x); (s− t0, x) ∈ D}
= {(s, x); g(s− t0, x) < g∗(s− t0, x)} = {(s, x); eρt0g(s, x) < eρt0g∗(s, x)}
= {(s, x); g(s, x) < g∗(s, x)} = D ,

where we have used that

g∗(s− t0, x) = sup
τ

E(s−t0,x)[e−ρτ (Xτ − a)] = sup
τ

E[e−ρ(τ+(s−t0))(Xx
τ − a)]

= eρt0 sup
τ

E[e−ρ(τ+s)(Xx
τ − a)] = eρt0g∗(s, x) .

Therefore the connected component of D that contains U must have the form

D(x0) = {(t, x); 0 < x < x0} for some x0 ≥ aρ
ρ−r .

Note that D cannot have any other components, for if V is a component of
D disjoint from U then Âg < 0 in V and so, if y ∈ V ,

Ey[g(Yτ )] = g(y) + Ey

[ τ∫

0

Âg(Yt)dt

]
< g(y)

for all exit times τ bounded by the exit time from an x-bounded strip in V .
From this we conclude by Theorem 10.1.9 c) that g∗(y) = g(y), which implies
V = ∅.

Put τ(x0) = τD(x0) and let us compute

g̃(s, x) = g̃x0(s, x) = E(s,x)[g(Yτ(x0))] . (10.2.9)



10.2 The Time-Inhomogeneous Case 211

From Chapter 9 we know that f = g̃ is the (bounded) solution of the bound-
ary value problem

∂f

∂s
+ rx

∂f

∂x
+ 1

2α2x2 ∂2f

∂x2
= 0 for 0 < x < x0

f(s, x0) = e−ρs(x0 − a) .



 (10.2.10)

(Note that R×{0} does not contain any regular boundary points of D w.r.t.
Yt = (s + t,Xt).)

If we try a solution of (10.2.10) of the form

f(s, x) = e−ρsφ(x)

we get the following 1-dimensional problem

−ρφ + rxφ′(x) + 1
2α2x2φ′′(x) = 0 for 0 < x < x0

φ(x0) = x0 − a .

}
(10.2.11)

The general solution φ of (10.2.11) is

φ(x) = C1x
γ1 + C2x

γ2 ,

where C1, C2 are arbitrary constants and

γi = α−2
[

1
2α2 − r ±

√
(r − 1

2α2)2 + 2ρα2
]

(i = 1, 2) , γ2 < 0 < γ1 .

Since φ(x) is bounded as x → 0 we must have C2 = 0 and the boundary
requirement φ(x0) = x0 − a gives C1 = x−γ1

0 (x0 − a). We conclude that the
bounded solution f of (10.2.10) is

g̃x0(s, x) = f(s, x) = e−ρs(x0 − a)
(

x

x0

)γ1

. (10.2.12)

If we fix (s, x) then the value of x0 which maximizes g̃x0(s, x) is easily seen
to be given by

x0 = xmax =
aγ1

γ1 − 1
(10.2.13)

(note that γ1 > 1 if and only if r < ρ).
Thus we have arrived at the candidate g̃xmax(s, x) for g∗(s, x) =

sup
τ

E(s,x)[e−ρτ (Xτ − a)]. To verify that we indeed have g̃xmax = g∗ it would

suffice to prove that g̃xmax is a supermeanvalued majorant of g (see Corol-
lary 10.1.10). This can be done, but we do not give the details here, since this
problem can be solved more easily by Theorem 10.4.1 (see Example 10.4.2).

The conclusion is therefore that one should sell the assets the first time
the price of them reaches the value xmax = aγ1

γ1−1 . The expected discounted
profit obtained from this strategy is
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g∗(s, x) = g̃xmax(s, x) = e−ρs

(
γ1 − 1

a

)γ1−1(
x

γ1

)γ1

.

Remark. The reader is invited to check that the value x0 = xmax is the
only value of x0 which makes the function

x → g̃x0(s, x) (given by (10.2.9))

continuously differentiable at x0. This is not a coincidence. In fact, it illus-
trates a general phenomenon which is known as the high contact (or smooth
fit) principle. See Samuelson (1965), McKean (1965), Bather (1970) and
Shiryaev (1978). This principle is the basis of the fundamental connection
between optimal stopping and variational inequalities. Later in this chapter
we will discuss some aspects of this connection. More information can be
found in Bensoussan and Lions (1978) and Friedman (1976). See also Brekke
and Øksendal (1991).

10.3 Optimal Stopping Problems Involving an Integral

Let
dYt = b(Yt)dt + σ(Yt)dBt , Y0 = y (10.3.1)

be an Itô diffusion in Rk. Let g:Rk → [0,∞) be continuous and let f :Rk →
[0,∞) be Lipschits continuous with at most linear growth. (These conditions
can be relaxed. See (10.1.37) and Theorem 10.4.1.) Consider the optimal
stopping problem: Find G∗(y) and τ∗ such that

G∗(y) = sup
τ

Ey

[ τ∫

0

f(Yt)dt + g(Yτ )
]

= Ey

[ τ∗∫

0

f(Yt)dt + g(Yτ∗)
]

. (10.3.2)

This problem can be reduced to our original problem (10.1.2)–(10.1.3) by
proceeding as follows: Define the Itô diffusion Zt in Rk ×R = Rk+1 by

dZt =
[

dYt

dWt

]
: =

[
b(Yt)
f(Yt)

]
dt +

[
σ(Yt)

0

]
dBt ; Z0 = z = (y, w) . (10.3.3)

Then we see that

G∗(y) = sup
τ

E(y,0)[Wτ + g(Yτ )] = sup
τ

E(y,0)[G(Zτ )] (10.3.4)

with

G(z):= G(y, w):= g(y) + w ; z = (y, w) ∈ Rk ×R . (10.3.5)
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This is again a problem of the type (10.1.2)–(10.1.3) with Xt replaced by Zt

and g replaced by G. Note that the connection between the characteristic
operators AY of Yt and AZ of Zt is given by

AZφ(z) = AZφ(y, w) = AY φ(y, w) + f(y)
∂φ

∂w
, φ ∈ C2(Rk+1) . (10.3.6)

In particular, if G(y, w) = g(y) + w ∈ C2(Rk+1) then

AZG(y, w) = AY g(y) + f(y) . (10.3.7)

Example 10.3.1. Consider the optimal stopping problem

γ(x) = sup
τ

Ex

[ τ∫

0

θe−ρtXtdt + e−ρτXτ

]
,

where
dXt = αXtdt + βXtdBt ; X0 = x > 0

is geometric Brownian motion (α, β, θ constants, θ > 0). We put

dYt =
[

dt
dXt

]
=

[
1

αXt

]
dt +

[
0

βXt

]
dBt ; Y0 = (s, x)

and

dZt =
[

dYt

dWt

]
=




1
αXt

e−ρtXt


 dt +




0
βXt

0


 dBt ; Z0 = (s, x, w) .

Then with
f(y) = f(s, x) = θe−ρsx , g(y) = e−ρsx

and
G(s, x, w) = g(s, x) + w = e−ρsx + w

we have

AZG =
∂G

∂s
+ αx

∂G

∂x
+ 1

2β2x2 ∂2G

∂x2
+ θe−ρsx

∂G

∂w
= (−ρ + α + θ)e−ρsx .

Hence

U = {(s, x, w);AZG(s, x, w) > 0} =
{

R3 if ρ < α + θ
∅ if ρ ≥ α + θ .

From this we conclude (see Exercise 10.6):

If ρ ≥ α + θ then τ∗ = 0
and G∗(s, x, w) = G(s, x, w) = e−ρsx + w . (10.3.8)

If α < ρ < α + θ then τ∗ does not exist
and G∗(s, x, w)= θx

ρ−αe−ρs+w . (10.3.9)

If ρ ≤ α then τ∗ does not exist and G∗ = ∞ . (10.3.10)
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10.4 Connection with Variational Inequalities

The ‘high contact principle’ says, roughly, that – under certain conditions –
the solution g∗ of (10.1.2)–(10.1.3) is a C1 function on Rn if g ∈ C2(Rn).
This is a useful information which can help us to determine g∗. Indeed, this
principle is so useful that it is frequently applied in the literature also in cases
where its validity has not been rigorously proved.

Fortunately it turns out to be easy to prove a sufficiency condition of
high contact type, i.e. a kind of verification theorem for optimal stopping,
which makes is easy to verify that a given candidate for g∗(that we may have
found by guessing or intuition) is actually equal to g∗. The result below is a
simplified variant of a result in Brekke and Øksendal (1991):

In the following we fix a domain V in Rk and we let

dYt = b(Yt)dt + σ(Yt)dBt ; Y0 = y (10.4.1)

be an Itô diffusion in Rk. Define

T = T (y, ω) = inf{t > 0; Yt(ω) /∈ V } . (10.4.2)

Let f :Rk → R, g:Rk → R be continuous functions satisfying

(a) Ey[

T∫

0

|f(Yt)|dt] < ∞ for all y ∈ Rk (10.4.3)

and

(b) the family {g−(Yτ ); τ stopping time, τ ≤ T} is uniformly integrable
w.r.t. Ry (the probability law of Yt), for all y ∈ Rk. (10.4.4)

Consider the following problem: Find Φ(y) and τ∗ ≤ T such that

Φ(y) = sup
τ≤T

Jτ (y) = Jτ∗(y) , (10.4.5)

where

Jτ (y) = Ey

[ τ∫

0

f(Yt)dt + g(Yτ )
]

for τ ≤ T .

Note that since J0(y) = g(y) we have

Φ(y) ≥ g(y) for all y ∈ V . (10.4.6)

We can now formulate the variational inequalities. As usual we let

L = LY =
k∑

i=1

bi(y)
∂

∂yi
+ 1

2

k∑

i,j=1

(σσT )ij(y)
∂2

∂yi∂yj

be the partial differential operator which coincides with the generator AY of
Yt on C2

0 (Rk).
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Theorem 10.4.1 (Variational inequalities for optimal stopping).
Suppose we can find a function φ: V → R such that

(i) φ ∈ C1(V ) ∩ C(V )
(ii) φ ≥ g on V and φ = g on ∂V .

Define
D = {x ∈ V ;φ(x) > g(x)} .

Suppose Yt spends 0 time on ∂D a.s., i.e.

(iii) Ey[

T∫

0

X∂D(Yt)dt] = 0 for all y ∈ V

and suppose that
(iv) ∂D is a Lipschitz surface, i.e. ∂D is locally the graph of a function

h:Rk−1 → R such that there exists K < ∞ with

|h(x)− h(y)| ≤ K|x− y| for all x, y .

Moreover, suppose the following:
(v) φ ∈ C2(V \ ∂D) and the second order derivatives of φ are locally

bounded near ∂D
(vi) Lφ + f ≤ 0 on V \D
(vii) Lφ + f = 0 on D
(viii) τD: = inf{t > 0; Yt /∈ D} < ∞ a.s. Ry for all y ∈ V

and
(ix) the family {φ(Yτ ); τ ≤ τD} is uniformly integrable w.r.t. Ry, for all

y ∈ V .

Then

φ(y) = Φ(y) = sup
τ≤T

Ey

[ τ∫

0

f(Yt)dt + g(Yτ )
]

; y ∈ V (10.4.7)

and
τ∗ = τD (10.4.8)

is an optimal stopping time for this problem.

Proof. By (i), (iv) and (v) we can find a sequence of functions
φj ∈ C2(V ) ∩ C(V ), j = 1, 2, . . ., such that

(a) φj → φ uniformly on compact subsets of V , as j →∞
(b) Lφj → Lφ uniformly on compact subsets of V \ ∂D, as j →∞
(c) {Lφj}∞j=1 is locally bounded on V .

(See Appendix D).

For R > 0 put TR = min(R, inf {t > 0; |Yt| ≥ R}) and let τ ≤ T be a
stopping time. Let y ∈ V . Then by Dynkin’s formula
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Ey[φj(Yτ∧TR)] = φj(y) + Ey

[ τ∧TR∫

0

Lφj(Yt)dt

]
(10.4.9)

Hence by (a), (b), (c) and (iii) and the Fatou lemma

φ(y) = lim
j→∞

Ey

[ τ∧TR∫

0

−Lφj(Yt)dt + φj(Yτ∧TR
)
]

≥ Ey

[ τ∧TR∫

0

−Lφ(Yt)dt + φ(Yτ∧TR
)
]

. (10.4.10)

Therefore, by (ii), (iii), (vi) and (vii),

φ(y) ≥ Ey

[ τ∧TR∫

0

f(Yt)dt + g(Yτ∧TR
)
]

.

Hence by the Fatou lemma and (10.4.3), (10.4.4)

φ(y) ≥ lim
R→∞

Ey

[ τ∧TR∫

0

f(Yt)dt + g(Yτ∧TR)
]
≥ Ey

[ τ∫

0

f(Yt)dt + g(Yτ )
]

.

Since τ ≤ T was arbitrary, we conclude that

φ(y) ≥ Φ(y) for all y ∈ V . (10.4.11)

If y /∈ D then φ(y) = g(y) ≤ Φ(y) so by (10.4.11) we have

φ(y) = Φ(y) and τ̂ = τ̂(y, ω): = 0 is optimal for y /∈ D . (10.4.12)

Next, suppose y ∈ D. Let {Dk}∞k=1 be an increasing sequence of open sets Dk

such that Dk⊂D, Dk is compact and D=
∞⋃

k=1

Dk. Put τk =inf{t>0;Yt 6∈Dk},
k = 1, 2, . . . By Dynkin’s formula we have for y ∈ Dk,

φ(y) = lim
j→∞

φj(y) = lim
j→∞

Ey

[ τk∧TR∫

0

−Lφj(Yt)dt + φj(Yτk∧TR
)
]

= Ey

[ τk∧TR∫

0

−Lφ(Yt)dt + φ(Yτk∧TR
)
]
=Ey

[ τk∧TR∫

0

f(Yt)dt + φ(Yτk∧TR
)
]

So by uniform integrability and (ii), (vii), (viii) we get
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φ(y) = lim
R,k→∞

Ey

[ τk∧TR∫

0

f(Yt)dt + φ(Yτk∧TR
)
]

= Ey

[ τD∫

0

f(Yt)dt + g(YτD
)
]

= JτD (y) ≤ Φ(y) . (10.4.13)

Combining (10.4.11) and (10.4.13) we get

φ(y) ≥ Φ(y) ≥ JτD (y) = φ(y)

so

φ(y) = Φ(y) and τ̂(y, ω): = τD is optimal when y ∈ D . (10.4.14)

From (10.4.12) and (10.4.14) we conclude that

φ(y) = Φ(y) for all y ∈ V .

Moreover, the stopping time τ̂ defined by

τ̂(y, ω) =
{

0 for y /∈ D
τD for y ∈ D

is optimal. By Theorem 10.1.12 we conclude that τD is optimal also. tu
Example 10.4.2. To illustrate Theorem 10.4.1 let us apply it to reconsider
Example 10.2.2:

Rather than proving (10.2.8) and the following properties of D, we now
simply guess/assume that D has the form

D = {(s, x); 0 < x < x0}
for some x0 > 0, which is intuitively reasonable. Then we solve (10.2.11) for
arbitrary x0 and we arrive at the following candidate φ for g∗:

φ(s, x) =
{

e−ρs(x0 − a)( x
x0

)γ1 for 0 < x < x0

e−ρs(x− a) for x ≥ x0 .

The requirement that φ ∈ C1 (Theorem 10.4.1 (i)) gives the value (10.2.13)
for x0. It is clear that φ ∈ C2 outside ∂D and by construction Lφ = 0 on
D. Moreover, conditions (iii), (iv), (viii) and (ix) clearly hold. It remains to
verify that

(ii) φ(s, x)>g(s, x) for 0<x<x0, i.e. φ(s, x)>e−ρs(x− a) for 0<x<x0

and
(v) Lφ(s, x) ≤ 0 for x > x0, i.e. Lg(s, x) ≤ 0 for x > x0.

This is easily done by direct calculation (assuming r < ρ).
We conclude that φ = g∗ and τ∗ = τD is optimal (with the value (10.2.13)

for x0).
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Exercises

10.1. In each of the optimal stopping problems below find the supremum
g∗ and – if it exists – an optimal stopping time τ∗. (Here Bt denotes
1-dimensional Brownian motion)
a) g∗(x) = sup

τ
Ex[B2

τ ]

b) g∗(x) = sup
τ

Ex[|Bτ |p],
where p > 0.

c) g∗(x) = sup
τ

Ex[e−B2
τ ]

d) g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)cosh Bτ ]

where ρ > 0 and cosh x = 1
2 (ex + e−x).

10.2. a) Prove that the only nonnegative (Bt-) superharmonic functions in
R2 are the constants.
(Hint: Suppose u is a nonnegative superharmonic function and that
there exist x, y ∈ R2 such that

u(x) < u(y) .

Consider
Ex[u(Bτ )] ,

where τ is the first hitting time for Bt of a small disc centered at
y).

b) Prove that the only nonnegative superharmonic functions in R are
the constants and use this to find g∗(x) when

g(x) =
{

xe−x for x > 0
0 for x ≤ 0 .

c) Let γ ∈ R, n ≥ 3 and define, for x ∈ Rn,

fγ(x) =
{ |x|γ for |x| ≥ 1

1 for |x| < 1 .

For what values of γ is fγ(·) (Bt)-) harmonic for |x| > 1 ? Prove
that fγ is superharmonic in Rn iff γ ∈ [2− n, 0] .

10.3. Find g∗, τ∗ such that

g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)B2
τ ] = E(s,x)[e−ρ(s+τ∗)B2

τ∗ ] ,

where Bt is 1-dimensional Brownian motion, ρ > 0 is constant.
Hint: First assume that the continuation region has the form

D = {(s, x);−x0 < x < x0}
for some x0 and then try to determine x0. Then apply Theorem 10.4.1.
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10.4. Let Xt be an Itô diffusion on Rn and g:Rn → R+ a continuous reward
function. Define

g¦(x) = sup{Ex[g(Xτ )] ; τ stopping time, Ex[τ ] < ∞} .

Show that g¦ = g∗.
(Hint: If τ is a stopping time put τk = τ ∧ k for k = 1, 2, . . . and
consider

Ex[g(Xτ ) · X
τ<∞ ] ≤ Ex[ lim

k→∞
g(Xτk

)]) .

10.5. With g, r, ρ as in Example 10.2.2 prove that
a) if r > ρ then g∗ = ∞,
b) if r = ρ then g∗(s, x) = xe−ρs.

10.6. Prove statements (10.3.8), (10.3.9), (10.3.10) in Example 10.3.1.

10.7. As a supplement to Exercise 10.4 it is worth noting that if g is not
bounded below then the two problems

g∗(x) = sup{Ex[g(Xτ )] ; τ stopping time}

and

g¦(x) = sup{Ex[g(Xτ )] ; τ stopping time, Ex[τ ] < ∞}

need not have the same solution. For example, if g(x)=x, Xt =Bt∈R
prove that

g∗(x) = ∞ for all x ∈ R

while
g¦(x) = x for all x ∈ R .

(See Exercise 7.4.)

10.8. Give an example with g not bounded below where Theorem 10.1.9 a)
fails. (Hint: See Exercise 10.7.)

10.9. Solve the optimal stopping problem

γ(x) = sup
τ

Ex

[ τ∫

0

e−ρtB2
t dt + e−ρτB2

τ

]
.

10.10. Prove the following simple, but useful, observation, which can be
regarded as an extension of (10.1.35):
Let W = {(s, x);∃τ with g(s, x) < E(s,x)[g(s + τ, Xτ )]}.
Then W ⊂ D.
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10.11. Consider the optimal stopping problem

g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)B+
τ ] ,

where Bt ∈ R and x+ = max{x, 0}.
a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the

continuation region D has the form

D = {(s, x); x < x0}
for some x0 > 0.

b) Determine x0 and find g∗.
c) Verify the high contact principle:

∂g∗

∂x
=

∂g

∂x
when (s, x) = (s, x0) ,

where g(t, x) = e−ρtx+.

10.12. The first time the high contact principle was formulated seems to
be in a paper by Samuelson (1965), who studied the optimal time for
selling an asset, if the reward obtained by selling at the time t and
when price is ξ is given by

g(t, ξ) = e−ρt(ξ − 1)+ .

The price process is assumed to be a geometric Brownian motion Xt

given by
dXt = rXtdt + αXtdBt , X0 = x > 0 ,

where r < ρ.
In other words, the problem is to find g∗, τ∗ such that

g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)(Xτ−1)+] = E(s,x)[e−ρ(s+τ∗)(Xτ∗−1)+] .

a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the
continuation region D has the form

D = {(s, x); 0 < x < x0}
for some x0 > ρ

ρ−r .
b) For a given x0 > ρ

ρ−r solve the boundary value problem




∂f
∂s + rx∂f

∂x + 1
2α2x2 ∂2f

∂x2 = 0 for 0 < x < x0

f(s, 0) = 0
f(s, x0) = e−ρs(x0 − 1)+

by trying f(s, x) = e−ρsφ(x).



Exercises 221

c) Determine x0 by using the high contact principle, i.e. by using that

∂f

∂x
=

∂g

∂x
when x = x0 .

d) With f, x0 as in b), c) define

γ(s, x) =
{

f(s, x) ; x < x0

e−ρs(x− 1)+ ; x ≥ x0 .

Use Theorem 10.4.1 to verify that γ = g∗ and that τ∗ = τD is
optimal.

10.13. (A resource extraction problem)
Suppose the price Pt of one unit of a resource (e.g. gas, oil) at time t
is varying like a geometric Brownian motion

dPt = αPtdt + βPtdBt ; P0 = p

where Bt is 1-dimensional Brownian motion and α, β are constants.
Let Qt denote the amount of remaining resources at time t. Assume
that the rate of extraction is proportional to the remaining amount,
so that

dQt = −λQtdt ; Q0 = q

where λ > 0 is a constant.
If the running cost rate is K > 0 and we stop the extraction at the
time τ = τ(ω) then the expected total discounted profit is given by

Jτ (s, p, q) = E(s,p,q)

[ τ∫

0

(λPtQt −K)e−ρ(s+t)dt + e−ρ(s+τ)g(Pτ , Qτ )
]

,

where ρ > 0 is the discounting exponent and g(p, q) is a given bequest
function giving the value of the remaining resource amount q when the
price is p.
a) Write down the characteristic operator A of the diffusion process

dXt =




dt
dPt

dQt


 ; X0 = (s, p, q)

and formulate the variational inequalities of Theorem 10.4.1 corre-
sponding to the optimal stopping problem

G∗(s, p, q) = sup
τ

Jτ (s, p, q) = Jτ∗(s, p, q) .
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b) Assume that g(p, q) = pq and find the domain U corresponding to
(10.1.34), (10.3.7), i.e.

U = {(s, p, q);A(e−ρsg(p, q)) + f(s, p, q) > 0} ,

where
f(s, p, q) = e−ρs(λpq −K) .

Conclude that
(i) if ρ ≥ α then τ∗ = 0 and G∗(s, p, q) = pqe−ρs

(ii) if ρ < α then D ⊃ {(s, p, q); pq > K
α−ρ}.

c) As a candidate for G∗ when ρ < α we try a function of the form

φ(s, p, q) =
{

e−ρspq ; 0 < pq ≤ y0

e−ρsψ(pq) ; pq > y0

for a suitable ψ:R → R, and a suitable y0. Use Theorem 10.4.1 to
determine ψ, y0 and to verify that with this choice of ψ, y0 we have
φ = G∗ and τ∗ = inf{t > 0;PtQt ≤ y0}, if ρ < α < ρ + λ.

d) What happens if ρ + λ ≤ α ?

10.14. (Finding the optimal investment time (I))
Solve the optimal stopping problem

G∗(s, p) = sup
τ

E(s,p)

[ ∫ ∞

τ

e−ρ(s+t)Ptdt− Ce−ρ(s+τ)

]
,

where
dPt = αPtdt + βPtdBt ; P0 = p ,

Bt is 1-dimensional Brownian motion and α, β, ρ, C are constants,
0 < α < ρ and C > 0. (We may interprete this as the problem of
finding the optimal time τ for investment in a project. The profit rate
after investment is Pt and the cost of the investment is C. Thus G∗

gives the maximal expected discounted net profit.)

Hint: Write
∞∫
τ

e−ρ(s+t)Ptdt = e−ρs[
∞∫
0

e−ρtPtdt−
τ∫
0

e−ρtPtdt]. Compute

E[
∞∫
0

e−ρtPtdt] by using the solution formula for Pt (see Chapter 5) and

then apply Theorem 10.4.1 to the problem

Φ(s, p) = sup
τ

E(s,p)

[
−

τ∫

0

e−ρ(s+t)Ptdt− Ce−ρ(s+τ)

]
.

10.15. Let Bt be 1-dimensional Brownian motion and let ρ > 0 be constant.
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a) Show that the family

{e−ρτBτ ; τ stopping time}

is uniformly integrable w.r.t. P x.
b) Solve the optimal stopping problem

g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)(Bτ − a)]

when a > 0 is constant. This may be regarded as a variation of
Example 10.2.2/10.4.2 with the price process represented by Bt

rather than Xt.

10.16. (Finding the optimal investment time (II))
Solve the optimal stopping problem

G∗(s, p) = sup
τ

E(s,p)

[ ∞∫

τ

e−ρ(s+t)Ptdt− Ce−ρ(s+τ)

]

where
dPt = µ dt + σ dBt ; P0 = p

with µ, σ 6= 0 constants. (Compare with Exercise 10.14.)
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11. Application to Stochastic Control

11.1 Statement of the Problem

Suppose that the state of a system at time t is described by an Itô process
Xt of the form

dXt = dXu
t = b(t,Xt, ut)dt + σ(t,Xt, ut)dBt , (11.1.1)

where Xt ∈ Rn, b:R×Rn×U → Rn, σ:R×Rn×U → Rn×m and Bt is m-
dimensional Brownian motion. Here ut ∈ U ⊂ Rk is a parameter whose value
we can choose in the given Borel set U at any instant t in order to control
the process Xt. Thus ut = u(t, ω) is a stochastic process. Since our decision
at time t must be based upon what has happened up to time t, the function
ω → u(t, ω) must (at least) be measurable w.r.t. F (m)

t , i.e. the process ut

must be F (m)
t -adapted. Thus the right hand side of (11.1.1) is well-defined as

a stochastic integral, under suitable assumptions on the functions b and σ. At
the moment we will not specify the conditions on b and σ further, but simply
assume that the process Xt satisfying (11.1.1) exists. See further comments
on this in the end of this chapter.

Let {Xs,x
h }h≥s be the solution of (11.1.1) such that Xs,x

s = x, i.e.

Xs,x
h = x +

h∫

s

b(r,Xs,x
r , ur)dr +

h∫

s

σ(r,Xs,x
r , ur)dBr ; h ≥ s

and let the probability law of Xt starting at x for t = s be denoted by Qs,x,
so that

Qs,x[Xt1 ∈ F1, . . . , Xtk
∈ Fk] = P 0[Xs,x

t1 ∈ F1, . . . , X
s,x
tk

∈ Fk] (11.1.2)

for s ≤ ti, Fi ⊂ Rn; 1 ≤ i ≤ k, k = 1, 2, . . .
Let F :R×Rn×U → R (the “utility rate” function) and K:R×Rn → R

(the “bequest” function) be given continuous functions, let G be a fixed
domain in R × Rn and let T̂ be the first exit time after s from G for the
process {Xs,x

r }r≥s, i.e.

T̂ = T̂ s,x(ω) = inf{r > s; (r,Xs,x
r (ω)) /∈ G} ≤ ∞ . (11.1.3)
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Suppose

Es,x

[ T̂∫

s

|Fur (r,Xr)|dr+ |K(T̂ ,X
T̂
)|X{T̂<∞}

]
< ∞ for all s, x, u (11.1.4)

where Fu(r, z) = F (r, z, u). Then we define the performance function Ju(s, x)
by

Ju(s, x) = Es,x

[ T̂∫

s

Fur (r,Xr)dr + K(T̂ ,X
T̂
)X{T̂<∞}

]
. (11.1.5)

To obtain an easier notation we introduce

Yt = (s + t,Xs,x
s+t) for t ≥ 0, Y0 = (s, x)

and we observe that if we substitute this in (11.1.1) we get the equation

dYt = dY u
t = b(Yt, ut)dt + σ(Yt, ut)dBt . (11.1.6)

(Strictly speaking, the u, b and σ in (11.1.6) are slightly different from the
u, b and σ in (11.1.1).) The probability law of Yt starting at y = (s, x) for
t = 0 is (with slight abuse of notation) also denoted by Qs,x = Qy.

Note that

T̂∫

s

Fur (r,Xr)dr =

T̂−s∫

0

Fus+t(s + t, Xs+t)dt =

T∫

0

Fus+t(Yt)dt ,

where
T : = inf{t > 0;Yt /∈ G} = T̂ − s . (11.1.7)

Moreover,
K(T̂ ,X

T̂
) = K(Y

T̂−s
) = K(YT ) .

Therefore the performance function may be written in terms of Y as follows,
with y = (s, x),

Ju(y) = Ey

[ T∫

0

Fut(Yt)dt + K(YT )X{T<∞}

]
. (11.1.8)

(Strictly speaking this ut is a time shift of the ut in (11.1.6).)
The problem is – for each y ∈ G – to find the number Φ(y) and a control

u∗ = u∗(t, ω) = u∗(y, t, ω) such that

Φ(y):= sup
u(t,ω)

Ju(y) = Ju∗(y) (11.1.9)
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where the supremum is taken over all F (m)
t -adapted processes {ut} with

values in U . Such a control u∗ – if it exists – is called an optimal control and
Φ is called the optimal performance or the value function. Examples of types
of control functions that may be considered are:

(1) Functions of the form u(t, ω) = u(t) i.e. not depending on ω. These
controls are sometimes called deterministic or open loop controls.

(2) Processes {ut} which are Mt-adapted, i.e. for each t the function ω →
u(t, ω) is Mt-measurable, where Mt is the σ-algebra generated by
{Xu

r ; r ≤ t}. These controls are called closed loop or feedback controls.
(3) The controller has only partial knowledge of the state of the system. More

precisely, to the controller’s disposal are only (noisy) observations Rt of
Xt, given by an Itô process of the form

dRt = a(t, Xt)dt + γ(t,Xt)dB̂t ,

where B̂ is a Brownian motion (not necessarily related to B). Hence the
control process {ut} must be adapted w.r.t. the σ-algebra Nt generated
by {Rs; s ≤ t}. In this situation the stochastic control problem is linked
to the filtering problem (Chapter 6). In fact, if the equation (11.1.1)
is linear and the performance function is integral quadratic (i.e. F and
K are quadratic) then the stochastic control problem splits into a linear
filtering problem and a corresponding deterministic control problem. This
is called the Separation Principle. See Example 11.2.4.

(4) Functions u(t, ω) of the form u(t, ω) = u0(t, Xt(ω)) for some function
u0:Rn+1 → U ⊂ Rk. In this case we assume that u does not depend
on the starting point y = (s, x): The value we choose at time t only
depends on the state of the system at this time. These are called Markov
controls, because with such u the corresponding process Xt becomes an
Itô diffusion, in particular a Markov process. In the following we will not
distinguish between u and u0. Thus we will identify a function
u:Rn+1 → U with the Markov control u(Y ) = u(t,Xt) and simply call
such functions Markov controls.

11.2 The Hamilton-Jacobi-Bellman Equation

Let us first consider only Markov controls

u = u(t,Xt(ω)) .

Introducing Yt = (s + t,Xs+t) (as explained earlier) the system equation
becomes

dYt = b(Yt, u(Yt))dt + σ(Yt, u(Yt))dBt . (11.2.1)

For v ∈ U and f ∈ C2
0 (R×Rn) define
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(Lvf)(y) =
∂f

∂s
(y) +

n∑

i=1

bi(y, v)
∂f

∂xi
+

n∑

i,j=1

aij(y, v)
∂2f

∂xi∂xj
(11.2.2)

where aij = 1
2 (σσT )ij , y = (s, x) and x = (x1, . . . , xn). Then for each choice

of the function u the solution Yt = Y u
t is an Itô diffusion with generator A

given by

(Af)(y) = (Lu(y)f)(y) for f ∈ C2
0 (R×Rn) (see Theorem 7.3.3) .

For v ∈ U define F v(y) = F (y, v). The first fundamental result in stochastic
control theory is the following:

Theorem 11.2.1 (The Hamilton-Jacobi-Bellman (HJB) equation (I)).
Define

Φ(y) = sup{Ju(y); u = u(Y ) Markov control} .

Suppose that Φ ∈ C2(G) ∩ C(G ) satisfies

Ey

[
|Φ(Yα)|+

α∫

0

|LvΦ(Yt)|dt

]
< ∞

for all bounded stopping times α ≤ T , all y ∈ G and all v ∈ U . Moreover,
suppose that T < ∞ a.s. Qy for all y ∈ G and that an optimal Markov control
u∗ exists. Suppose ∂G is regular for Y u∗

t (Definition 9.2.8). Then

sup
v∈U

{F v(y) + (LvΦ)(y)} = 0 for all y ∈ G (11.2.3)

and
Φ(y) = K(y) for all y ∈ ∂G . (11.2.4)

The supremum in (11.2.3) is obtained if v = u∗(y) where u∗(y) is optimal.
In other words,

F (y, u∗(y)) + (Lu∗(y)Φ)(y) = 0 for all y ∈ G . (11.2.5)

Proof. The last two statements are easy to prove: Since u∗ = u∗(y) is optimal
we have

Φ(y) = Ju∗(y) = Ey

[ T∫

0

F (Ys, u
∗(Ys))ds + K(YT )

]
.

If y ∈ ∂G then T = 0 a.s. Qy (since ∂G is regular) and (11.2.4) follows. By
the solution of the Dirichlet-Poisson problem (Theorem 9.3.3)

(Lu∗(y)Φ)(y) = −F (y, u∗(y)) for all y ∈ G ,
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which is (11.2.5). We proceed to prove (11.2.3). Fix y = (s, x) ∈ G and choose
a Markov control u. Let α ≤ T be a stopping time.

Since

Ju(y) = Ey

[ T∫

0

Fu(Yr)dr + K(YT )
]

,

we get by the strong Markov property (7.2.5), combined with (7.2.6) and
(9.3.7)

Ey[Ju(Yα)] = Ey
[
EYα

[ T∫

0

Fu(Yr)dr + K(YT )
]]

= Ey
[
Ey

[
θα

( T∫

0

Fu(Yr)dr + K(YT )
)∣∣∣Fα

]]

= Ey
[
Ey

[ T∫

α

Fu(Yr)dr + K(YT )|Fα

]]

= Ey

[ T∫

0

Fu(Yr)dr + K(YT )−
α∫

0

Fu(Yr)dr

]

= Ju(y)− Ey

[ α∫

0

Fu(Yr)dr

]
.

So

Ju(y) = Ey

[ α∫

0

Fu(Yr)dr

]
+ Ey[Ju(Yα)] . (11.2.6)

Now let W ⊂ G be of the form W = {(r, z) ∈ G; r < t1} where s < t1. Put
α = inf{t ≥ 0;Yt 6∈ W}. Suppose an optimal control u∗(y) = u∗(r, z) exists
and choose

u(r, z) =
{

v if (r, z) ∈ W
u∗(r, z) if (r, z) ∈ G \W

where v ∈ U is arbitrary. Then

Φ(Yα) = Ju∗(Yα) = Ju(Yα) (11.2.7)
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and therefore, combining (11.2.6) and (11.2.7) we obtain

Φ(y) ≥ Ju(y) = Ey

[ α∫

0

F v(Yr)dr

]
+ Ey[Φ(Yα)] . (11.2.8)

Since Φ ∈ C2(G) we get by Dynkin’s formula

Ey[Φ(Yα)] = Φ(y) + Ey

[ α∫

0

(LuΦ)(Yr)dr

]
,

which substituted in (11.2.8) gives

Φ(y) ≥ Ey

[ α∫

0

F v(Yr)dr

]
+ Φ(y) + Ey

[ α∫

0

(LvΦ)(Yr)dr

]

or

Ey

[ α∫

0

(F v(Yr) + (LvΦ)(Yr))dr

]
≤ 0 .

So
Ey

[ α∫
0

(F v(Yr) + (LvΦ)(Yr))dr
]

Ey[α]
≤ 0 for all such W .

Letting t1 ↓ s we obtain, since F v(·) and (LvΦ)(·) are continuous at y, that
F v(y) + (LvΦ)(y) ≤ 0, which combined with (11.2.5) gives (11.2.3). That
completes the proof. tu
Remark. The HJB (I) equation states that if an optimal control u∗ exists,
then we know that its value v at the point y is a point v where the function

v → F v(y) + (LvΦ)(y) ; v ∈ U
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attains its maximum (and this maximum is 0). Thus the original stochastic
control problem is associated to the easier problem of finding the maximum
of a real function in U ⊂ Rk. However, the HJB (I) equation only states that
it is necessary that v = u∗(y) is the maximum of this function. It is just as
important to know if this is also sufficient : If at each point y we have found
v = u0(y) such that F v(y) + (LvΦ)(y) is maximal and this maximum is 0,
will u0(Y ) be an optimal control? The next result states that (under some
conditions) this is actually the case:

Theorem 11.2.2 (The HJB (II) equation – a converse of HJB (I)).

Let φ be a function in C2(G) ∩ C(G ) such that, for all v ∈ U ,

F v(y) + (Lvφ)(y) ≤ 0 ; y ∈ G (11.2.9)

with boundary values

lim
t→T

φ(Yt) = K(YT ) · X{T<∞} a.s. Qy (11.2.10)

and such that

{φ(Yτ )}τ≤T is uniformly Qy-integrable for all Markov
controls u and all y ∈ G . (11.2.11)

Then

φ(y) ≥ Ju(y) for all Markov controls u and all y ∈ G . (11.2.12)

Moreover, if for each y ∈ G we have found u0(y) such that

Fu0(y)(y) + (Lu0(y)φ)(y) = 0 (11.2.13)

then u0 = u0(y) is a Markov control such that

φ(y) = Ju0(y)

and hence u0 must be an optimal control and φ(y) = Φ(y).

Proof. Assume that φ satisfies (11.2.9) and (11.2.10) above. Let u be a
Markov control. Since Luφ ≤ −Fu in G we have by Dynkin’s formula

Ey[φ(YTR
)] = φ(y) + Ey

[ TR∫

0

(Luφ)(Yr)dr

]

≤ φ(y)− Ey

[ TR∫

0

Fu(Yr)dr

]
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where
TR = min{R, T, inf{t > 0; |Yt| ≥ R}} (11.2.14)

for all R < ∞. This gives, by (11.1.4), (11.2.10) and (11.2.11)

φ(y) ≥ Ey

[ TR∫

0

Fu(Yr)dr + φ(YTR
)
]

→ Ey

[ T∫

0

Fu(Yr)dr + K(YT )X{T<∞}

]
= Ju(y)

as R → ∞, which proves (11.2.12). If u0 is such that (11.2.13) holds, then
the calculations above give equality and the proof is complete. tu

The HJB equations (I), (II) provide a very nice solution to the stochastic
control problem in the case where only Markov controls are considered. One
might feel that considering only Markov controls is too restrictive, but for-
tunately one can always obtain as good performance with a Markov control
as with an arbitrary F (m)

t -adapted control, at least if some extra conditions
are satisfied:

Theorem 11.2.3. Let

ΦM (y) = sup{Ju(y); u = u(Y ) Markov control}

and
Φa(y) = sup{Ju(y); u = u(t, ω) F (m)

t -adapted control} .

Suppose there exists an optimal Markov control u0 = u0(Y ) for the Markov
control problem (i.e. ΦM (y) = Ju0(y) for all y ∈ G) such that all the boundary
points of G are regular w.r.t. Y u0

t and that ΦM is a function in C2(G)∩C(G )
satisfying

Ey

[
|ΦM (Yα)|+

α∫

0

|LuΦM (Yt)|dt

]
< ∞ (11.2.15)

for all bounded stopping times α ≤ T , all adapted controls u and all y ∈ G.
Then

ΦM (y) = Φa(y) for all y ∈ G .

Proof. Let φ be a function in C2(G) ∩ C(G ) satisfying (11.2.15) and

F v(y) + (Lvφ)(y) ≤ 0 for all y ∈ G, v ∈ U (11.2.16)

and
φ(y) = K(y) for all y ∈ ∂G . (11.2.17)
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Let ut(ω) = u(t, ω) be an F (m)
t -adapted control. Then Yt is an Itô process

given by
dYt = b(Yt, ut)dt + σ(Yt, ut)dBt

so by Lemma 7.3.2, with TR as in (11.2.14),

Ey[φ(YTR
)] = φ(y) + Ey

[ TR∫

0

(Lu(t,ω)φ)(Yt)dt

]
,

where

(Lu(t,ω)φ)(y) =

=
∂φ

∂t
(y) +

n∑

i=1

bi(y, u(t, ω))
∂φ

∂xi
(y) +

n∑

i,j=1

aij(y, u(t, ω))
∂2φ

∂xi∂xj
(y) ,

with aij = 1
2 (σσT )ij . Thus by (11.2.16) and (11.2.17) this gives

Ey[φ(YTR)] ≤ φ(y)− Ey

[ TR∫

0

F (Yt, u(t, ω))dt

]
. (11.2.18)

Letting R →∞ we obtain
φ(y) ≥ Ju(y) . (11.2.19)

But by Theorem 11.2.1 the function φ(y) = ΦM (y) satisfies (11.2.16) and
(11.2.17). So by (11.2.19) we have ΦM (y) ≥ Φa(y) and Theorem 11.2.3 fol-
lows. tu
Remark. The theory above also applies to the corresponding minimum
problem

Ψ(y) = inf
u

Ju(y) = Ju∗(y) . (11.2.20)

To see the connection we note that

Ψ(y) = − sup
u
{−Ju(y)} = − sup

u

{
Ey

[ T∫

0

−Fu(Yt)dt−K(Yt)
]}

so −Ψ coincides with the solution Φ of the problem (11.1.9), but with F
replaced by −F and K replaced by −K. Using this, we see that the HJB
equations apply to Ψ also but with reverse inequalities. For example, equation
(11.2.3) for Φ gets for Ψ the form

inf
v∈U

{F v(y) + (LvΨ)(y)} = 0 for all y ∈ G . (11.2.21)

We now illustrate the results by some examples:
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Example 11.2.4 (The linear stochastic regulator problem).
Suppose that the state Xt of the system at time t is given by a linear stochastic
differential equation:

dXt = (HtXt + Mtut)dt + σtdBt , t ≥ s ; Xs = x (11.2.22)

and the cost is of the form

Ju(s, x) = Es,x

[ t1∫

s

{XT
t CtXt + uT

t Dtut}dt + XT
t1RXt1

]
, s ≤ t1 (11.2.23)

where all the coefficients Ht ∈ Rn×n, Mt ∈ Rn×k, σt ∈ Rn×m, Ct ∈ Rn×n,
Dt ∈ Rk×k and R ∈ Rn×n are t-continuous and deterministic. We assume
that Ct and R are symmetric, nonnegative definite and Dt is symmetric,
positive definite, for all t. We also assume that t1 is a deterministic time.

The problem is then to choose the control u = u(t,Xt) ∈ Rk such that
it minimizes Ju(s, x). We may interpret this as follows: The aim is to find a
control u which makes |Xt| small fast and such that the energy used
(∼ uT Du) is small. The sizes of Ct and R reflect the cost of having large
values of |Xt|, while the size of Dt reflects the cost (energy) of applying large
values of |ut|.

In this case the HJB-equation for Ψ(s, x) = inf
u

Ju(s, x) becomes

0 = inf
v
{F v(s, x) + (LvΨ)(s, x)}

=
∂Ψ

∂s
+ inf

v

{
xT Csx + vT Dsv +

n∑

i=1

(Hsx + Msv)i
∂Ψ

∂xi

+ 1
2

n∑

i,j=1

(σsσ
T
s )ij

∂2Ψ

∂xi∂xj

}
for s < t1 (11.2.24)

and
Ψ(t1, x) = xT Rx . (11.2.25)

Let us try to find a solution ψ of (11.2.24)–(11.2.25) of the form

ψ(t, x) = xT Stx + at (11.2.26)

where S(t) = St ∈ Rn×n is symmetric, nonnegative definite, at ∈ R and
both at and St are continuously differentiable w.r.t. t (and deterministic). In
order to use Theorem 11.2.2 we need to determine St and at such that

inf
v
{F v(t, x) + (Lvψ)(t, x)} = 0 for t < t1 (11.2.27)

and
ψ(t1, x) = xT Rx . (11.2.28)
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To obtain (11.2.28) we put

St1 = R (11.2.29)
at1 = 0 . (11.2.30)

Using (11.2.26) we get

F v(t, x) + (Lvψ)(t, x) = xT S′tx + a′t + xT Ctx + vT Dtv +

+(Htx + Mtv)T (Stx + ST
t x) +

∑

i,j

(σtσ
T
t )ijSij , (11.2.31)

where S′t = d
dtSt, a′t = d

dtat. The minimum of this expression is obtained
when

∂

∂vi
(F v(t, x) + (Lvψ)(t, x)) = 0 ; i = 1, . . . , k

i.e. when
2Dtv + 2MT

t Stx = 0

i.e. when
v = −D−1

t MT
t Stx . (11.2.32)

We substitute this value of v in (11.2.31) and obtain

F v(t, x) + (Lvψ)(t, x) =
= xT S′tx + a′t + xT Ctx + xT StMtD

−1
t DtD

−1
t MT

t Stx

+(Htx−MtD
−1
t MT

t Stx)T 2Stx + tr(σσT S)t

= xT (S′t + Ct − StMtD
−1
t MT

t St + 2HT
t St)x + a′t + tr(σσT S)t ,

where tr denotes the (matrix) trace. We obtain that this is 0 if we choose St

such that

S′t = −2HT
t St + StMtD

−1
t MT

t St − Ct ; t < t1 (11.2.33)

and at such that
a′t = −tr(σσT S)t ; t < t1 . (11.2.34)

We recognize (11.2.33) as a Riccati type equation from linear filtering the-
ory (see (6.3.4)). Equation (11.2.33) with boundary condition (11.2.29) de-
termines St uniquely. Combining (11.2.34) with the boundary condition
(11.2.30) we obtain

at =

t1∫

t

tr(σσT S)sds . (11.2.35)

With such a choice of St and at we see that (11.2.27) and (11.2.28) hold, so
by Theorem 11.2.2 we conclude that

u∗(t, x) = −D−1
t MT

t Stx , t < t1 (11.2.36)
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is an optimal control and the minimum cost is

Ψ(s, x) = xT Ssx +

t1∫

s

tr(σσT S)tdt , s < t1 . (11.2.37)

This formula shows that the extra cost due to the noise in the system is given
by

as =

t1∫

s

tr(σσT S)tdt .

The Separation Principle (see Davis (1977), Davis and Vinter (1985) or Flem-
ing and Rishel (1975)) states that if we had only partial knowledge of the
state Xt of the system, i.e. if we only had noisy observations

dZt = gtXtdt + γtdB̃t (11.2.38)

to our disposal, then the optimal control u∗(t, ω) (required to be Gt-adapted,
where Gt is the σ-algebra generated by {Zr; r ≤ t}), would be given by

u∗(t, ω) = −D−1
t MT

t StX̂t(ω) , (11.2.39)

where X̂t is the filtered estimate of Xt based on the observations {Zr; r ≤ t},
given by the Kalman-Bucy filter (6.3.3). Comparing with (11.2.36) we see
that the stochastic control problem in this case splits into a linear filtering
problem and a deterministic control problem.

An important field of applications of the stochastic control theory is eco-
nomics and finance. Therefore we illustrate the results above by applying
them to a simple case of optimal portfolio diversification. This problem has
been considered in more general settings by many authors, see for example
Markowitz (1976), Merton (1971), Harrison and Pliska (1981), Aase (1984),
Karatzas, Lehoczky and Shreve (1987) and the survey article Duffie (1994)
and the references therein.

Example 11.2.5 (An optimal portfolio selection problem).
Let Xt denote the wealth of a person at time t. Suppose that the person has
the choice of two different investments. The price p1(t) at time t of one of
the assets is assumed to satisfy the equation

dp1

dt
= p1(a + αWt) (11.2.40)

where Wt denotes white noise and a, α > 0 are constants measuring the
average relative rate of change of p and the size of the noise, respectively.
As we have discussed earlier we interpret (11.2.40) as the (Itô) stochastic
differential equation
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dp1 = p1adt + p1αdBt . (11.2.41)

This investment is called risky, since α > 0. We assume that the price p2 of
the other asset satisfies a similar equation, but with no noise:

dp2 = p2bdt . (11.2.42)

This investment is called safe. So it is natural to assume b < a. At each
instant the person can choose how big fraction u of his wealth he will invest
in the risky asset, thereby investing the fraction 1 − u in the safe one. This
gives the following stochastic differential equation for the wealth Xt = Xu

t :

dXt = uXtadt + uXtαdBt + (1− u)Xtbdt

= Xt(au + b(1− u))dt + αuXtdBt . (11.2.43)

Suppose that, starting with the wealth Xt = x > 0 at time t, the person
wants to maximize the expected utility of the wealth at some future time
t0 > t. If we allow no borrowing (i.e. require X ≥ 0) and are given a utility
function N : [0,∞) → [0,∞), N(0) = 0 (usually assumed to be increasing and
concave) the problem is to find Φ(s, x) and a (Markov) control u∗ = u∗(t,Xt),
0 ≤ u∗ ≤ 1, such that

Φ(s, x) = sup{Ju(s, x); u Markov control, 0 ≤ u ≤ 1} = Ju∗(s, x) ,

where Ju(s, x) = Es,x[N(Xu
T )] (11.2.44)

and T is the first exit time from the region G = {(r, z); r < t0, z > 0}. This is
a performance criterion of the form (11.1.6)/(11.1.8) with F = 0 and K = N .
The differential operator Lv has the form (see (11.2.2))

(Lvf)(t, x) =
∂f

∂t
+ x(av + b(1− v))

∂f

∂x
+ 1

2α2v2x2 ∂2f

∂x2
. (11.2.45)

The HJB equation becomes

sup
v
{(LvΦ)(t, x)} = 0 , for (t, x) ∈ G ; (11.2.46)

and

Φ(t, x) = N(x) for t = t0 , Φ(t, 0) = N(0) for t < t0 . (11.2.47)

Therefore, for each (t, x) we try to find the value v = u(t, x) which maximizes
the function

η(v) = LvΦ =
∂Φ

∂t
+ x(b + (a− b)v)

∂Φ

∂x
+ 1

2α2v2x2 ∂2Φ

∂x2
. (11.2.48)

If Φx: = ∂Φ
∂x > 0 and Φxx: = ∂2Φ

∂x2 < 0, the solution is
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v = u(t, x) = − (a− b)Φx

xα2Φxx
. (11.2.49)

If we substitute this into the HJB equation (11.2.48) we get the following
nonlinear boundary value problem for Φ :

Φt + bxΦx − (a− b)2Φ2
x

2α2Φxx
= 0 for t < t0, x > 0 (11.2.50)

Φ(t, x) = N(x) for t = t0 or x = 0 . (11.2.51)

The problem (11.2.50), (11.2.51) is hard to solve for general N . Important
examples of increasing and concave functions are the power functions

N(x) = xr where 0 < r < 1 . (11.2.52)

If we choose such a utility function N , we try to find a solution of (11.2.50),
(11.2.51) of the form

φ(t, x) = f(t)xr .

Substituting we obtain
φ(t, x) = eλ(t0−t)xr , (11.2.53)

where λ = br + (a−b)2r
2α2(1−r) .

Using (11.2.49) we obtain the optimal control

u∗(t, x) =
a− b

α2(1− r)
. (11.2.54)

If a−b
α2(1−r) ∈ (0, 1) this is the solution to the problem, in virtue of Theo-

rem 11.2.2. Note that u∗ is in fact constant.
Another interesting choice of the utility function is N(x) = log x, called

the Kelly criterion. As noted by Aase (1984) (in a more general setting)
we may in this case obtain the optimal control directly by evaluating
Es,x[log(XT )] using Dynkin’s formula:

Es,x[log(XT )] =

= log x + Es,x

[ T∫

s

{au(t,Xt) + b(1− u(t,Xt))− 1
2α2u2(t,Xt)}dt

]

since Lv(log x) = av + b(1− v)− 1
2α2v2.

So it is clear that Ju(s, x) = Es,x[log(XT )] is maximal if we for all r, z
choose u(s, z) to have the value of v which maximizes

av + b(1− v)− 1
2α2v2

i.e. we choose
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v = u(t, Xt) =
a− b

α2
for all t, ω . (11.2.55)

So this is the optimal control if the Kelly criterion is used. Similarly, this
direct method also gives the optimal control when N(x) = xr (See Exer-
cise 11.8).

Example 11.2.6. Finally we include an example which shows that even
quite simple – and apparently innocent – stochastic control problems can
lead us beyond the reach of the theory developed in this chapter:

Suppose the system is a 1-dimensional Itô integral

dXt = dXu
t = u(t, ω)dBt , t ≥ s; Xs = x > 0 (11.2.56)

and consider the stochastic control problem

Φ(t, x) = sup
u

Et,x[K(Xu
τ )] , (11.2.57)

where τ is the first exit time from G = {(r, z); r ≤ t1, z > 0} for Yt =
(s + t,Xs,x

s+t) and K is a given bounded continuous function.

Intuitively, we can think of the system as the state of a game which
behaves like an “excited” Brownian motion, where we can control the size u
of the excitation at every instant. The purpose of the control is to maximize
the expected payoff K(Xt1) of the game at a fixed future time t1.

Assuming that Φ ∈ C2 and that u∗ exists we get by the HJB (I) equation

sup
v∈R

{
∂Φ

∂t
+ 1

2v2 ∂2Φ

∂x2

}
= 0 for t < t1, Φ(t1, x) = K(x) . (11.2.58)

From this we see that we necessarily have
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∂2Φ

∂x2
≤ 0 , v∗

∂2Φ

∂x2
= 0 and

∂Φ

∂t
= 0 for t < t1 , (11.2.59)

where v∗ is the value of v ∈ R which gives the supremum in (11.2.58). But
if ∂Φ

∂t = 0, then Φ(t, x) = Φ(t1, x) = K(x). However, this cannot possibly be
the solution in general, because we have not assumed that ∂2K

∂x2 ≤ 0 – in fact,
K was not even assumed to be differentiable.

What went wrong? Since the conclusion of the HJB (I) equation was
wrong, the assumptions cannot hold. So either Φ is not C2 or u∗ does not
exist, or both.

To simplify the problem assume that

K(x) =
{

x2 ; 0 ≤ x ≤ 1
1 ; x > 1 .

Then considering the figure above and using some intuition we see that it
is optimal to excite as much as possible if Xt is in the strip 0 < x < 1 to
avoid exiting from G in the interval {t1}× (0, 1). Using that Xt is just a time
change of Brownian motion (see Chapter 8) we conclude that this optimal
control leads to a process X∗ which jumps immediately to the value 1 with
probability x and to the value 0 with probability 1− x, if the starting point
is x ∈ (0, 1). If the starting point is x ∈ [1,∞) we simply choose our control
to be zero. In other words, heuristically we should have

u∗(t, x) =
{∞ if x ∈ (0, 1)

0 if x ∈ [1,∞) (11.2.60)

with corresponding expected payoff

φ∗(s, x) = Es,x[K(X∗
t1)] =

{
x if 0 ≤ x ≤ 1
1 if x > 1 .

(11.2.61)

Thus we see that our candidate u∗ for optimal control is not continuous
(not even finite!) and the corresponding optimal process X∗

t is not an Itô
diffusion (it is not even continuous). So to handle this case mathematically
it is necessary to enlarge the family of admissible controls (and the family of
corresponding processes). For example, one can prove an extended version of
Theorem 11.2.2 which allows us to conclude that our choice of u∗ above does
indeed give at least as good performance as any other Markov control u and
that φ∗ given by (11.2.61) does coincide with the maximal expected payoff Φ
defined by (11.2.57).

This last example illustrates the importance of the question of existence
in general, both of the optimal control u∗ and of the corresponding solution
Xt of the stochastic differential equation (11.1.1). We briefly outline some
results in this direction:
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With certain conditions on b, σ, F, ∂G and assuming that the set of control
values is compact, one can show, using general results from nonlinear partial
differential equations, that a smooth function φ exists such that

sup
v
{F v(y) + (Lvφ)(y)} = 0 for y ∈ G

and
φ(y) = K(y) for y ∈ ∂G .

Then by a measurable selection theorem one can find a (measurable) function
u∗(y) such that

Fu∗(y) + (Lu∗φ)(y) = 0 , (11.2.62)

for a.a. y ∈ G w.r.t. Lebesgue measure in Rn+1. Even if u∗ is only known
to be measurable, one can show that the corresponding solution Xt = Xu∗

t

of (11.1.1) exists (see Stroock and Varadhan (1979) for general results in
this direction). Then by inspecting the proof of Theorem 11.2.2 one can
see that it suffices to have (11.2.62) satisfied outside a subset of G with
Green measure 0 (see Definition 9.3.4). Under suitable conditions on b and σ
one can in fact show that the Green measure is absolutely continuous w.r.t.
Lebesgue measure. Thus by (11.2.62) (and a strengthened Theorem 11.2.2)
u∗ is an optimal control. We refer the reader to Fleming and Rishel (1975),
Bensoussan and Lions (1978), Dynkin and Yushkevich (1979) and Krylov
(1980) for details and further studies.

11.3 Stochastic control problems with terminal
conditions

In many applications there are constraints on the types of Markov controls u
to be considered, for example in terms of the probabilistic behaviour of Y u

t

at the terminal time t = T . Such problems can often be handled by applying
a kind of “Lagrange multiplier” method, which we now describe:

Consider the problem of finding Φ(y) and u∗(y) such that

Φ(y) = sup
u∈K

Ju(y) = Ju∗(y) (11.3.1)

where

Ju(y) = Ey

[ T∫

0

Fu(Y u
t )dt + K(Y u

T )
]

, (11.3.2)

and where the supremum is taken over the space K of all Markov controls
u:Rn+1 → U ⊂ Rk such that

Ey[Mi(Y u
T )] = 0 , i = 1, 2, . . . , l , (11.3.3)
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where M = (M1, . . . , Ml):Rn+1 → Rl is a given continuous function,

Ey[|M(Y u
T )|] < ∞ for all y, u . (11.3.4)

Now we introduce a related, but unconstrained problem as follows:

For each λ ∈ Rl and each Markov control u define

Ju
λ (y) = Ey

[ T∫

0

Fu(Y u
t )dt + K(Y u

T ) + λ ·M(Y u
T )

]
(11.3.5)

where · denotes the inner product in Rl. Find Φλ(y) and u∗λ(y) such
that

Φλ(y) = sup
u

Ju
λ (y) = J

u∗λ
λ (y) , (11.3.6)

without terminal conditions.

Theorem 11.3.1. Suppose that we for all λ ∈ Λ ⊂ Rl can find Φλ(y) and
u∗λ solving the (unconstrained) stochastic control problem (11.3.5)–(11.3.6).
Moreover, suppose that there exists λ0 ∈ Λ such that

Ey[M(Y
T

u∗λ0 )] = 0 . (11.3.7)

Then Φ(y):= Φλ0(y) and u∗: = u∗λ0
solves the constrained stochastic control

problem (11.3.1)–(11.3.3).

Proof. Let u be a Markov control, λ ∈ Λ. Then by the definition of u∗λ we
have

Ey

[ T∫

0

Fu∗λ(Y u∗λ
t )dt + K(Y u∗λ

T ) + λ ·M(Y u∗λ
T )

]
= J

u∗λ
λ (y)

≥ Ju
λ (y) = Ey

[ T∫

0

Fu(Y u
t )dt + K(Y u

T ) + λ ·M(Y u
T )

]
. (11.3.8)

In particular, if λ = λ0 and u ∈ K then

Ey[M(Y
T

u∗λ0 )] = 0 = Ey[M(Y u
T )]

and hence by (11.3.8)

J
u∗λ0 (y) ≥ Ju(y) for all u ∈ K .

Since u∗λ0
∈ K the proof is complete. tu

For an application of this result, see Exercise 11.11.
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Exercises

11.1. Write down the HJB equation for the problem

Ψ(s, x) = inf
u

Es,x

[ ∞∫

s

e−αt(g(Xt) + u2
t )dt

]

where
dXt = utdt + dBt ; Xt, ut, Bt ∈ R ,

α > 0 is a constant and g:R → R is a given bounded, continuous
function. Show that if Ψ satisfies the conditions of Theorem 11.2.1
and u∗ exists then

u∗(t, x) = − 1
2eαt ∂Ψ

∂x
.

11.2. Consider the stochastic control problem

Ψ0(s, x) = inf
u

Es,x

[ ∞∫

s

e−ρtf(ut, Xt)dt

]
,

where

dXt = dXu
t = b(ut, Xt)dt + σ(ut, Xt)dBt

Xt ∈ Rn, ut ∈ Rk, Bt ∈ Rm ,

f is a given bounded continuous real function, ρ > 0 and the inf is
taken over all time-homogeneous Markov controls u, i.e. controls u
of the form u = u(Xt). Prove that

Ψ0(s, x) = e−ρsξ(x) , where ξ(x) = Ψ(0, x) .

(Hint: By definition of Es,x we have

Es,x

[ ∞∫

s

e−ρtf(u(Xt), Xt)dt] = E[

∞∫

0

e−ρ(s+t)f(u(Xs,x
s+t), X

s,x
s+t)dt

]

where E denotes expectation w.r.t. P .)

11.3. Define

dXt = rutXtdt + αutXtdBt ; Xt, ut, Bt ∈ R

and

Φ(s, x) = sup
u

Es,x

[ ∞∫

s

e−ρtf(Xt)dt

]
,
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where r, α, ρ are constants, ρ > 0 and f is a bounded continuous real
function.
Assume that Φ satisfies the conditions of Theorem 11.2.1 and that
an optimal Markov control u∗ exists.
a) Show that

sup
v∈R

{
e−ρtf(x) +

∂Φ

∂t
+ rvx

∂Φ

∂x
+ 1

2α2v2x2 ∂2Φ

∂x2

}
= 0 .

Deduce that
∂2Φ

∂x2
≤ 0 .

b) Assume that ∂2Φ
∂x2 < 0. Prove that

u∗(t, x) = − r ∂Φ
∂x

α2x∂2Φ
∂x2

and that

2α2

(
e−ρtf +

∂Φ

∂t

)
∂2Φ

∂x2
− r2

(
∂Φ

∂x

)2

= 0 .

c) Assume that ∂2Φ
∂x2 = 0. Prove that ∂Φ

∂x = 0 and

e−ρtf(x) +
∂Φ

∂t
= 0 .

d) Assume that u∗t = u∗(Xt) and that b) holds. Prove that Φ(t, x) =
e−ρtξ(x) and

2α2(f − ρξ)ξ′′ − r2(ξ′)2 = 0 .

(See Exercise 11.2)

11.4. The assumptions in Theorem 11.2.1 often fail (see e.g. Exercise 11.10),
so it is useful to have results in such cases also. For example, if we
define Φa as in Theorem 11.2.3 then, without assuming that u∗ ex-
ists and without smoothness conditions on Φ, we have the Bellman
principle (compare with (11.2.6)–(11.2.7))

Φa(y) = sup
u

Ey

[ α∫

0

Fu(Y u
r )dr + Φa(Y u

α )
]

for all y ∈ G and all stopping times α ≤ T , the sup being taken over
all F (m)

t -adapted controls u. (See Krylov (1980, Th. 6, p. 150).)
Deduce that if Φa ∈ C2(G) then

F v(y) + LvΦa(y) ≤ 0 for all y ∈ G, v ∈ U .
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11.5. Assume that F = 0 in (11.1.8) and that an optimal Markov control
u∗ exists. Prove that the function Φ is superharmonic in G w.r.t. the
process Y u

t , for any Markov control u. (Hint: See (11.2.6)–(11.2.7).)

11.6. Let Xt denote your wealth at time t. Suppose that at any time t you
have a choice between two investments:
1) A risky investment where the unit price p1 = p1(t, ω) satisfies the

equation
dp1 = a1p1dt + σ1p1dBt .

2) A safer (less risky) investment where the unit price p2 = p2(t, ω)
satisfies

dp2 = a2p2dt + σ2p2dB̃t

where ai, σi are constants such that

a1 > a2 , σ1 > σ2

and Bt, B̃t are independent 1-dimensional Brownian motions.
a) Let u(t, ω) denote the fraction of the fortune Xt(ω) which is

placed in the riskier investment at time t. Show that

dXt = dX
(u)
t = Xt(a1u+a2(1−u))dt+Xt(σ1udBt+σ2(1−u)dB̃t) .

b) Assuming that u is a Markov control, u = u(t,Xt), find the gen-
erator Au of (t, Xu

t ).
c) Write down the HJB equation for the stochastic control problem

Φ(s, x) = sup
u

Es,x
[
(X(u)

T )γ
]

where T = min(t1, τ0), τ0 = inf{t > s; Xt = 0} and t1 is a given
future time (constant), γ ∈ (0, 1) is a constant.

d) Find the optimal control u∗ for the problem in c).

11.7. Consider the stochastic control problem

(system) dXt = audt + udBt ; X0 = x > 0

where Bt ∈ R, u ∈ R and a ∈ R is a given constant, and

(performance) Φ(s, x) = sup
u

Es,x[(XT )r] ,

where 0 < r < 1 is constant and

T = inf{t > s; Xt = 0} ∧ t1 ,

t1 being a given future time (constant).
Show that this problem has the optimal control
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u∗(t, x) =
ax

1− r

with corresponding optimal performance

Φ(s, x) = xr exp
(

a2(t1 − s)r
2(1− r)

)
.

11.8. Use Dynkin’s formula to prove directly that

u∗(t, x) = min
(

a− b

α2(1− r)
, 1

)

is the optimal control for the problem in Example 11.2.5, with utility
function N(x) = xr. (Hint: See the argument leading to (11.2.55).)

11.9. In Beneš (1974) the following stochastic control problem is consid-
ered:

Ψ(s, x) = inf
u

Es,x

[ ∞∫

s

e−ρtX2
t dt

]
,

where
dXt = dX

(u)
t = autdt + dBt ; Xt, Bt ∈ R

and a, ρ are (known) constants, ρ > 0. Here the controls u are re-
stricted to take values in U = [−1, 1].
a) Show that the HJB equation for this problem is

inf
v∈[−1,1]

{
e−ρsx2 +

∂Ψ

∂s
+ av

∂Ψ

∂x
+ 1

2 ·
∂2Ψ

∂x2

}
= 0 .

b) If Ψ ∈ C2 and u∗ exists, show that

u∗(x) = −sign(ax) ,

where

sign z =
{

1 if z > 0
−1 if z ≤ 0 .

(Hint: Explain why x > 0 ⇒ ∂Ψ
∂x > 0 and x < 0 ⇒ ∂Ψ

∂x < 0.)

11.10. Let

f(x) =
{

x2 for 0 ≤ x ≤ 1√
x for x > 1

and put

Ju(s, x) = Es,x

[ T∫

s

e−ρtf(Xu
t )dt

]
, Φ(s, x) = sup

u
Ju(s, x)
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where
dXu

t = utdBt ; t ≥ s

with control values ut ∈ R, Bt ∈ R and

T = inf{t > s;Xu
t ≤ 0} .

a) Define

φ(s, x) =
1
ρ
e−ρsf̂(x) for x ≥ 0, s ∈ R

where

f̂(x) =
{

x for 0 ≤ x ≤ 1√
x for x > 1 .

Prove that
Ju(s, x) ≤ φ(s, x)

for all s, x and all (finite) Markov controls u.
(Hint: Put φ1(s, x) = 1

ρe−ρsx for all s, x and φ2(s, x) = 1
ρe−ρs

√
x

for all s, x. Then

Ju(s, x) ≤ φi(s, x) for i = 1, 2

by Theorem 11.2.2.)
b) Show that

Φ(s, x) = φ(s, x) .

(Hint: Consider Juk(s, x), where

uk(x) =
{

k for 0 ≤ x < 1
0 for x ≥ 1

and let k →∞).
Thus u∗ does not exist and Φ is not a C2 function. Hence both
conditions for the HJB (I) equation fail in this case.

11.11. Consider a 1-dimensional version of the stochastic linear regulator
problem of Example 11.2.4:

Ψ(s, x) = inf
u∈K

Es,x

[ t1∫

s

((Xu
r )2 + θu2

r)dr

]
(11.3.9)

where
dXu

t = utdt + σdBt ; for t ≥ s, Xs = x ,

ut, Bt ∈ R, σ, θ constants, θ > 0, the infinum being over the space
K of all Markov controls u satisfying

Es,x[(Xu
t1)

2] = m2 , where m is a constant . (11.3.10)
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Solve this problem by using Theorem 11.3.1.
(Hint: Solve for each λ ∈ R the unconstrained problem

Ψλ(s, x) = inf
u

Es,x

[ t1∫

s

((Xu
r )2 + θu2

r)dr + λ(Xu
t1)

2

]

with optimal control u∗λ. Then try to find λ0 such that

Es,x[
(
Xt1

u∗λ0
)2] = m2 .)

11.12. Solve the stochastic control problem

Ψ(s, x) = inf
u

Ju(s, x) = Ju∗(s, x)

where

Ju(s, x) = Es,x

[ ∞∫

s

e−ρr(X2
r + θu2

r)dr

]

and
dXt = utdt + σdBt ,

with ut, Bt ∈ R and σ ∈ R, ρ > 0, θ > 0 are constants. (Hint:
Try ψ(s, x) = e−ρs(ax2 + b) for suitable constants a, b and apply
Theorem 11.2.2.)

11.13. Consider the stochastic control problem

Φ(s, x) = sup
u

Es,x

[ T∫

s

e−ρtut dt

]

where the (1-dimensional) system Xt is given by

dXt = dXu
t = (1− ut)dt + dBt .

The control ut = ut(ω) can assume any value in U = [0, 1] and

T = inf{t > s; Xu
t ≤ 0} (the time of bankruptcy) .

Show that if ρ ≥ 2 then the optimal control is

u∗t = 1 for all t

and the corresponding value function is

Φ(s, x) = e−ρs 1
ρ

(
1− e−

√
2ρ x

)
; x ≥ 0 .
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12.1 Market, portfolio and arbitrage

In this chapter we describe how the concepts, methods and results in the
previous chapters can be applied to give a rigorous mathematical model of
finance. We will concentrate on the most fundamental issues and those topics
which are most closely related to the theory in this book. We emphasize
that this chapter only intends to give a brief introduction to this exciting
subject, which has developed very fast during the last years and shows no
signs of slowing down. For a more comprehensive treatment see for example
Bingham and Kiesel (1998), Elliott and Kopp (1999), Duffie (1996), Karatzas
(1997), Karatzas and Shreve (1998), Lamberton and Lapeyre (1996), Musiela
and Rutkowski (1997), Kallianpur and Karandikar (2000), Merton (1990),
Shiryaev (1999) and the references therein.

First we give the mathematical definitions of some fundamental finance
concepts. We point out that other mathematical models are also possible
and in fact actively investigated. Other models include more general (possibly
discontinuous) semimartingale models (see e.g. Barndorff-Nielsen (1998)) and
even models based on stochastic processes which are not semimartingales,
such as fractional Brownian motion. See e.g. Cutland, Kopp and Willinger
(1995), Lin (1995), Hu and Øksendal (1999).

Definition 12.1.1. a) A market is an F (m)
t -adapted (n + 1)-dimensional

Itô process X(t) = (X0(t), X1(t), . . . , Xn(t)); 0 ≤ t ≤ T which we will
assume has the form

dX0(t) = ρ(t, ω)X0(t)dt ; X0(0) = 1 (12.1.1)

and

dXi(t) = µi(t, ω)dt +
m∑

j=1

σij(t, ω)dBj(t) (12.1.2)

= µi(t, ω)dt + σi(t, ω)dB(t) ; Xi(0) = xi ,

where σi is row number i of the n×m matrix [σij ]; 1 ≤ i ≤ n ∈ N.
b) The market {X(t)}t∈[0,T ] is called normalized if X0(t) ≡ 1.
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c) A portfolio in the market {X(t)}t∈[0,T ] is an (n + 1)-dimensional (t, ω)-
measurable and F (m)

t -adapted stochastic process

θ(t, ω) = (θ0(t, ω), θ1(t, ω), . . . , θn(t, ω)); 0 ≤ t ≤ T . (12.1.3)

d) The value at time t of a portfolio θ(t) is defined by

V (t, ω) = V θ(t, ω) = θ(t) ·X(t) =
n∑

i=0

θi(t)Xi(t) (12.1.4)

where · denotes inner product in Rn+1.
e) The portfolio θ(t) is called self-financing if

T∫

0

{
|θ0(s)ρ(s)X0(s)+

n∑

i=1

θi(s)µi(s)|+
m∑

j=1

[ n∑

i=1

θi(s)σij(s)
]2}

ds<∞ a.s.

(12.1.5)
and

dV (t) = θ(t) · dX(t) (12.1.6)

i.e.

V (t) = V (0) +

t∫

0

θ(s) · dX(s) for t ∈ [0, T ] . (12.1.7)

Comments to Definition 12.1.1.
a) We think of Xi(t) = Xi(t, ω) as the price of security/asset number i at
time t. The assets number 1, . . . , n are called risky because of the presence
of their diffusion terms. They can for example represent stock investments.
The asset number 0 is called safe because of the absence of a diffusion term
(although ρ(t, ω) may depend on ω). This asset can for example represent a
bank investment. For simplicity we will assume that ρ(t, ω) is bounded.
b) Note that we can always make the market normalized by defining

Xi(t) = X0(t)−1Xi(t); 1 ≤ i ≤ n . (12.1.8)

The market
X(t) = (1, X1(t), . . . , Xn(t))

is called the normalization of X(t).
Thus normalization corresponds to regarding the price X0(t) of the safe

investment as the unit of price (the numeraire) and computing the other
prices in terms of this unit. Since

X0(t) = exp
( t∫

0

ρ(s, ω)ds

)
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we have

ξ(t):= X−1
0 (t) = exp

(
−

t∫

0

ρ(s, ω)ds

)
> 0 for all t ∈ [0, T ] (12.1.9)

and

dXi(t)=d(ξ(t)Xi(t))=ξ(t)[(µi−ρXi)dt+σidB(t)]; 1≤ i≤n (12.1.10)

or
dX(t)=ξ(t)[dX(t)−ρ(t)X(t)dt] . (12.1.11)

c) The components θ0(t, ω), . . . , θn(t, ω) represent the number of units of the
securities number 0, . . . , n, respectively, which an investor holds at time t.
d) This is simply the total value of all investments held at time t.
e) Note that condition (12.1.5) is required to make (12.1.7) well-defined. See
Definition 3.3.2.

This part e) of Definition 12.1.1 represents a subtle point in the mathe-
matical model. According to Itô’s formula the equation (12.1.4) would lead
to

dV (t) = θ(t) · dX(t) + X(t) · dθ(t) + dθ(t) · dX(t)

if θ(t) was also an Itô process. However, the requirement (12.1.6) stems
from the corresponding discrete time model: If investments θ(tk) are made
at discrete times t = tk, then the increase in the wealth ∆V (tk) = V (tk+1)−
V (tk) should be given by

∆V (tk) = θ(tk) ·∆X(tk) (12.1.12)

where ∆X(tk) = X(tk+1)−X(tk) is the change in prices, provided that no
money is brought in or taken out from the system i.e. provided the portfolio
is self-financing. If we consider our continuous time model as a limit of the
discrete time case as ∆tk = tk+1 − tk goes to 0, then (12.1.6) (with the Itô
interpretation of the integral) follows from (12.1.12).
f) Note that if θ is self-financing for X(t) and

V
θ
(t) = θ(t) ·X(t) = ξ(t)V θ(t) (12.1.13)

is the value process of the normalized market, then by Itô’s formula and
(12.1.11) we have

dV
θ
(t) = ξ(t)dV θ(t) + V θ(t)dξ(t)

= ξ(t)θ(t)dX(t)− ρ(t)ξ(t)V θ(t)dt

= ξ(t)θ(t)[dX(t)− ρ(t)X(t)dt]
= θ(t)dX(t) . (12.1.14)
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Hence θ is also self-financing for the normalized market.

Remark. Note that by combining (12.1.4) and (12.1.6) we get

θ0(t)X0(t) +
n∑

i=1

θi(t)Xi(t) = V (0) +

t∫

0

θ0(s)dX0(s) +
n∑

i=1

t∫

0

θi(s)dXi(s) .

Hence, if we put
Y0(t) = θ0(t)X0(t) ,

then
dY0(t) = ρ(t)Y0(t)dt + dA(t) ,

where

A(t) =
n∑

i=1

( t∫

0

θi(s)dXi(s)− θi(t)Xi(t)
)

. (12.1.15)

This equation has the solution

ξ(t)Y0(t) = θ0(0) +

t∫

0

ξ(s)dA(s)

or

θ0(t) = θ0(0) +

t∫

0

ξ(s)dA(s) .

Using integration by parts we may rewrite this as

θ0(t) = θ0(0) + ξ(t)A(t)−A(0)−
t∫

0

A(s)dξ(s)

or

θ0(t) = V (0) + ξ(t)A(t) +

t∫

0

ρ(s)A(s)ξ(s)ds . (12.1.16)

In particular, if ρ = 0 this gives

θ0(t) = V (0) + A(t). (12.1.17)

Therefore, if θ1(t), . . . , θn(t) are chosen, we can always make the portfolio
θ(t) = (θ0(t), θ1(t), . . . , θn(t)) self-financing by choosing θ0(t) according to
(12.1.16).

We now make the following definition



12.1 Market, portfolio and arbitrage 253

Definition 12.1.2. A portfolio θ(t) which satisfies (12.1.5) and which is
self-financing is called admissible if the corresponding value process V θ(t) is
(t, ω) a.s. lower bounded, i. e. there exists K = K(θ) < ∞ such that

V θ(t, ω) ≥ −K for a.a. (t, ω) ∈ [0, T ]×Ω . (12.1.18)

This is the analogue of a tame portfolio in the context of Karatzas (1996).
The restriction (12.1.18) reflects a natural condition in real life finance: There
must be a limit to how much debt the creditors can tolerate. See Exam-
ple 12.1.4.

Definition 12.1.3. An admissible portfolio θ(t) is called an arbitrage (in
the market {Xt}t∈[0,T ]) if the corresponding value process V θ(t) satisfies
V θ(0) = 0 and

V θ(T ) ≥ 0 a.s. and P [V θ(T ) > 0] > 0 .

In other words, θ(t) is an arbitrage if it gives an increase in the value from
time t = 0 to time t = T a.s., and a strictly positive increase with positive
probability. So θ(t) generates a profit without any risk of losing money.

Intuitively, the existence of an arbitrage is a sign of lack of equilibrium in
the market: No real market equilibrium can exist in the long run if there are
arbitrages there. Therefore it is important to be able to determine if a given
market allows an arbitrage or not. Not surprisingly, this question turns out to
be closely related to what conditions we pose on the portfolios that should be
allowed to use. We have defined our admissible portfolios in Definition 12.1.2
above, where condition (12.1.18) was motivated from a modelling point of
view. One could also obtain a mathematically sensible theory with other
conditions instead, for example with L2-conditions which imply that

E[V 2(t)] < ∞ for all t ∈ [0, T ] . (12.1.19)

In any case, some additional conditions are required on the self-financial
portfolios: If we only require the portfolio to be self-financing (and satisfying
(12.1.5)) we can generate virtually any final value V (T ), as the next example
illustrates:

Example 12.1.4. Consider the following market

dX0(t) = 0, dX1(t) = dB(t), 0 ≤ t ≤ T = 1 .

Let

Y (t) =

t∫

0

dB(s)√
1− s

for 0 ≤ t < 1 .

By Corollary 8.5.5 there exists a Brownian motion B̂(t) such that
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Y (t) = B̂(βt) ,

where

βt =

t∫

0

ds

1− s
= ln

(
1

1− t

)
for 0 ≤ t < 1 .

Let a ∈ R be a given constant and define

τ : = τa: = inf{t > 0; B̂(t) = a}
and

α: = αa: = inf{t > 0; Y (t) = a} .

Then
τ < ∞ a.s. (Exercise 7.4a))

and

τ = ln
(

1
1− α

)
, so α < 1 a.s.

Let θ(t) = (θ0(t), θ1(t)) be a self-financing portfolio with

θ1(t) =

{
1√
1−t

for 0 ≤ t < α

0 for α ≤ t ≤ 1 .

Then the corresponding value process is given by

V (t) =

t∧α∫

0

dB(s)√
1− s

= Y (t ∧ α) for 0 ≤ t ≤ 1 ,

if we assume that V (0) = 0. In particular,

V (1) = Y (α) = a a.s.

In this case condition (12.1.5) reduces to

1∫

0

θ2
1(s)ds < ∞ a.s.

Now
1∫

0

θ2
1(s)ds =

α∫

0

ds

1− s
= ln

(
1

1− α

)
= τ < ∞ a.s. ,

so (12.1.5) holds. But θ(t) is not admissible, because V (t) = Y (t ∧ α) =
B̂(ln( 1

1−t∧α )) is not (t, ω)-a.s. lower bounded for (t, ω) ∈ [0, T ] × Ω. Note
that θ(t) does not satisfy (12.1.19) either, because
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E[V 2(t)] = E[Y 2(t∧α)] = E

[ t∧α∫

0

ds

1− s

]
= E

[
ln

(
1

1− t ∧ α

)]
→ E[τ ] = ∞

as t → T (Exercise 7.4b).

This example illustrates that with portfolios only required to be self-
financing and satisfy (12.1.5) one can virtually generate any terminal value
V (T, ω) from V0 = 0, even when the risky price process X1(t) is Brownian
motion. This clearly contradicts the real life situation in finance, so a re-
alistic mathematical model must put stronger restrictions than (12.1.5) on
the portfolios allowed. One such natural restriction is (12.1.18), as we have
adopted.

To emphasize the phenomenon illustrated by this example, we state the
following striking result, which is due to Dudley (1977):

Theorem 12.1.5. Let F be an F (m)
T -measurable random variable and let

B(t) be m-dimensional Brownian motion. Then there exists φ ∈ Wm such
that

F (ω) =

T∫

0

φ(t, ω)dB(t) . (12.1.20)

Note that φ is not unique. See Exercise 3.4.22 in Karatzas and Shreve
(1991). See also Exercise 12.4.

This implies that for any constant z there exists φ ∈ Wm such that

F (ω) = z +

T∫

0

φ(t, ω)dB(t) .

Thus, if we let m = n and interprete B1(t) = X1(t), . . . , Bn(t) = Xn(t) as
prices, and put X0(t) ≡ 1, this means that we can, with any initial fortune
z, generate any F (m)

T -measurable final value F = V (T ), as long as we are
allowed to choose the portfolio φ freely from Wm. This again underlines the
need for some extra restriction on the family of portfolios allowed, like con-
dition (12.1.18).

How can we decide if a given market {X(t)}t∈[0,T ] allows an arbitrage or
not? The following simple result is useful:

Lemma 12.1.6. Suppose there exists a measure Q on F (m)
T such that P ∼ Q

and such that the normalized price process {X(t)}t∈[0,T ] is a local martingale
w.r.t. Q. Then the market {X(t)}t∈[0,T ] has no arbitrage.
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Proof. Suppose θ(t) is an arbitrage for {X(t)}t∈[0,T ]. Let V
θ
(t) be the cor-

responding value process for the normalized market with V
θ
(0) = 0. Then

V
θ
(t) is a lower bounded local martingale w.r.t. Q, by (12.1.14). Therefore

V
θ
(t) is a supermartingale w.r.t. Q, by Exercise 7.12. Hence

EQ[V θ(T )] ≤ V θ(0) = 0 . (12.1.21)

But since V θ(T, ω) ≥ 0 a.s. P we have V θ(T, ω) ≥ 0 a.s. Q (because Q ¿ P )
and since P [V θ(T ) > 0] > 0 we have Q[V θ(T ) > 0] > 0 (because P ¿ Q).
This implies that

EQ[V θ(T )] > 0 ,

which contradicts (12.1.21). Hence arbitrages do not exist for the normalized
price process {X(t)}. It follows that {X(t)} has no arbitrage. (Exercise 12.1).

tu
Definition 12.1.7. A measure Q ∼ P such that the normalized process
{X(t)}t∈[0,T ] is a (local) martingale w.r.t. Q is called an equivalent (local)
martingale measure.

Thus Lemma 12.1.6 states that if there exists an equivalent local martin-
gale measure then the market has no arbitrage. In fact, then the market also
satisfies the stronger condition “no free lunch with vanishing risk” (NFLVR).
Conversely, if the market satisfies the NFLVR condition, then there exists
an equivalent martingale measure. See Delbaen and Schachermayer (1994),
(1995), (1997), Levental and Skorohod (1995) and the references therein.
Here we will settle with a weaker result, which nevertheless is good enough
for many applications:

Theorem 12.1.8. a) Suppose there exists a process u(t, ω) ∈ Vm(0, T ) such
that, with X̂(t, ω) = (X1(t, ω), . . . , Xn(t, ω)),

σ(t, ω)u(t, ω) = µ(t, ω)− ρ(t, ω)X̂(t, ω) for a.a. (t, ω) (12.1.22)

and such that

E

[
exp

(
1
2

T∫

0

u2(t, ω)dt

)]
< ∞ . (12.1.23)

Then the market {X(t)}t∈[0,T ] has no arbitrage.

b) (Karatzas (1996), Th. 0.2.4)
Conversely, if the market {X(t)}t∈[0.T ] has no arbitrage, then there exists
an F (m)

t -adapted, (t, ω)-measurable process u(t, ω) such that

σ(t, ω)u(t, ω) = µ(t, ω)− ρ(t, ω)X̂(t, ω)

for a.a. (t, ω).
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Proof. a) We may assume that {X(t)} is normalized, i.e. that ρ = 0 (Exercise
12.1). Define the measure Q = Qu on F (m)

T by

dQ(ω) = exp
(
−

T∫

0

u(t, ω)dB(t)− 1
2

T∫

0

u2(t, ω)dt

)
dP (ω) . (12.1.24)

Then Q ∼ P and by the Girsanov theorem II (Theorem 8.6.4) the process

B̃(t):=

t∫

0

u(s, ω)ds + B(t) (12.1.25)

is a Q-Brownian motion and in terms of B̃(t) we have

dXi(t) = µidt + σidB(t) = σidB̃(t); 1 ≤ i ≤ n .

Hence X(t) is a local Q-martingale and the conclusion follows from Lemma
12.1.6.

b) Conversely, assume that the market has no arbitrage and is normalized.
For t ∈ [0, T ], ω ∈ Ω let

Ft = {ω; the equation (12.1.22) has no solution}
= {ω; µ(t, ω) does not belong to the linear span of the columns

of σ(t, ω)}
= {ω; ∃v = v(t, ω) with σT (t, ω)v(t, ω) = 0 and

v(t, ω) · µ(t, ω) 6= 0} .

Define

θi(t, ω) =
{
sign(v(t, ω) · µ(t, ω))vi(t, ω) for ω ∈ Ft

0 for ω 6∈ Ft

for 1 ≤ i ≤ n and θ0(t, ω) according to (12.1.17). Since σ(t, ω), µ(t, ω) are
F (m)

t -adapted and (t, ω)-measurable, it follows that we can choose θ(t, ω)
to be F (m)

t -adapted and (t, ω)-measurable also. Moreover, θ(t, ω) is self-
financing and it generates the following gain in the value function

V θ(t, ω)− V θ(0) =

t∫

0

n∑

i=1

θi(s, ω)dXi(s)

=

t∫

0

XFs(ω)|v(s, ω) · µ(s, ω)|ds +

t∫

0

m∑

j=1

( n∑

i=1

θi(s, ω)σij(s, ω)
)

dBj(s)
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=

t∫

0

XFs(ω)|v(s, ω) · µ(s, ω)|ds

+

t∫

0

sign(v(s, ω) · µ(s, ω))XFs(ω)σT (s, ω)v(s, ω)dB(s)

=

t∫

0

XFs
(ω)|v(s, ω) · µ(s, ω)|ds ≥ 0 for all t ∈ [0, T ] .

Since the market has no arbitrage we must (by Exercise 12.1 b) have that

XFt
(ω) = 0 for a.a. (t, ω)

i.e. that (12.1.22) has a solution for a.a. (t, ω). tu
Example 12.1.9. a) Consider the price process X(t) given by

dX0(t) = 0, dX1(t) = 2dt + dB1(t), dX2(t) = −dt + dB1(t) + dB2(t) .

In this case we have

µ =
[

2
−1

]
, σ =

[
1 0
1 1

]

and the system σu = µ has the unique solution

u =
[

u1

u2

]
=

[
2
−3

]
.

From Theorem 12.1.8a) we conclude that X(t) has no arbitrage.

b) Next, consider the price process Y (t) given by

dY0(t) = 0 , dY1(t) = 2dt + dB1(t) + dB2(t) ,

dY2(t) = −dt− dB1(t)− dB2(t) .

Here the system of equations σu = µ gets the form
[

1 1
−1 −1

] [
u1

u2

]
=

[
2
−1

]

which has no solutions. So the market has an arbitrage, according to Theo-
rem 12.1.8 b). Indeed, if we choose

θ(t) = (θ0, 1, 1)

we get
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V θ(T ) = V θ(0) +

T∫

0

2dt + dB1(t) + dB2(t)− dt− dB1(t)− dB2(t)

= V θ(0) + T .

In particular, if we choose θ0 constant such that

V θ(0) = θ0Y0(0) + Y1(0) + Y2(0) = 0 ,

then θ will be an arbitrage (see Exercise 12.2).

12.2 Attainability and Completeness

We start this section by stating without proof the following useful result,
which is a special case of Proposition 17.1 in Yor (1997):

Lemma 12.2.1. Suppose a process u(t, ω) ∈ Vm(0, T )satisfies the condition

E

[
exp

(
1
2

T∫

0

u2(s, ω)ds

)]
< ∞ . (12.2.1)

Define the measure Q = Qu on F (m)
T by

dQ(ω) = exp
(
−

T∫

0

u(t, ω)dB(t)− 1
2

T∫

0

u2(t, ω)dt

)
dP (ω) . (12.2.2)

Then

B̃(t):=

t∫

0

u(s, ω)ds + B(t) (12.2.3)

is an F (m)
t -martingale (and hence an F (m)

t -Brownian motion) w.r.t. Q and
any F ∈ L2(F (m)

T , Q) has a unique representation

F (ω) = EQ[F ] +

T∫

0

φ(t, ω)dB̃(t) , (12.2.4)

where φ(t, ω) is an F (m)
t -adapted, (t, ω)-measurable Rm-valued process such

that

EQ

[ T∫

0

φ2(t, ω)dt

]
< ∞ . (12.2.5)
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Remark. a) Note that the filtration {F̃ (m)
t } generated by {B̃(t)} is con-

tained in {F (m)
t } (by (12.2.3)), but not necessarily equal to {F (m)

t }. Therefore
the representation (12.2.4) is not a consequence of the Itô representation the-
orem (Theorem 4.2.3) or the Dudley theorem (Theorem 12.1.5), which in this
setting would require that F be F̃ (m)

T -measurable.

b) To prove that B̃(t) is an F (m)
t -martingale w.r.t Q, we apply Itô’s formula

to the process
Y (t):= Z(t)B̃(t) ,

where

Z(t) = exp
(
−

t∫

0

u(s, ω)dB(s)− 1
2

t∫

0

u2(s, ω)ds

)
,

and use the Bayes formula, Lemma 8.6.2. The details are left to the reader.
(Exercise 12.5.)

Next we make the following simple, but useful observation:

Lemma 12.2.2. Let X(t) = ξ(t)X(t) be the normalized price process, as
in (12.1.8)–(12.1.11). Suppose θ(t) is an admissible portfolio for the market
{X(t)} with value process

V θ(t) = θ(t) ·X(t) . (12.2.6)

Then θ(t) is also an admissible portfolio for the normalized market {X(t)}
with value process

V
θ
(t):= θ(t) ·X(t) = ξ(t)V θ(t) (12.2.7)

and vice versa.
In other words,

V θ(t) = V θ(0) +
t∫
0

θ(s)dX(s) ; 0 ≤ t ≤ T (12.2.8)

m

ξ(t)V θ(t) = V θ(0) +
t∫
0

θ(s)dX(s) ; 0 ≤ t ≤ T (12.2.9)

Proof. Note that V
θ
(t) is lower bounded if and only if V θ(t) is lower bounded

(since ρ(t) is bounded). Consider first the market consisting of the price
process X(t). Let θ(t) be an admissible portfolio for this market with value
process V θ(t). Then

V
θ
(t) = θ(t) ·X(t) = ξ(t)V θ(t) (12.2.10)



12.2 Attainability and Completeness 261

and since θ(t) is self-financing for the market {X(t)} we have, by (12.1.14),

dV
θ
(t) = θ(t)dX(t) . (12.2.11)

Hence θ(t) is also admissible for {X(t)} and V
θ
(t) = V θ(0) +

t∫
0

θ(s)dX(s),

which shows that (12.2.8) implies (12.2.9).
The argument goes both ways, so the lemma is proved. tu
Before we proceed we note the following useful result:

Lemma 12.2.3. Suppose there exists an m-dimensional process u(t, ω) ∈
Vm(0, T ) such that, with X̂(t, ω) = (X1(t, ω), . . . , Xn(t, ω)),

σ(t, ω)u(t, ω) = µ(t, ω)− ρ(t, ω)X̂(t, ω) for a.a. (t, ω) (12.2.12)

and

E
[
exp

(
1
2

T∫

0

u2(s, ω)ds

)]
< ∞ . (12.2.13)

Define the measure Q = Qu and the process B̃(t) as in (12.2.2), (12.2.3),
respectively. Then B̃ is a Brownian motion w.r.t. Q and in terms of B̃ we
have the following representation of the normalized market X(t) = ξ(t)X(t) :

dX0(t) = 0 (12.2.14)

dXi(t) = ξ(t)σi(t)dB̃(t) ; 1 ≤ i ≤ n . (12.2.15)

In particular, if
T∫
0

EQ[ξ2(t)σ2
i (t)]dt < ∞, then Q is an equivalent martingale

measure (Definition 12.1.7).
In any case the normalized value process V

θ
(t) of an admissible portfolio

θ is a local Q-martingale given by

dV
θ
(t) = ξ(t)

n∑

i=1

θi(t)σi(t)dB̃(t) (12.2.16)

Proof. The first statement follows from the Girsanov theorem. To prove the
representation (12.2.15) we compute

dXi(t) = d(ξ(t)Xi(t)) = ξ(t)dXi(t) + Xi(t)dξ(t)
= ξ(t)[(µi(t)− ρ(t)Xi(t))dt + σi(t)dB(t)]

= ξ(t)[(µi(t)− ρ(t)Xi(t))dt + σi(t)(dB̃(t)− ui(t)dt)]

= ξ(t)σi(t)dB̃(t) .
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In particular, if
T∫
0

EQ[ξ2(t)σ2
i (t)]dt < ∞ , then Xi(t) is a martingale w.r.t. Q

by Corollary 3.2.6.
Finally, the representation (12.2.16) follows from (12.2.11) and (12.2.15).

tu
Note. From now on we assume that there exists a process u(t, ω) ∈
Vm(0, T ) satisfying (12.2.12) and (12.2.13) and we let Q and B̃ be
as in (12.2.2), (12.2.3), as described in Lemma 12.2.3.

Definition 12.2.4. a) A (European) contingent T -claim (or just a T -claim
or claim) is a lower bounded F (m)

T -measurable random variable F (ω).

b) We say that the claim F (ω) is attainable (in the market {X(t)}t∈[0,T ]) if
there exists an admissible portfolio θ(t) and a real number z such that

F (ω) = V θ
z (T ):= z +

T∫

0

θ(t)dX(t) a.s.

and such that

V
θ
(t) = z +

t∫

0

ξ(s)
n∑

i=1

θi(s)σi(s)dB̃(s) ; 0 ≤ t ≤ T is a Q-martingale .

If such a θ(t) exists, we call it a replicating or hedging portfolio for F .

c) The market {X(t)}t∈[0,T ] is called complete if every bounded T -claim is
attainable.

In other words, a claim F (ω) is attainable if there exists a real number z
such that if we start with z as our initial fortune we can find an admissible
portfolio θ(t) which generates a value V θ

z (T ) at time T which a.s. equals F :

V θ
z (T, ω) = F (ω) for a.a. ω .

In addition we require tht the corresponding normalized value process V
θ
(t),

which has the representation (12.2.16), is a martingale and not just a local
martingale w.r.t. Q.

Remark. a) The boundedness condition in part c) of Definition 12.2.1 is
technically convenient, but other, related definitions are also possible. Note
that if the market is complete in the sense of c), then it often follows that
many unbounded claims are attainable as well. See Exercise 12.3.

b) If we drop the martingale condition in Definition 12.2.4b) then the repli-
cating portfolio θ need not be unique. See Exercise 12.4.
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What claims are attainable? Which markets are complete? These are im-
portant, but difficult questions in general. We will give some partial answers.

We are now ready for the main result of this section:

Theorem 12.2.5. The market {X(t)} is complete if and only if σ(t, ω) has
a left inverse Λ(t, ω) for a.a. (t, ω), i.e. there exists an F (m)

t -adapted matrix
valued process Λ(t, ω) ∈ Rm×n such that

Λ(t, ω)σ(t, ω) = Im for a.a. (t, ω) . (12.2.17)

Remark. Note that the property (12.2.17) is equivalent to the property

rank σ(t, ω) = m for a.a. (t, ω) . (12.2.18)

Proof of Theorem 12.2.5 . (i) Assume that (12.2.17) hold. Let Q and B̃ be
as in (12.2.2), (12.2.3). Let F be a bounded T -claim. We want to prove that
there exists an admissible portfolio θ(t) = (θ0(t), . . . , θn(t)) and a real number
z such that if we put

V θ
z (t) = z +

t∫

0

θ(s)dX(s) ; 0 ≤ t ≤ T

then V
η

z(t) is a Q-martingale and

V θ
z (T ) = F (ω) a.s.

By (12.2.16) this is equivalent to

ξ(T )F (ω) = V
θ
(T ) = z +

T∫

0

ξ(t)
n∑

i=1

θi(t)σi(t)dB̃(t) .

By Lemma 12.2.1 we have a unique representation

ξ(T )F (ω) = EQ[ξ(T )F ]+

T∫

0

φ(t, ω)dB̃(t) = EQ[ξ(T )F ]+

T∫

0

m∑

j=1

φj(t, ω)dB̃j(t)

for some φ(t, ω) = (φ1(t, ω), . . . , φm(t, ω)) ∈ Rm. Hence we put

z = EQ[ξ(T )F ]

and we choose θ̂(t) = (θ1(t), . . . , θn(t)) such that

ξ(t)
n∑

i=1

θi(t)σij(t) = φj(t) ; 1 ≤ j ≤ m
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i.e. such that
ξ(t)θ̂(t)σ(t) = φ(t) .

By (12.2.17) this equation in θ̂(t) has the solution

θ̂(t, ω) = X0(t)φ(t, ω)Λ(t, ω) .

By choosing θ0 according to (12.1.16) the portfolio becomes self-financing.

Moreover, since ξ(t)V θ
z (t) = z +

t∫
0

θ(s)dX(s) = z +
t∫
0

φ(s)dB̃(s), we get the

useful formula

ξ(t)V θ
z (t) = EQ[ξ(T )V θ

z (T )|Ft] = EQ[ξ(T )F |Ft] . (12.2.19)

In particular, V θ
z (t) is lower bounded. Hence the market {X(t)} is complete.

(ii) Conversely, assume that {X(t)} is complete. Then {X(t)} is com-
plete, so we may assume that ρ = 0. The calculation in part a) shows
that the value process V θ

z (t) generated by an admissible portfolio θ(t) =
(θ0(t), θ1(t), . . . , θn(t)) is

V θ
z (t) = z +

t∫

0

m∑

j=1

( n∑

i=1

θiσij

)
dB̃j = z +

t∫

0

θ̂σ dB̃ , (12.2.20)

where θ̂(t) = (θ1(t), . . . , θn(t)).
Since {X(t)} is complete we can hedge any bounded T -claim. Choose

an F (m)
t -adapted process φ(t, ω) ∈ Rm such that EQ[

T∫
0

φ2(t, ω)dt] < ∞ and

define F (ω):=
T∫
0

φ(t, ω)dB̃(t). Then EQ[F 2] < ∞ so we can find a sequence

of bounded T -claims Fk(ω) such that

Fk → F in L2(Q) and EQ[Fk] = 0 .

By completeness there exists for all k an admissible portfolio θ(k) = (θ(k)
0 , θ̂(k))

such that V θ(k)
(t) =

t∫
0

θ̂(k)σdB̃ is a Q-martingale and

Fk(ω) = V θ(k)
(T ) =

T∫

0

θ̂(k)σ dB̃ .

Then by the Itô isometry the sequence {θ̂(k)σ}∞k=1 is a Cauchy sequence in
L2(λ × Q), where λ denotes Lebesgue measure on [0, T ]. Hence there exists
ψ(t, ω) = (ψ1(t, ω), . . . , ψm(t, ω)) ∈ L2(λ×Q) such that
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θ̂(k)σ → ψ in L2(λ×Q) .

But then

t∫

0

ψdB̃ = lim
k→∞

t∫

0

θ̂(k)σdB̃ = lim
k→∞

E[Fk | F̃ (m)
t ] = E[F | F̃ (m)

t ] =

t∫

0

φdB̃

a.s. for all t ∈ [0, T ], where F̃ (m)
t is the σ-algebra generated by B̃(s); s ≤ t.

Hence by uniqueness we have φ(t, ω) = ψ(t, ω) for a.a. (t, ω). By taking a
subsequence we obtain that for a.a. (t, ω) there exists a sequence x(k)(t, ω) =
(x(k)

1 (t, ω), . . . , x(k)
m (t, ω)) ∈ Rm such that

x(k)(t, ω)σ(t, ω) → φ(t, ω) as k →∞ .

This implies that φ(t, ω) belongs to the linear span of the rows {σi(t, ω)}n
i=1

of σ(t, ω). Since φ ∈ L2(λ × Q) was arbitrary, we conclude that the linear
span of {σi(t, ω)}n

i=1 is the whole of Rm for a.a. (t, ω). So rank σ(t, ω) = m
and there exists Λ(t, ω) ∈ Rm×n such that

Λ(t, ω)σ(t, ω) = Im . tu
Corollary 12.2.6. (a) If n = m then the market is complete if and only if

σ(t, ω) is invertible for a.a. (t, ω).

(b) If the market is complete, then

rank σ(t, ω) = m for a.a. (t, ω) .

In particular, n ≥ m.
Moreover, the process u(t, ω) satisfying (12.2.12) is unique.

Proof. (a) is a direct consequence of Theorem 12.2.5, since the existence of a
left inverse implies invertibility when n = m. The existence of a left inverse
of an n × m matrix is only possible if the rank is equal to m, which again
implies that n ≥ m. Moreover, the only solution u(t, ω) of (12.2.12) is given
by

u(t, ω) = Λ(t, ω)[µ(t, ω)− ρ(t, ω)X̂(t, ω)] .

This shows (b). tu
Example 12.2.7. Define X0(t) ≡ 1 and




dX1(t)
dX2(t)
dX3(t)


 =




1
2
3


 dt +




1 0
0 1
1 1




[
dB1(t)
dB2(t)

]
.

Then ρ = 0 and the equation (12.2.12) gets the form
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σ u =




1 0
0 1
1 1




[
u1

u2

]
=




1
2
3




which has the unique solution u1 = 1, u2 = 2. Since u is constant, it is
clear that (12.2.12) and (12.2.13) hold. It is immediate that rankσ = 2, so
(12.2.18) holds and the market is complete by Theorem 12.2.5.

Since [
1 0 0
0 1 0

] 


1 0
0 1
1 1


 =

[
1 0
0 1

]
= I2 ,

we see that in this case

Λ =
[

1 0 0
0 1 0

]

is a left inverse of σ =




1 0
0 1
1 1


.

Example 12.2.8. Let X0(t) ≡ 1 and

dX1(t) = 2dt + dB1(t) + dB2(t) .

Then µ = 2, σ = (1, 1) ∈ R1×2, so n = 1 < 2 = m. Hence this market cannot
be complete, by Corollary 12.2.6. So there exist bounded T -claims which
cannot be hedged. Can we find such a T -claim? Let θ(t) = (θ0(t), θ1(t)) be
an admissible portfolio. Then the corresponding value process V θ

z (t) is given
by (see (12.2.20))

V θ
z (t) = z +

t∫

0

θ1(s)(dB̃1(s) + dB̃(s)) .

So if θ hedges a T -claim F (ω) we have

F (ω) = z +

T∫

0

θ1(s)(dB̃1(s) + dB̃(s)) . (12.2.21)

Choose F (ω) = g(B̃1(T )), where g:R → R is bounded. Then by the Itô
representation theorem applied to the 2-dimensional Brownian motion B̃(t) =
(B̃1(t), B̃2(t)) there is a unique φ(t, ω) = (φ1(t, ω), φ2(t, ω)) such that

g(B̃1(T )) = EQ[g(B̃1(T ))] +

T∫

0

φ1(s)dB̃1(s) + φ2(s)dB̃2(s)
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and by the Itô representation theorem applied to B̃1(t), we must have φ2 =0,
i.e.

g(B̃1(T )) = EQ[g(B̃1(T ))] +

T∫

0

φ1(s)dB̃1(s)

Comparing this with (12.2.21) we see that no such θ1 exists. So F (ω) =
g(B̃1(T )) cannot be hedged.

Remark. There is a striking characterization of completeness in terms of
equivalent martingale measures, due to Harrison and Pliska (1983) and Jacod
(1979):

A market {X(t)} is complete if and only if there is one and only one
equivalent martingale measure for the normalized market {X(t)}.

(Compare this result with the equivalent martingale measure characteri-
zation of markets with no arbitrage/NFLVR, stated after Definition 12.1.7!)

12.3 Option Pricing

European Options

Let F (ω) be a T -claim. A European option on the claim F is a guarantee
to be paid the amount F (ω) at time t = T > 0. How much would you be
willing to pay at time t = 0 for such a guarantee? You could argue as follows:
If I – the buyer of the option – pay the price y for this guarantee, then I
have an initial fortune −y in my investment strategy. With this initial fortune
(debt) it must be possible to hedge to time T a value V θ

−y(T, ω) which, if the
guaranteed payoff F (ω) is added, gives me a nonnegative result:

V θ
−y(T, ω) + F (ω) ≥ 0 a.s.

Thus the maximal price p = p(F ) the buyer is willing to pay is

(Buyer’s price of the (European) contingent claim F ) (12.3.1)
p(F ) = sup{y; There exists an admissible portfolio θ

such that V θ
−y(T, ω):= −y +

T∫

0

θ(s)dX(s) ≥ −F (ω) a.s.}

On the other hand, the seller of this guarantee could argue as follows:
If I – the seller – receive the price z for this guarantee, then I can use

this as the initial value in an investment strategy. With this initial fortune it
must be possible to hedge to time T a value V θ

z (T, ω) which is not less than
the amount F (ω) that I have promised to pay to the buyer:
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V θ
z (T, ω) ≥ F (ω) a.s.

Thus the minimal price q = q(F ) the seller is willing to accept is

(Seller’s price of the (European) contingent claim F ) (12.3.2)
q(F ) = inf{z; There exists an admissible portfolio θ

such that V θ
z (T, ω): = z +

T∫

0

θ(s)dX(s) ≥ F (ω) a.s.}

Definition 12.3.1. If p(F ) = q(F ) we call this common value the price (at
t = 0) of the (European) T -contingent claim F (ω).

Two important examples of European contingent claims are

a) the European call, where

F (ω) = (Xi(T, ω)−K)+

for some i ∈ {1, 2, . . . , n} and some K > 0. This option gives the owner
the right (but not the obligation) to buy one unit of security number i at
the specified price K (the exercise price) at time T . So if Xi(T, ω) > K
then the owner of the option will obtain the payoff Xi(T, ω)−K at time
T , while if Xi(T.ω) ≤ K then the owner will not exercise his option and
the payoff is 0.

b) Similarly, the European put option gives the owner the right (but not
the obligation) to sell one unit of security number i at a specified price
K at time T . This option gives the owner the payoff

F (ω) = (K −Xi(T, ω))+ .

Theorem 12.3.2. a) Suppose (12.2.12) and (12.2.13) hold and let Q be as
in (12.2.2). Let F be a (European) T -claim such that EQ[ξ(T )F ] < ∞.
Then

ess inf F (ω) ≤ p(F ) ≤ EQ[ξ(T )F ] ≤ q(F ) ≤ ∞ . (12.3.3)

b) Suppose, in addition to the conditions in a), that the market {X(t)} is
complete. Then the price of the (European) T -claim F is

p(F ) = EQ[ξ(T )F ] = q(F ) . (12.3.4)

Proof. a) Suppose y ∈ R and there exists an admissible portfolio θ such that

V θ
−y(T, ω) = −y +

T∫

0

θ(s)dX(s) ≥ −F (ω) a.s.
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i.e., using (12.2.7) and Lemma 12.2.4,

−y +

T∫

0

n∑

i=1

θi(s)ξ(s)σi(s)dB̃(s) ≥ −ξ(T )F (ω) a.s. (12.3.5)

where B̃ is defined in (12.2.3).

Since
t∫
0

n∑
i=1

θi(s)ξ(s)σi(s)dB̃(s) is a lower bounded local Q-martingale, it is

a supermartingale, by Exercise 7.12. Hence EQ[
t∫
0

n∑
i=1

θi(s)ξ(s)σi(s)dB̃(s)] ≤ 0

for all t ∈ [0, T ]. Therefore, taking the expectation of (12.3.5) with respect
to Q we get

y ≤ EQ[ξ(T )F ] .

Hence
p(F ) ≤ EQ[ξ(T )F ] ,

provided such a portfolio θ exists for some y ∈ R. This proves the second
inequality in (12.3.3). Clearly, if y < F (ω) for a.a. ω, we can choose θ = 0.
Hence the first inequality in (12.3.3) holds.

Similarly, if there exists z ∈ R and an admissible portfolio θ such that

z +

T∫

0

θ(s)dX(s) ≥ F (ω) a.s.

then, as in (12.3.5)

z +

T∫

0

n∑

i=1

θi(s)ξ(s)σi(s)dB̃(s) ≥ ξ(T )F (ω) a.s.

Taking Q-expectations we get

z ≥ EQ[ξ(T )F ] ,

provided such z and θ exist.
If no such z, θ exist, then q(F ) = ∞ > EQ[ξ(T )F ].

b) Next, assume in addition that the market is complete. Define

Fk(ω) =
{

k if F (ω) ≥ k
F (ω) if F (ω) < k .

Then Fk is a bounded T -claim, so by completeness we can find (unique)
yk ∈ R and θ(k) such that
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−yk +

T∫

0

θ(k)(s)dX(s) = −Fk(ω) a.s.

i.e. (by (12.2.7) and Lemma 12.2.4)

−yk +

T∫

0

n∑

i=1

θ
(k)
i (s)ξ(s)σi(s)dB̃(s) = −ξ(T )Fk(ω) a.s. ,

which gives, since
t∫
0

n∑
i=1

θ
(k)
i (s)ξ(s)σi(s)dB̃(s) is a Q-martingale (Definition

12.2.4c)),
yk = EQ[ξ(T )Fk] .

Hence

p(F ) ≥ p(Fk)≥ EQ[ξ(T )Fk] → EQ[ξ(T )F ] as k →∞,
by monotone convergence .

Combined with a) this gives

p(F ) = EQ[ξ(T )F ] .

A similar argument gives that

q(F ) = EQ[ξ(T )F ] . tu

How to Hedge an Attainable Claim

We have seen that if V θ
z (t) is the value process of an admissible portfolio θ(t)

for the market {X(t)}, then V
θ

z(t):= ξ(t)V θ
z (t) is the value process of θ(t)

for the normalized market {X(t)} (Lemma 12.2.3). Hence we have

ξ(t)V θ
z (t) = z +

t∫

0

θ(s)dX(s) . (12.3.6)

If (12.2.12) and (12.2.13) hold, then – if Q, B̃ are defined as before ((12.2.2)
and (12.2.3)) – we can rewrite this as (see Lemma 12.2.4)

ξ(t)V θ
z (t) = z +

t∫

0

n∑

i=1

θi(s)ξ(s)
m∑

j=1

σij(s)dB̃j(s) . (12.3.7)

Therefore, the portfolio θ(t) = (θ0(t), . . . , θn(t)) needed to hedge a given
T -claim F is given by
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ξ(t, ω)(θ1(t), . . . , θn(t))σ(t, ω) = φ(t, ω) , (12.3.8)

where φ(t, ω) ∈ Rm is such that

ξ(T )F (ω) = z +

T∫

0

φ(t, ω)dB̃(t) (12.3.9)

(and θ0(t) is given by (12.1.14)).
In view of this it is of interest to find explicitly the integrand φ(t, ω)

when F is given. One way of doing this is by using a generalized version
of the Clark-Ocone theorem from the Malliavin calculus. See Karatzas and
Ocone (1991). A survey containing their result is in Øksendal (1996)). In the
Markovian case, however, there is a simpler method, which we now describe.
It is a modification of a method used by Hu (1995).

Let Y (t) be an Itô diffusion in Rn of the form

dY (t) = b(Y (t))dt + σ(Y (t))dB(t), Y (0) = y (12.3.10)

where b:Rn → Rn and σ:Rn → Rn×m are given Lipschitz continuous func-
tions. Assume that Y (t) is uniformly elliptic, i.e. that there exists a constant
c > 0 such that

ξT σ(x)σT (x)ξ ≥ c|ξ|2 (12.3.11)

for all ξ ∈ Rn, x ∈ Rn.
Suppose ρ:Rn → R is a bounded Lipschitz continuous function. Let Z(t)

be the Itô diffusion in Rn given by

dZ(t) = ρ(Z(t))Z(t)dt + σ(Z(t))dB(t) ; Z(0) = z . (12.3.12)

Let h:Rn → R be a continuous function such that Ez[|h(Z(t))|] < ∞ for all
z and all t ∈ [0, T ] and define

w(t, z) = Ez[h(Z(t))] (12.3.13)

and
g(t, z) = w(T − t, z) .

Then by uniform ellipticity it is known that w(t, z) ∈ C1,2((0,∞) × Rn)
(see Dynkin 1965 II, Theorem 13.18 p. 53 and Dynkin 1965 I, Theorem 5.11
p. 162) and hence Kolmogorov’s backward equation (Theorem 8.1.1) gives

∂w

∂t
= ρ(z)

n∑

i=1

zi
∂w

∂zi
+ 1

2

n∑

i,j=1

(σσT )ij(z) · ∂2w

∂zi∂zj
.

Hence, if we apply Itô’s formula to the process

η(t):= g(t, Y (t)) = w(T − t, Y (t)) (12.3.14)
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we get

dη(t) =
[
∂g

∂t
(t, Y (t))

+
n∑

i=1

∂g

∂zi
(t, Y (t))bi(Y (t))+ 1

2

n∑

i,j=1

∂2g

∂zi∂zj
(t, Y (t)) · (σσT )ij(Y (t))

]
dt

+
n∑

i=1

∂g

∂zi
(t, Y (t))

m∑

j=1

σij(Y (t))dBj(t)

=
n∑

i=1

∂g

∂zi
(t, Y (t))

[
(bi(Y (t))− ρ(Y (t))Yi(t))dt

+
m∑

j=1

σij(Y (t))dBj(t)
]

. (12.3.15)

Suppose that for all y ∈ Rn there exists u(y) ∈ Rm such that

σ(y)u(y) = b(y)− ρ(y)y and E

[
exp

(
1
2

T∫

0

u2(Y (s))ds

)]
< ∞ . (12.3.16)

If we as usual define the measure Q = Qu on FT by

dQ(ω) = exp
(
−

T∫

0

u(Y (t))dB(t)− 1
2

T∫

0

u2(Y (t))dt

)
dP (ω) , (12.3.17)

then

B̃(t) =

t∫

0

u(Y (s))ds + B(t) . (12.3.18)

is a Brownian motion with respect to Q and (12.3.15) gives

dη(t) =
n∑

i=1

∂g

∂zi
(t, Y (t))

m∑

j=1

σij(Y (t))dB̃j(t) . (12.3.19)

Now by (12.3.14) we have

η(T ) = w(0, Y (T ))=Ez[h(Z(0))]z=Y (T ) =h(z)z=Y (T ) =h(Y (T )) (12.3.20)

and
η(0) = w(T, Y (0)) = Ey[h(Z(T ))] . (12.3.21)

Hence by (12.3.19)–(12.3.21)
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h(Y (T )) = Ey[h(Z(T ))] +

T∫

0

(∇g)T (t, Y (t))σ(Y (t))dB̃(t) . (12.3.22)

By (12.3.10) and (12.3.18) Y (t) is a weak solution of

dY (t) = ρ(Y (t))Y (t)dt + σ(Y (t))dB̃(t) .

Hence, by weak uniqueness (Lemma 5.3.1) we have

w(t, y) = Ey[h(Z(t))] = Ey
Q[h(Y (t))] for all t . (12.3.23)

Substituting this in (12.3.22) we get:

Theorem 12.3.3. Let Y (t) and Z(t) be as in (12.3.10) and (12.3.12), re-
spectively, and assume that h:Rn → R is as in (12.3.13). Assume that
(12.3.11) and (12.3.16) hold and define Q and B̃(t) by (12.3.17) and (12.3.18).
Then

h(Y (T )) = Ey
Q[h(Y (T ))] +

T∫

0

φ(t, ω)dB̃(t) ,

where φ = (φ1, . . . , φm), with

φj(t, ω) =
n∑

i=1

∂

∂yi
(Ey[h(Z(T−t))])y=Y (t)σij(Y (t)) ; 1≤j≤m . (12.3.24)

In particular, if ρ = b = 0 and σ = Im then u = 0, P = Q and Y (t) = Z(t) =
B(t). Hence we get the representation

h(B(T )) = Ey[h(B(T ))] +

T∫

0

m∑

j=1

∂

∂zj
Ez[h(B(T − t))]z=B(t)dBj(t) (12.3.25)

We summarize our results about pricing and hedging of European T -
claims as follows:

Theorem 12.3.4. Let {X(t)}t∈[0,T ] be a complete market. Suppose (12.2.12)
and (12.2.13) hold and let Q, B̃ be as in (12.2.2), (12.2.3). Let F be a Eu-
ropean T -claim such that EQ[ξ(T )F ] < ∞. Then the price of the claim F
is

p(F ) = EQ[ξ(T )F ] . (12.3.26)

Moreover, to find a replicating (hedging) portfolio θ(t) = (θ0(t), . . . , θn(t)) for
the claim F we first find (for example by using Theorem 12.3.3 if possible)
φ ∈ Wm such that
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ξ(T )F = EQ[ξ(T )F ] +

T∫

0

φ(t, ω)dB̃(t) . (12.3.27)

Then we choose θ̂(t) = (θ1(t), . . . , θn(t)) such that

θ̂(t, ω)ξ(t, ω)σ(t, ω) = φ(t, ω) (12.3.28)

and we choose θ0(t) as in (12.1.14).

Proof. (12.3.26) is just part b) of Theorem 12.3.2. The relation (12.3.28)
follows from (12.3.8). Note that the equation (12.3.28) has the solution

θ̂(t, ω) = X0(t)φ(t, ω)Λ(t, ω) (12.3.29)

where Λ(t, ω) is the left inverse of σ(t, ω) (Theorem 12.2.5). tu
Example 12.3.5. Suppose the market is X0(t) = eρt, X1(t) = Y (t), where
ρ > 0 is constant and Y (t) is an Ornstein-Uhlenbeck process

dY (t) = αY (t)dt + σdB(t); Y (0) = y

where α, σ are constants, σ 6= 0. How do we hedge the claim

F (ω) = exp(Y (T )) ?

The portfolio θ(t) = (θ0(t), θ1(t)) that we seek is given by (12.3.29), i.e.

θ1(t, ω) = eρtσ−1φ(t, ω)

where φ(t, ω) and V (0) are uniquely given by (12.3.9), i.e.

ξ(T )F (ω) = z +

T∫

0

φ(t, ω)dB̃(t) .

To find φ(t, ω) explicitly we apply Theorem 12.3.3: In this case we choose
h(y) = exp(y)e−ρT and dZ(t) = ρZ(t)dt + dB(t). Then (see Exercise 5.5)

Z(t) = Z(0)eρt + σ

t∫

0

eρ(t−s)dB(s) .

Hence

eρT Ey
Q[h(Y (T − t))] = eρT Ey[h(Z(T − t))]

= Ey[exp(yeρ(T−t) + σ

T−t∫

0

eρ(T−t−s)dB(s))]

= exp
(
yeρ(T−t) +

σ2

4ρ
(e2ρ(T−t) − 1)

)
if ρ 6= 0 .
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This gives

φ(t, ω) =
∂

∂y

(
exp

(
yeρ(T−t) +

σ2

4ρ
(e2ρ(T−t) − 1)

))
y=Y (t)

σ e−ρT

= σe−ρt exp
{

Y (t)eρ(T−t) +
σ2

4ρ
(e2ρ(T−t) − 1)

}

and hence, if ρ 6= 0,

θ1(t) = exp
{

Y (t)eρ(T−t) +
σ2

4ρ
(e2ρ(T−t) − 1)

}
.

If ρ = 0 then θ1(t) = exp
{
Y (t) + σ2

2 (T − t)
}
.

The Generalized Black & Scholes Model

Let us now specialize to a situation where the market has just two securities
X0(t), X1(t) where X0, X1 are Itô processes of the form

dX0(t) = ρ(t, ω)X0(t)dt (as before) (12.3.30)

dX1(t) = α(t, ω)X1(t)dt + β(t, ω)X1(t)dB(t) , (12.3.31)

where B(t) is 1-dimensional and α(t, ω), β(t, ω) are 1-dimensional processes
in W.

Note that the solution of (12.3.31) is

X1(t) = X1(0) exp
( t∫

0

β(s, ω)dB(s)+

t∫

0

(α(s, ω)− 1
2β2(s, ω))ds

)
. (12.3.32)

The equation (12.2.12) gets the form

X1(t)β(t, ω)u(t, ω) = X1(t)α(t, ω)−X1(t)ρ(t, ω)

which has the solution

u(t, ω) = β−1(t, ω)[α(t, ω)− ρ(t, ω)] if β(t, ω) 6= 0 . (12.3.33)

So (12.2.13) holds iff

E

[
exp

(
1
2

T∫

0

(α(s, ω)− ρ(s, ω))2

β2(s, ω)
ds

)]
< ∞ . (12.3.34)

In this case we have an equivalent martingale measure Q given by (12.2.2)
and the market has no arbitrage, by Theorem 12.1.8. Moreover, the market
is complete by Corollary 12.2.5. Therefore we get by Theorem 12.3.2 that
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the price at t = 0 of a European option with payoff given by a contingent
T -claim F is

p(F ) = q(F ) = EQ[ξ(T )F ] , (12.3.35)

provided this quantity is finite.
Now suppose that ρ(t, ω) = ρ(t) and β(t, ω) = β(t) are deterministic and

that the payoff F (ω) has the form

F (ω) = f(X1(T, ω))

for some lower bounded function f :R → R such that

EQ[f(X1(T ))] < ∞ .

Then by (12.3.35) the price p = p(F ) = q(F ) is, with x1 = X1(0),

p = ξ(T )EQ

[
f

(
x1 exp

( T∫

0

β(s)dB̃(s) +

T∫

0

(ρ(s)− 1
2β2(s))ds

))]
.

Under the measure Q the random variable Y =
T∫
0

β(s)dB̃(s) is normally

distributed with mean 0 and variance δ2: =
T∫
0

β2(t)dt and therefore we can

write down a more explicit formula for p. The result is the following:

Theorem 12.3.6 (The generalized Black & Scholes formula).
Suppose X(t) = (X0(t), X1(t)) is given by

dX0(t) = ρ(t)X0(t)dt ; X0(0) = 1 (12.3.36)

dX1(t) = α(t, ω)X1(t)dt + β(t)X1(t)dB(t) ; X1(0) = x1 > 0 (12.3.37)

where ρ(t), β(t) are deterministic and

E

[
exp

(
1
2

T∫

0

(α(t, ω)− ρ(t))2

β2(t)
dt

)]
< ∞ .

a) Then the market {X(t)} is complete and the price at time t = 0 of the
European T -claim F (ω) = f(X1(T, ω)) where EQ[f(X1(T, ω))] < ∞ is

p =
ξ(T )
δ
√

2π

∫

R

f

(
x1 exp

[
y+

T∫

0

(ρ(s)− 1
2β2(s))ds

])
exp

(
− y2

2δ2

)
dy (12.3.38)

where ξ(T ) = exp(−
T∫
0

ρ(s)ds) and δ2 =
T∫
0

β2(s)ds.
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b) If ρ, α, β 6= 0 are constants and f ∈ C1(R), then the self-financing
portfolio θ(t) = (θ0(t), θ1(t)) needed to replicate the T -claim F (ω) =
f(X1(T, ω)) is given by

θ1(t, ω) =
1√

2π(T − t)

∫

R

f ′(X1(t, ω) exp{βx + (ρ− 1
2β2)(T− t)})

· exp
(
βx− x2

2(T − t)
− 1

2β2(T − t)
)
dx (12.3.39)

and θ0(t, ω) is given by (12.1.14).

Proof. Part a) is already proved and part b) follows from Theorem 12.3.3
and Theorem 12.3.4: (Strictly speaking condition (12.3.11) is not satisfied for
the process X1 (unless x is bounded away from 0), but in this case it can be
verified directly that u(t, z) given by (12.3.13) belongs to C1,2((0,∞) ×R),
so Theorem 12.3.3 is still valid.) The portfolio we seek is by (12.3.28) given
by

θ1(t, ω) = X0(t)(βX1(t, ω))−1φ(t, ω)

where φ(t, ω) is given by (12.3.24) with h(y) = e−ρT f(y) and

Y (t) = X1(t) = x1 exp{βB(t) + (α− 1
2β2)t}

and
Zy(t) = y exp

{
βB(t) +

(
ρ− 1

2β2
)
t
}

.

Hence

θ1(t, ω) = eρt(βX1(t, ω))−1 ∂

∂y

[
Ey[e−ρT f(Z(T − t))]

]
y=Y (t)

· βX1(t, ω)

= eρ(t−T ) ∂

∂y
E

[
f(y exp{βB(T − t) + (ρ− 1

2β2)(T − t)})]
y=Y (t)

= eρ(t−T )E
[
f ′(y exp{βB(T − t) + (ρ− 1

2β2)(T − t)})
· exp{βB(T − t) + (ρ− 1

2β2)(T − t)}]
y=Y (t)

=
eρ(t−T )

√
2π(T − t)

∫

R

f ′(Y (t, ω) exp{βx + (ρ− 1
2β2)(T − t)})

· exp{βx + (ρ− 1
2β2)(T − t)}e−

x2
2(T−t) dx ,

which is (12.3.39). tu

American options

The difference between European and American options is that in the latter
case the buyer of the option is free to choose any exercise time τ before or at
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the given expiration time T (and the guaranteed payoff may depend on both
τ and ω.) This exercise time τ may be stochastic (depend on ω), but only in
such a way that the decision to exercise before or at a time t only depends
on the history up to time t. More precisely, we require that for all t we have

{ω; τ(ω) ≤ t} ∈ F (m)
t .

In other words, τ must be an F (m)
t -stopping time (Definition 7.2.1).

Definition 12.3.7. An American contingent T -claim is an F (m)
t -adapted,

(t, ω)-measurable and a.s. lower bounded continuous stochastic process F (t) =
F (t, ω); t ∈ [0, T ], ω ∈ Ω. An American option on such a claim F (t, ω)
gives the owner of the option the right (but not the obligation) to choose
any stopping time τ(ω) ≤ T as exercise time for the option, resulting in a
payment F (τ(ω), ω) to the owner.

Let F (t) = F (t, ω) be an American contingent claim. Suppose you were
offered a guarantee to be paid the amount F (τ(ω), ω) at the (stopping) time
τ(ω) ≤ T that you are free to choose. How much would you be willing to pay
for such a guarantee? We repeat the argument preceding Definition 12.3.1:

If I – the buyer – pay the price y for this guarantee, then I will have an
initial fortune (debt) −y in my investment strategy. With this initial fortune
−y it must be possible to find a stopping time τ ≤ T and an admissible
portfolio θ such that

V θ
−y(τ(ω), ω) + F (τ(ω), ω) ≥ 0 a.s.

Thus the maximal price p = pA(F ) the buyer is willing to pay is

(Buyer’s price of the American contingent claim F ) (12.3.40)
pA(F ) = sup{y; There exists a stopping time τ ≤ T

and an admissible portfolio θ such that

V θ
−y(τ(ω), ω):= −y +

τ(ω)∫

0

θ(s)dX(s) ≥ −F (τ(ω), ω) a.s.}

On the other hand, the seller could argue as follows: If I – the seller – receive
the price z for such a guarantee, then with this initial fortune z it must be
possible to find an admissible portfolio θ which generates a value process
which at any time is not less than the amount promised to pay to the buyer:

V θ
z (t, ω) ≥ F (t, ω) a.s. for all t ∈ [0, T ] .

Thus the minimal price q = qA(F ) the seller is willing to accept is
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(Seller’s price of the American contingent claim F ) (12.3.41)
qA(F ) = inf{z; There exists an admissible portfolio θ

such that for all t ∈ [0, T ] we have

V θ
z (t, ω):= z +

t∫

0

θ(s)dX(s) ≥ F (t, ω) a.s.}

We can now prove a result analogous to Theorem 12.3.2. The result is basi-
cally due to Bensoussan (1984) and Karatzas (1988).
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Theorem 12.3.8 (Pricing formula for American options).

a) Suppose (12.2.12) and (12.2.13) and let Q be as in (12.2.2). Let F (t) =
F (t, ω); t ∈ [0, T ] be an American contingent T -claim such that

sup
τ≤T

EQ[ξ(τ)F (τ)] < ∞ (12.3.42)

Then
pA(F ) ≤ sup

τ≤T
EQ[ξ(τ)F (τ)] ≤ qA(F ) ≤ ∞ . (12.3.43)

b) Suppose, in addition to the conditions in a), that the market {X(t)} is
complete. Then

pA(F ) = sup
τ≤T

EQ[ξ(τ)F (τ)] = qA(F ) . (12.3.44)

Proof. a) We proceed as in the proof of Theorem 12.3.2: Suppose y ∈ R and
there exists a stopping time τ ≤ T and an admissible portfolio θ such that

V θ
−y(τ, ω) = −y +

τ∫

0

θ(s)dX(s) ≥ −F (τ) a.s.

Then as before we get

−y +

τ∫

0

n∑

i=1

θi(s)ξ(s)σi(s)dB̃(s) ≥ −ξ(τ)F (τ) a.s.

Taking expectations with respect to Q we get

y ≤ EQ[ξ(τ)F (τ)] ≤ sup
τ≤T

EQ[ξ(τ)F (τ)] .

Since this holds for all such y we conclude that

pA(F ) ≤ sup
τ≤T

EQ[ξ(τ)F (τ)] . (12.3.45)

Similarly, suppose z ∈ R and there exists an admissible portfolio θ such that

V θ
z (t, ω) = z +

t∫

0

θ(s)dX(s) ≥ F (t) a.s. for all t ∈ [0, T ] .

Then, as above, if τ ≤ T is a stopping time we get

z +

τ∫

0

n∑

i=1

θi(s)ξ(s)σi(s)dB̃(s) ≥ ξ(τ)F (τ) a.s.
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Again, taking expectations with respect to Q and then supremum over τ ≤ T
we get

z ≥ sup
τ≤T

EQ[ξ(τ)F (τ)] .

Since this holds for all such z, we get

qA(F ) ≥ sup
τ≤T

EQ[ξ(τ)F (τ)] . (12.3.46)

b) Next, assume in addition that the market is complete. Choose a stopping
time τ ≤ T . Define

Fk(t) = Fk(t, ω) =
{

k if F (t, ω) ≥ k
F (t, ω) if F (t, ω) < k

and put
Gk(ω) = X0(T )ξ(τ)Fk(τ) .

Then Gk is a bounded T -claim, so by completeness we can find yk ∈ R and
a portfolio θ(k) such that

−yk +

T∫

0

θ(k)(s)dX(s) = −Gk(ω) a.s.

and such that

−yk +

t∫

0

θ(k)(s)dX(s)

is a Q-martingale. Then, by (12.2.8)–(12.2.9),

−yk +

T∫

0

θ(k)(s)dX(s) = −ξ(T )Gk(ω) = −ξ(τ)Fk(τ)

and hence

−yk +

τ∫

0

θ(k)(s)dX(s) = EQ

[
− yk +

T∫

0

θ(k)(s)dX(s) | F (m)
τ

]

= EQ[−ξ(τ)Fk(τ) | F (m)
τ ] = −ξ(τ)Fk(τ) .

From this we get, again by (12.2.8)–(12.2.9),

−yk +

τ∫

0

θ(k)(s)dX(s) = −Fk(τ) a.s.
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and
yk = EQ[ξ(τ)Fk(τ)] .

This shows that any price of the form EQ[ξ(τ)Fk(τ)] for some stopping time
τ ≤ T would be acceptable for the buyer of an American option on the claim
Fk(t, ω). Hence

pA(F ) ≥ pA(Fk) ≥ sup
τ≤T

EQ[ξ(τ)Fk(τ)] .

Letting k →∞ we obtain by monotone convergence

pA(F ) ≥ sup
τ≤T

EQ[ξ(τ)F (τ)] .

It remains to show that if we put

z = sup
0≤τ≤T

EQ[ξ(τ)F (τ)] (12.3.47)

then there exists an admissible portfolio θ(s, ω) which superreplicates F (t, ω),
in the sense that

z +

t∫

0

θ(s, ω)dX(s) ≥ F (t, ω) for a.a. (t, ω) ∈ [0, T ]×Ω . (12.3.48)

The details of the proof of this can be found in Karatzas (1997), Theo-
rem 1.4.3. Here we only sketch the proof:

Define the Snell envelope

S(t) = sup
t≤τ≤T

EQ[ξ(τ)F (τ)|F (m)
t ] ; 0 ≤ t ≤ T .

Then S(t) is a supermartingale w.r.t. Q and {F (m)
t }, so by the Doob-Meyer

decomposition we can write

S(t) = M(t)−A(t) ; 0 ≤ t ≤ T

where M(t) is a Q, {F (m)
t }-martingale with M(0) = S(0) = z and A(t) is a

nondecreasing process with A(0) = 0. It is a consequence of Lemma 12.2.1
that we can represent the martingale M as an Itô integral w.r.t B̃. Hence

z +

t∫

0

φ(s, ω)dB̃(s) = M(t) = S(t)+A(t) ≥ S(t) ; 0 ≤ t ≤ T (12.3.49)

for some F (m)
t -adapted process φ(s, ω). Since the market is complete, we

know by Theorem 12.2.5 that σ(t, ω) has a left inverse Λ(t, ω). So if we define
θ̂ = (θ1, . . . , θn) by
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θ̂(t, ω) = X0(t)φ(t, ω)Λ(t, ω)

then by (12.3.49) and Lemma 12.2.4 we get

z +

t∫

0

θ̂ dX = z +

t∫

0

n∑

i=1

ξθiσidB̃ = z +

t∫

0

φ dB̃ ≥ S(t) ; 0 ≤ t ≤ T .

Hence, by Lemma 12.2.3,

z +

t∫

0

θ(s, ω)dX(s) ≥ X0(t)S(t) ≥ X0(t)ξ(t)F (t) = F (t) ; 0 ≤ t ≤ T .

tu

The Itô Diffusion Case: Connection to Optimal Stopping

Theorem 12.3.8 shows that pricing an American option is an optimal stopping
problem. In the general case the solution to this problem can be expressed
in terms of the Snell envelope. See e.g. El Karoui (1981) and Fakeev (1970).
In the Itô diffusion case we get an optimal stopping problem of the type
discussed in Chapter 10. We now consider this case in more detail:

Assume the market is an (n + 1)-dimensional Itô diffusion X(t) =
(X0(t), X1(t), . . . , Xn(t)); t ≥ 0 of the form (see (12.1.1)–(12.1.2))

dX0(t) = ρ(t,X(t))X0(t)dt ; X0(0) = 1 (12.3.50)

and

dXi(t) = µi(t,X(t))dt +
m∑

j=1

σij(t,X(t))dBj(t) (12.3.51)

= µi(t,X(t))dt + σi(t,X(t))dB(t) ; Xi(0) = xi ,

where ρ, µi and σij are given functions satisfying the conditions of Theo-
rem 5.2.1.

Further, assume that the conditions corresponding to (12.2.12)–(12.2.13)
are satisfied, i.e. there exists u(t, x) ∈ Rm×1 such that, for all t, x =
(x0, x1, . . . , xn),

σi(t, x)u(t, x) = µi(t, x)− ρ(t, x)xi for i = 1, . . . , n . (12.3.52)

and

Ex
[
exp

(
1
2

T∫

0

u2(t,X(t))dt

)]
< ∞ for all x (12.3.53)

where as usual Ex denotes the expectation w.r.t. the law of Xt when starting
at x = (1, x1, . . . , xn). For 0 ≤ t ≤ T put
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M(t) = M(t, ω) = exp
(
−

t∫

0

u(s,X(s))dB(s)− 1
2

t∫

0

u2(s,X(s))ds

)
(12.3.54)

and define, as in (12.2.2), the probability measure Q on F (m)
T by

dQ(ω) = M(T, ω)dP (ω) . (12.3.55)

Now assume that F (t, ω) is an American contingent T -claim of Markovian
type, i.e.

F (t, ω) = g(t,X(t, ω)) (12.3.56)

for some continuous, lower bounded function g:R × Rn+1 → R. Then if
the market {X(t)}t∈[0,T ] is complete, the price pA(F ) of this claim is by
Theorem 12.3.8 given by

pA(F ) = sup
τ≤T

EQ[ξ(τ)g(τ, X(τ))] = sup
τ≤T

E[M(T )ξ(τ)g(τ, X(τ))]

= sup
τ≤T

E[E[M(T )ξ(τ)g(τ,X(τ))|Fτ ]]

= sup
τ≤T

E[ξ(τ)g(τ,X(τ))E[M(T )|Fτ ]]

= sup
τ≤T

E[M(τ)ξ(τ)g(τ, X(τ))] (12.3.57)

where we have used that M(t) is a P -martingale and Doob’s optional sam-
pling theorem (see Gihman and Skorohod (1975, Theorem 6, p. 11)). Define

K(t) = M(t)ξ(t) = exp
(
−

t∫

0

u(s,X(s)dB(s)

−
t∫

0

[
1
2u2(s,X(s)) + ρ(s, X(s))

]
ds

)
. (12.3.58)

Then
dK(t) = −ρ(t,X(t))K(t)dt− u(t,X(t))K(t)dB(t) .

Hence if we define the (n + 3) – dimensional Itô diffusion Y (t) by

dY (t)=




dt
dK(t)
dX(t)


=




dt
dK(t)
dX0(t)
dX1(t)

...
dXn(t)




=




1
−ρK
ρX0

µ1

...
µn




dt +




0
−uK

0
σ1

...
σn




dB(t) ; Y (0) = y

(12.3.59)
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we see that
pA(F ) = sup

τ≤T
E[G(Y (τ))] , (12.3.60)

where

G(y) = G(s, k, x) = kg(s, x) ; y = (s, k, x) ∈ R×R×Rn+1 .

We have proved:

Theorem 12.3.9. The price pA(F ) of an American contingent T -claim F of
the Markovian form (12.3.56) is the solution of the optimal stopping problem
(12.3.60), with Itô diffusion Y (t) given by (12.3.59).

We recognize (12.3.60) as a special case of the optimal stopping problem
considered in Theorem 10.4.1. We can therefore use the method there to
evaluate pA(F ) in special cases.

Example 12.3.10. Consider the Black and Scholes market

dX0(t) = ρX0(t)dt ; X0(0) = 1
dX1(t) = αX1(t)dt + βX1(t)dB(t) ; X1(0) = x1 > 0 .

where ρ, α, β are constants, β 6= 0. Then equation (12.3.52) becomes

βx1u(x1) = αx1 − ρx1

i.e.
u(x1) = u =

α− ρ

β
for all x1 .

Hence

K(t) = exp
(
− α− ρ

β
B(t)−

{
1
2

(
α− ρ

β

)2

+ ρ

}
t

)
.

Suppose the American claim is given by

F (t, ω) = g(t,X1(t))

for some continuous lower bounded function g(t, x1). Then the price of the
American option is

pA(F ) = sup
τ≤T

E[K(τ)g(τ, X1(τ))] .

If we regard this price pA(F ) as a function Φ(s, k, x) of the starting point y =
(s, k, x) of the process dY (t) = (dt, dK(t), dX(t)), then to find Φ it suffices
to find a function φ(s, k, x) which satisfies the conditions of Theorem 10.4.1.
In this case f = 0 and
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Lφ(s, k, x) =
∂φ

∂s
− ρk

∂φ

∂k
+ ρx0

∂φ

∂x0
+ αx1

∂φ

∂x1

+ 1
2

(
α− ρ

β

)2

k2 ∂2φ

∂k2
− (α− ρ)kx1

∂2φ

∂k∂x1
+ 1

2β2x2
1

∂2φ

∂x2
1

.

If T < ∞ then we cannot factor out the dependence on time s as we often
did in Chapter 10. Therefore the problem of finding φ is much harder in this
case. To illustrate the difficulty let us simplify even further by assuming that

α = ρ (so that P = Q)

and that

g(t, x1) = (a− x1)+ where a > 0 is a constant .

Then the problem becomes to find the American put option price

pA(F ) = sup
τ≤T

E[e−ρτ (a−X1(τ))+] , (12.3.61)

which is related to the finite horizon version of Example 10.2.2 (and Exam-
ple 10.4.2). A description of the American put option is as follows: The owner
of this option has the right (but not the obligation) to sell one stock at a
specified price a at any time τ he chooses before or at the terminal time T . If
he sells at a time τ ≤ T when the market price is X1(τ) < a, he increases his
fortune with the difference a−X1(τ). Thus (12.3.61) represents the maximal
expected discounted payoff to the owner of the option.

In this case we can disregard the variables k and x0, so we search for a
function φ(s, x1) ∈ C1(R2) satisfying the variational inequalities (see Theo-
rem 10.4.1)

φ(s, x1) ≥ e−ρs(a− x1)+ for all s, x1 (12.3.62)

∂φ

∂s
+ ρx1

∂φ

∂x1
+ 1

2β2x2
1

∂2φ

∂x2
1

≤ 0 outside D (12.3.63)

and
∂φ

∂s
+ ρx1

∂φ

∂x1
+ 1

2β2x2
1

∂2φ

∂x2
1

= 0 on D , (12.3.64)

where
D = {(s, x1); φ(s, x1) > e−ρs(a− x1)+} (12.3.65)

is the continuation region.
If such a φ is found, and the additional assumptions of Theorem 10.4.1

hold, then we can conclude that

φ(s, x1) = Φ(s, x1)

and hence pA(F ) = φ(0, x1) is the option price at time t = 0. Moreover,
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τ∗ = τD = inf{t > 0; (s + t,X1(t)) 6∈ D}

is the corresponding optimal stopping time, i.e. the optimal time to exercise
the American option. Unfortunately, even in this case it seems that an explicit
analytic solution is very hard (possibly impossible) to find. However, there
are interesting partial results and good approximation procedures. See e.g.
Barles et al. (1995), Bather (1997), Jacka (1991), Karatzas (1997), Musiela
and Rutkowski (1997) and the references therein. For example, it is known
(see Jacka (1991)) that the continuation region D has the form

D = {(t, x1) ∈ (0, T )×R , x1 > f(t)} ,

i.e. D is the region above the graph of f , for some continuous, increasing
function f : (0, T ) → R. Thus the problem is to find the function f . In Barles
et al. (1995) it is shown that

f(t) ∼ a− βa
√

(T − t)| ln(T − t)| as t → T− ,

in the sense that

f(t)− a

−βa
√

(T − t)| ln(T − t)| → 1 as t → T− .

This indicates that the continuation region has the shape shown in the figure.
But its exact form is still unknown.

For the corresponding American call option the situation is much simpler.
See Exercise 12.14.
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Exercises

12.1. a) Prove that the price process {X(t)}t∈[0,T ] has an arbitrage iff the
normalized price process {X(t)}t∈[0,T ] has an arbitrage.

b) Suppose {X(t)}t∈[0,T ] is normalized. Prove that {X(t)}t∈[0,T ] has
an arbitrage iff there exists an admissible portfolio θ such that

V θ(0) ≤ V θ(T ) a.s. and P [V θ(T ) > V θ(0)] > 0 . (12.3.66)

In other words, in normalized markets it is not essential that we
require V θ(0) = 0 for an arbitrage θ, only that the gains V θ(T )−
V θ(0) is nonnegative a.s. and positive with positive probability.
(Hint: If θ is as in (12.3.66) define θ̃(t) = (θ̃0(t), . . . , θ̃n(t)) as fol-
lows:
Let θ̃i(t) = θ(t) for i = 1, . . . , n; t ∈ [0, T ]. Then choose θ̃0(0) such
that V θ̃(0) = 0 and define θ̃0(t) according to (12.1.15) to make θ̃
self-financing. Then

V θ̃(t)= θ̃(t) ·X(t)=

t∫

0

θ̃(s)dX(s)=

t∫

0

θ(s)dX(s)=V θ(t)− V θ(0) .)

12.2. Let θ(t) = (θ0, . . . , θn) be a constant portfolio.
Prove that θ is self-financing.

12.3. Suppose {X(t)} is a complete normalized market and that (12.2.12)
and (12.2.13) hold. Suppose n = m and that σ is invertible with a
bounded inverse. Then any lower bounded claim F such that

EQ[F 2] < ∞

is attainable.
(Hint: Use the argument in the proof of Theorem 12.2.5: Choose
bounded T -claims Fk such that

Fk → F in L2(Q) and E[Fk] = E[F ] .

By completeness there exist admissible portfolios θ(k) = (θ(k)
0 , . . . , θ

(k)
n )

and constants Vk(0) such that

Fk(ω) = Vk(0) +

T∫

0

θ(k)(s)dX(s) = Vk(0) +

T∫

0

θ̂(k)(s)σ(s)dB̃(s)

where θ̂(k) = (θ(k)
1 , . . . , θ

(k)
n ). It follows that Vk(0) = EQ[Fk] → EQ[F ]

as k →∞.
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By the Itô isometry the sequence {θ̂(k)σ}k is a Cauchy sequence in
L2(λ × Q) and hence converges in this space. Conclude that there
exists an admissible θ such that

F (ω) = EQ[F ] +

T∫

0

θ(s)dX(s) .)

12.4. Let B(t) be 1-dimensional Brownian motion. Show that there exist
θ1(t, ω), θ2(t, ω) ∈ W such that if we define

V1(t) = 1+

t∫

0

θ1(s, ω)dB(s), V2(t) = 2+

t∫

0

θ2(s, ω)dB(s) ; t ∈ [0, 1]

then
V1(1) = V2(1) = 0

and
V1(t) ≥ 0 , V2(t) ≥ 0

for a.a. (t, ω).
Therefore both θ1(t, ω) and θ2(t, ω) are admissible portfolios for the
claim F (ω) = 0 in the normalized market with n = 1 and X1(t) = B(t).
In particular, if we drop the martingale condition in Definition 12.2.4b)
we have no uniqueness of replicating portfolios, even if we require the
portfolio to be admissible. (Note, however, that we have uniqueness if
we require that θ ∈ V(0, 1), by Theorem 4.3.3).
(Hint: Use Example 12.1.4 with a = −1 and with a = −2. Then define,
for i = 1, 2,

θi(t) =

{
1√
1−t

for 0 ≤ t < α−i

0 for α−i ≤ t ≤ 1

and

Vi(t) = i +

t∫

0

θi(s)dB(s) = i + Y (t ∧ α−i) ; 0 ≤ t ≤ 1 .)

12.5. Prove the first part of Lemma 12.2.2, i.e. that B̃(t) given by (12.2.3)
is an F (m)

t -martingale (see the Remark b) following this lemma).

12.6. Determine if the following normalized markets {X(t)}t∈[0,T ] allow an
arbitrage. If so, find one.
a) (n = m = 2)

dX1(t) = 3dt + dB1(t) + dB2(t),
dX2(t) = −dt + dB1(t)− dB2(t).
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b) (n = 2, m = 3)
dX1(t) = dt + dB1(t) + dB2(t)− dB3(t)
dX2(t) = 5dt− dB1(t) + dB2(t) + dB3(t)

c) (n = 2, m = 3)
dX1(t) = dt + dB1(t) + dB2(t)− dB3(t)
dX2(t) = 5dt− dB1(t)− dB2(t) + dB3(t)

d) (n = 2, m = 3)
dX1(t) = dt + dB1(t) + dB2(t)− dB3(t)
dX2(t) = −3dt− 3dB1(t)− 3dB2(t) + 3dB3(t)

e) (n = 3, m = 2)
dX1(t) = dt + dB1(t) + dB2(t)
dX2(t) = 2dt + dB1(t)− dB2(t)
dX3(t) = 3dt− dB1(t) + dB2(t)

f) (n = 3, m = 2)
dX1(t) = dt + dB1(t) + dB2(t)
dX2(t) = 2dt + dB1(t)− dB2(t)
dX3(t) = −2dt− dB1(t) + dB2(t)

12.7. Determine which of the nonarbitrage markets {X(t)}t∈[0,T ] of Exer-
cise 12.6 a)–f) are complete. For those which are not complete, find a
T -claim which is not attainable.

12.8. Let Bt be 1-dimensional Brownian motion. Use Theorem 12.3.3 to find
z ∈ R and φ(t, ω) ∈ V(0, T ) such that

F (ω) = z +

T∫

0

φ(t, ω)dB(t)

in the following cases:
(i) F (ω) = B2(T, ω)
(ii) F (ω) = B3(T, ω)
(iii) F (ω) = exp B(T, ω).

(Compare with the methods you used in Exercise 4.14.)

12.9. Let Bt be n-dimensional Brownian motion. Use Theorem 12.3.3 to find
z ∈ R and φ(t, ω) ∈ Vn(0, T ) such that

F (ω) = z +

T∫

0

φ(t, ω)dB(t)

in the following cases
(i) F (ω) = B2(T, ω) (= B2

1(T, ω) + · · ·+ B2
n(T, ω))

(ii) F (ω) = exp(B1(T, ω) + · · ·+ Bn(T, ω)).
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12.10. Let X(t) be a geometric Brownian motion given by

dX(t) = αX(t)dt + βX(t)dB(t) ,

where α and β are constants. Use Theorem 12.3.3 to find z ∈ R and
φ(t, ω) ∈ V(0, T ) such that

X(T, ω) = z +

T∫

0

φ(t, ω)dB(t) .

12.11. Suppose the market is given by

dX0(t) = ρX0(t)dt ; X0(0) = 1
dX1(t) = (m−X1(t))dt + σdB(t) ; X1(0) = x1 > 0 .

(the mean-reverting Ornstein-Uhlenbeck process) where ρ > 0, m > 0
and σ 6= 0 are constants.
a) Find the price EQ[ξ(T )F ] of the European T -claim

F (ω) = X1(T, ω) .

b) Find the replicating portfolio θ(t) = (θ0(t), θ1(t)) for this claim.
(Hint: Use Theorem 12.3.4, as in Example 12.3.5.)

12.12. Consider a market (X0(t), X1(t)) ∈ R2 where

dX0(t) = ρX0(t)dt ; X0(0) = 1 ρ > 0 constant) .

Find the price EQ[ξ(T )F ] of the European T -claim

F (ω) = B(T, ω)

and find the corresponding replicating portfolio θ(t) = (θ0(t), θ1(t)) in
the following cases
a) dX1(t) = αX1(t)dt + βX1(t)dB(t); α, β constants, β 6= 0
b) dX1(t) = c dB(t) ; c 6= 0 constant
c) dX1(t) = αX1(t)dt + σ dB(t) ; α, σ constants, σ 6= 0.

12.13. (The classical Black & Scholes formula).
Suppose X(t) = (X0(t), X1(t)) is given by

dX0(t) = ρX0(t)dt ; X0(0) = 1
dX1(t) = αX1(t)dt + βX1(t)dB(t) ; X1(0) = x1 > 0

where ρ, α, β are constants, β 6= 0. Moreover, suppose that the Euro-
pean T -claim is the European call, defined by
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F (ω) = (X1(T, ω)−K)+ =
{
X1(T, ω)−K if X1(T, ω) > K
0 if X1(T, ω) ≤ K

where K > 0 is a given constant (the exercise price). Prove that in
this case the option pricing formula (12.3.38) of Theorem 12.3.6 can
be written

p = x1Φ(u)− e−ρT KΦ(u− β
√

T ) (12.3.67)

where

Φ(u) =
1√
2π

u∫

−∞
e
− x2

2 dx (12.3.68)

is the distribution function of the standard normal density and

u =
ln(x1

K ) + (ρ + 1
2β2)T

β
√

T
. (12.3.69)

This is the celebrated Black & Scholes formula (Black and Scholes
(1973)), which is of fundamental importance in today’s finance.

12.14. (The American call)
Let X(t) = (X0(t), X1(t)) be as in Exercise 12.13. If the American
T -claim is given by

F (t, ω) = (X1(t, ω)−K)+ , 0 ≤ t ≤ T ,

then the corresponding option is called the American call.
According to Theorem 12.3.8 the price of an American call is given by

pA(F ) = sup
τ≤T

EQ[e−ρτ (X1(τ)−K)+] .

Prove that
pA(F ) = e−ρT EQ[(X1(T )−K)+] ,

i.e. that it is always optimal to exercise the American call at the ter-
minal time T , if at all. Hence the price of an American call option
coincides with that of a European call option.
(Hint: Define

Y (t) = e−ρt(X1(t)−K) .

a) Prove that Y (t) is a Q-submartingale (Appendix C), i.e.

Y (t) ≤ EQ[Y (s)|Ft] for s > t .

b) Then use the Jensen inequality (Appendix B) to prove that

Z(t):= e−ρt(X1(t)−K)+

is also a Q-submartingale.
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c) Complete the proof by using Doob’s optional sampling theorem (see
the proof of Lemma 10.1.3 e)).

12.15. (The perpetual American put)
Solve the optimal stopping problem

Φ(s, x) = sup
τ≥0

Ex[e−ρ(s+τ)(a−X(τ))+]

where

dX(t) = αX(t)dt + βX(t)dB(t) ; X(0) = x > 0 .

Here ρ > 0, a > 0, α and β 6= 0 are constants.
If α = ρ then Φ(s, x) gives the price of the American put option with
infinite horizon (T = ∞). (Hint: Proceed as in Example 10.4.2.)
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Appendix A: Normal Random Variables

Here we recall some basic facts which are used in the text.

Definition A.11. Let (Ω,F , P ) be a probability space. A random variable
X: Ω → R is normal if the distribution of X has a density of the form

pX(x) =
1

σ
√

2π
· exp

(
− (x−m)2

2σ2

)
, (A.1)

where σ > 0 and m are constants. In other words,

P [X ∈ G] =
∫

G

pX(x)dx , for all Borel sets G ⊂ R .

If this is the case, then

E[X] =
∫

Ω

XdP =
∫

R

xpX(x)dx = m (A.2)

and
var[X] = E[(X −m)2] =

∫

R

(x−m)2pX(x)dx = σ2 . (A.3)

More generally, a random variable X:Ω → Rn is called (multi-) normal
N (m,C) if the distribution of X has a density of the form

pX(x1, · · · , xn) =

√
|A|

(2π)n/2
· exp

(
− 1

2 ·
∑

j,k

(xj −mj)ajk(xk −mk)
)

(A.4)

where m = (m1, · · · ,mn) ∈ Rn and C−1 = A = [ajk] ∈ Rn×n is a symmetric
positive definite matrix.

If this is the case then
E[X] = m (A.5)

and

A−1 = C = [cjk] is the covariance matrix of X, i.e.
cjk = E[(Xj −mj)(Xk −mk)] . (A.6)
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Definition A.12. The characteristic function of a random variable
X: Ω → Rn is the function φX :Rn → C (where C denotes the complex
numbers) defined by

φX(u1, · · · , un)=E[exp(i(u1X1+· · ·+unXn))]=
∫

Rn

ei〈u,x〉 ·P [X∈dx] , (A.7)

where 〈u, x〉 = u1x1 + · · ·+ unxn (and i ∈ C is the imaginary unit). In other
words, φX is the Fourier transform of X (or, more precisely, of the measure
P [X ∈ dx]). Therefore we have

Theorem A.13. The characteristic function of X determines the distribu-
tion of X uniquely.

It is not hard to verify the following:

Theorem A.14. If X: Ω → Rn is normal N (m,C), then

φX(u1, · · · , un) = exp
(
− 1

2

∑

j,k

ujcjkuk + i
∑

j

ujmj

)
. (A.8)

Theorem A.4 is often used as a basis for an extended concept of a normal
random variable: We define X: Ω → Rn to be normal (in the extended sense)
if φX satisfies (A.8) for some symmetric non-negative definite matrix C =
[cjk] ∈ Rn×n and some m ∈ Rn. So by this definition it is not required that C
be invertible. From now on we will use this extended definition of normality.
In the text we often use the following result:

Theorem A.15. Let Xj : Ω → R be random variables; 1 ≤ j ≤ n. Then

X = (X1, · · · , Xn) is normal

if and only if

Y = λ1X1 + · · ·+ λnXn is normal for all λ1, . . . , λn ∈ R .

Proof. If X is normal, then

E[exp(iu(λ1X1 + · · ·+ λnXn))] = exp
(
− 1

2

∑

j,k

uλjcjkuλk + i
∑

j

uλjmj

)

= exp
(
− 1

2u2
∑

j,k

λjcjkλk + iu
∑

j

λjmj

)
,

so Y is normal with E[Y ] =
∑

λjmj , var[Y ] =
∑

λjcjkλk.

Conversely, if Y = λ1X1 + · · · + λnXn is normal with E[Y ] = m and
var[Y ] = σ2, then
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E[exp(iu(λ1X1 + · · ·+ λnXn))] = exp(− 1
2u2σ2 + ium) ,

where

m =
∑

j

λjE[Xj ], σ2 = E

[( ∑

j

λjXj −
∑

j

λjE[Xj ]
)2]

= E

[(∑

j

λj(Xj −mj)
)2]

=
∑

j,k

λjλkE[(Xj −mj)(Xk −mk)] ,

where mj = E[Xj ]. Hence X is normal.

Theorem A.16. Let Y0, Y1, . . . , Yn be real, random variables on Ω. Assume
that X = (Y0, Y1, . . . , Yn) is normal and that Y0 and Yj are uncorrelated for
each j ≥ 1, i.e

E[(Y0 − E[Y0])(Yj − E[Yj ])] = 0 ; 1 ≤ j ≤ n .

Then Y0 is independent of {Y1, · · · , Yn}.
Proof. We have to prove that

P [Y0 ∈ G0, Y1 ∈ G1, . . . , Yn ∈ Gn] = P [Y0 ∈ G0] · P [Y1 ∈ G1, . . . , Yn ∈ Gn] ,
(A.9)

for all Borel sets G0, G1, . . . , Gn ⊂ R.
We know that in the first line (and the first column) of the covariance

matrix cjk = E[(Yj −E[Yj ])(Yk −E[Yk])] only the first entry c00 = var[Y0],
is non-zero. Therefore the characteristic function of X satisfies

φX(u0, u1, . . . , un) = φY0(uo) · φ(Y1,...,Yn)(u1, . . . , un)

and this is equivalent to (A.9).

Finally we establish the following:

Theorem A.17. Suppose Xk: Ω → Rn is normal for all k and that Xk → X
in L2(Ω), i.e.

E[|Xk −X|2] → 0 as k →∞ .

Then X is normal.

Proof. Since |ei〈u,x〉 − ei〈u,y〉| < |u| · |x− y|, we have

E[{exp(i〈u,Xk〉)− exp(i〈u,X〉)}2] ≤ |u|2 · E[|Xk −X|2] → 0 as k →∞ .

Therefore

E[exp(i〈u,Xk〉)] → E[exp(i〈u, X〉)] as k →∞ .

So X is normal, with mean E[X] = lim E[Xk] and covariance matrix
C = lim Ck, where Ck is the covariance matrix of Xk.
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Appendix B: Conditional Expectation

Let (Ω,F , P ) be a probability space and let X: Ω → Rn be a random vari-
able such that E[|X|] < ∞. If H ⊂ F is a σ-algebra, then the conditional
expectation of X given H, denoted by E[X|H], is defined as follows:

Definition B.1. E[X|H] is the (a.s. unique) function from Ω to Rn satis-
fying:

(1) E[X|H] is H-measurable
(2)

∫
H

E[X|H]dP =
∫
H

XdP , for all H ∈ H.

The existence and uniqueness of E[X|H] comes from the Radon-Nikodym
theorem: Let µ be the measure on H defined by

µ(H) =
∫

H

XdP ; H ∈ H .

Then µ is absolutely continuous w.r.t. P |H, so there exists a P |H-unique
H-measurable function F on Ω such that

µ(H) =
∫

H

FdP for all H ∈ H .

Thus E[X|H]: = F does the job and this function is unique a.s. w.r.t. the
measure P |H.

Note that (2) is equivalent to

(2)’
∫

Ω

Z · E[X|H]dP =
∫

Ω

Z ·XdP for all H-measurable Z .

We list some of the basic properties of the conditional expectation:

Theorem B.2. Suppose Y : Ω → Rn is another random variable with
E[|Y |] < ∞ and let a, b ∈ R. Then

a) E[aX + bY |H] = aE[X|H] + bE[Y |H]
b) E[E[X|H]] = E[X]
c) E[X|H] = X if X is H-measurable
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d) E[X|H] = E[X] if X is independent of H
e) E[Y ·X|H] = Y ·E[X|H] if Y is H-measurable, where · denotes the usual

inner product in Rn.

Proof. d): If X is independent of H we have for H ∈ H
∫

H

XdP =
∫

Ω

X · XHdP =
∫

Ω

XdP ·
∫

Ω

XHdP = E[X] · P (H) ,

so the constant E[X] satisfies (1) and (2).
e): We first establish the result in the case when Y = XH (where X denotes

the indicator function), for some H ∈ H.
Then for all G ∈ H

∫

G

Y · E[X|H]dP =
∫

G∩H

E[X|H]dP =
∫

G∩H

XdP =
∫

G

Y XdP ,

so Y · E[X|H] satisfies both (1) and (2). Similarly we obtain that the
result is true if Y is a simple function

Y =
m∑

j=1

cjXHj
, where Hj ∈ H .

The result in the general case then follows by approximating Y by such
simple functions. tu

Theorem B.3. Let G,H be σ-algebras such that G ⊂ H. Then

E[X|G] = E[E[X|H]|G] .

Proof. If G ∈ G then G ∈ H and therefore
∫

G

E[X|H]dP =
∫

G

XdP .

Hence E[E[X|H]|G] = E[X|G] by uniqueness. tu
The following useful result can be found in Chung (1974), Theorem 9.1.4:

Theorem B.4 (The Jensen inequality).
If φ:R → R is convex and E[|φ(X)|] < ∞ then

φ(E[X|H]) ≤ E[φ(X)|H] .

Corollary B.5. (i) |E[X|H]| ≤ E[|X| | H]
(ii) |E[X|H]|2 ≤ E[|X|2 | H] .

Corollary B.6. If Xn → X in L2 then E[Xn | H] → E[X | H] in L2.



Appendix C: Uniform Integrability and
Martingale Convergence

We give a brief summary of the definitions and results which are the back-
ground for the applications in this book. For proofs and more information we
refer to Doob (1984), Liptser and Shiryaev (1977), Meyer (1966) or Williams
(1979).

Definition C.1. Let (Ω,F , P ) be a probability space. A family {fj}j∈J of
real, measurable functions fj on Ω is called uniformly integrable if

lim
M→∞

(
sup
j∈J

{ ∫

{|fj |>M}

|fj |dP

})
= 0 .

One of the most useful tests for uniform integrability is obtained by using
the following concept:

Definition C.2. A function ψ: [0,∞) → [0,∞) is called a u.i. (uniform in-
tegrability) test function if ψ is increasing, convex (i.e. ψ(λx + (1 − λ)y) ≤
λψ(x) + (1− λ)ψ(y) for all x, y ∈ [0,∞), λ ∈ [0, 1]) and

lim
x→∞

ψ(x)
x

= ∞ .

So for example ψ(x) = xp is a u.i. test function if p > 1, but not if p = 1.

The justification for the name in Definition C.2 is the following:

Theorem C.3. The family {fj}j∈J is uniformly integrable if and only if
there is a u.i. test function ψ such that

sup
j∈J

{ ∫
ψ(|fj |)dP

}
< ∞ .

One major reason for the usefulness of uniform integrability is the fol-
lowing result, which may be regarded as the ultimate generalization of the
various convergence theorems in integration theory:

Theorem C.4. Suppose {fk}∞k=1 is a sequence of real measurable functions
on Ω such that
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lim
k→∞

fk(ω) = f(ω) for a.a. ω .

Then the following are equivalent:
1) {fk} is uniformly integrable
2) f ∈ L1(P ) and fk → f in L1(P ), i.e.

∫ |fk − f |dP → 0 as k →∞.

An important application of uniform integrability is within the conver-
gence theorems for martingales:

Let (Ω,N , P ) be a probability space and let {Nt}t≥0 be an increasing
family of σ-algebras, Nt ⊂ N for all t. A stochastic process Nt: Ω → R is
called a supermartingale (w.r.t. {Nt}) if Nt is Nt-adapted, E[|Nt|] < ∞ for
all t and

Nt ≥ E[Ns|Nt] for all s > t . (C.1)

Similarly, if (C.1) holds with the inequality reversed for all s > t, then Nt is
called a submartingale. And if (C.1) holds with equality then Nt is called a
martingale.

As in customary we will assume that each Nt contains all the null sets
of N , that t → Nt(ω) is right continuous for a.a.ω and that {Nt} is right
continuous, in the sense that Nt =

⋂
s>t

Ns for all t ≥ 0.

Theorem C.5 (Doob’s martingale convergence theorem I).
Let Nt be a right continuous supermartingale with the property that

sup
t>0

E[N−
t ] < ∞ ,

where N−
t = max(−Nt, 0). Then the pointwise limit

N(ω) = lim
t→∞

Nt(ω)

exists for a.a. ω and E[N−] < ∞.

Note, however, that the convergence need not be in L1(P ). In order to
obtain this we need uniform integrability:

Theorem C.6 (Doob’s martingale convergence theorem II).
Let Nt be a right-continuous supermartingale. Then the following are equiv-
alent:

1) {Nt}t≥0 is uniformly integrable
2) There exists N ∈ L1(P ) such that Nt → N a.e. (P ) and Nt → N in

L1(P ), i.e.
∫ |Nt −N |dP → 0 as t →∞ .

Combining Theorems C.6 and C.3 (with ψ(x) = xp) we get
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Corollary C.7. Let Mt be a continuous martingale such that

sup
t>0

E[|Mt|p] < ∞ for some p > 1 .

Then there exists M ∈ L1(P ) such that Mt → M a.e. (P ) and
∫
|Mt −M |dP → 0 as t →∞ .

Finally, we mention that similar results can be obtained for the analogous
discrete time super/sub-martingales {Nk,Nk}, k = 1, 2, . . .. Of course, no
continuity assumptions are needed in this case. For example, we have the
following result, which is used in Chapter 9:

Corollary C.8. Let Mk; k = 1, 2, . . . be a discrete time martingale and as-
sume that

sup
k

E[|Mk|p] < ∞ for some p > 1 .

Then there exists M ∈ L1(P ) such that Mk → M a.e. (P ) and
∫
|Mk −M |dP → 0 as k →∞ .

Corollary C.9. Let X ∈ L1(P ), let {Nk}∞k=1 be an increasing family of σ-
algebras, Nk ⊂ F and define N∞ to be the σ-algebra generated by {Nk}∞k=1.
Then

E[X|Nk] → E[X|N∞] as k →∞ ,

a.e. P and in L1(P ).

Proof. Mk: = E[X|Nk] is a u.i. martingale, so there exists M ∈ L1(P ) such
that Mk → M a.e. P and in L1(P ), as k → ∞. It remains to prove that
M = E[X|N∞]: Note that

‖Mk − E[M |Nk]‖L1(P ) = ‖E[Mk|Nk]− E[M |Nk]‖L1(P )

≤ ‖Mk −M‖L1(P ) → 0 as k →∞ .

Hence if F ∈ Nk0 and k ≥ k0 we have
∫

F

(X−M)dP =
∫

F

E[X−M |Nk]dP =
∫

F

(Mk−E[M |Nk])dP → 0 as k →∞ .

Therefore ∫

F

(X −M)dP = 0 for all F ∈
∞⋃

k=1

Nk

and hence
E[X|N∞] = E[M |N∞] = M . tu
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Appendix D: An Approximation Result

In this Appendix we prove an approximation result which was used in The-
orem 10.4.1. We use the notation from that Theorem.

Theorem C.1. Let D ⊂ V ⊂ Rn be open sets such that

∂D is a Lipschitz surface (C.1)

and let φ: V → R be a function with the following properties

φ ∈ C1(V ) ∩ C(V ) (C.2)

φ ∈ C2(V \ ∂D) and the second order derivatives (C.3)
of φ are locally bounded near ∂D ,

Then there exists a sequence {φj}∞j=1 of functions φj ∈ C2(V ) ∩ C(V ) such
that

φj → φ uniformly on compact subsets of V , as j →∞ (C.4)
Lφj → Lφ uniformly on compact subsets of V \ ∂D, as j →∞ (C.5)
{Lφj}∞j=1 is locally bounded on V . (C.6)

Proof. We may assume that φ is extended to a continuous function on the
whole of Rn. Choose a C∞ function η:Rn → [0,∞) with compact support
such that ∫

Rn

η(y)dy = 1 (C.7)

and put

ηε(x) = ε−nη

(
x

ε

)
for ε > 0, x ∈ Rn . (C.8)

Fix a sequence εj ↓ 0 and define

φj(x) = (φ ∗ ηεj )(x) =
∫

Rn

φ(x− z)ηεj (z)dz =
∫

Rn

φ(y)ηεj (x− y)dy , (C.9)
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i.e. φj is the convolution of φ and ηεj . Then it is well-known that φj(x) → φ(x)
uniformly on compact subsets of any set in V where φ is continuous. See e.g.
Folland (1984), Theorem 8.14 (c). Note that since η has compact support
we need not assume that φ is globally bounded, just locally bounded (which
follows from continuity).

We proceed to verify (D.4)–(D.6): Let W ⊂ V be open with a Lipschitz
boundary. Put V1 = W ∩D, V2 = W \D.

Then V1, V2 are Lipschitz domains and integration by parts gives, for i = 1, 2
and x ∈ W \ ∂D

∫

Vi

φ(y)
∂2

∂yk∂y`
ηεj (x− y)dy =

∫

∂Vi

φ(y)
∂

∂y`
ηεj (x− y)nikdν(y)−

∫

Vi

∂φ

∂yk
(y)

∂

∂y`
ηεj (x− y)dy , (C.10)

where nik is component number k of the outer unit normal ni from Vi at
∂Vi. (This outer normal exists a.e. with respect to the surface measure ν on
∂Vi since ∂Vi is a Lipschitz surface.)

Another integration by parts yields
∫

Vi

∂φ

∂yk
(y)

∂

∂y`
ηεj (x− y)dy =

∫

∂Vi

∂φ

∂yk
(y)ηεj (x− y)ni`dν(y)−

∫

Vi

∂2φ

∂yk∂y`
(y)ηεj (x− y)dy . (C.11)

Combining (D.10) and (D.11) we get
∫

Vi

φ(y)
∂2

∂yk∂y`
ηεj (x− y)dy =
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∫

∂Vi

[
φ(y)

∂

∂y`
ηεj (x− y)nik − ∂φ

∂yk
(y)ηεj (x− y)ni`

]
dν(y)

+
∫

Vi

∂2φ

∂yk∂y`
(y)ηεj (x− y)dy ; i = 1, 2 . (C.12)

Adding (D.12) for i = 1, 2 and keeping in mind that the outer unit normal
for Vi is the inner unit normal for V1−i on ∂V1 ∩ ∂V2, we get

∫

W

φ(y)
∂2

∂yk∂y`
ηεj (x− y)dy =

∫

∂W

{
φ(y)

∂

∂y`
ηεj

(x− y)Nk − ∂φ

∂yk
(y)ηεj

(x− y)N`

}
dν(y)

+
∫

W

∂2φ

∂yk∂y`
(y)ηεj

(x− y)dy , (C.13)

where Nk, N` are components number k, ` of the outer unit normal N from
W at ∂W .

If we fix x ∈ W \ ∂D then for j large enough we have ηεj (x− y) = 0 for
all y outside W and for such j we get from (D.13)

∫

Rn

φ(y)
∂2

∂yk∂y`
ηεj (x− y)dy =

∫

Rn

∂2φ

∂yk∂y`
(y)ηεj (x− y)dy . (C.14)

In other words, we have proved that

∂2

∂xk∂x`
φj(x) =

(
∂2φ

∂yk∂y`
∗ ηεj

)
(x) for x ∈ V \ ∂D . (C.15)

Similarly, integration by parts applied to W gives, if j is large enough
∫

W

φ(y)
∂

∂yk
ηεj (x− y)dy = −

∫

W

∂φ

∂yk
(y)ηεj (x− y)dy

from which we conclude that

∂

∂xk
φj(x) =

(
∂φ

∂yk
∗ ηεj

)
(x) for x ∈ V . (C.16)

From (D.15) and (D.16), combined with Theorem 8.14 (c) in Folland (1984),
we get that

∂φj

∂xk
→ ∂φ

∂x
uniformly on compact subsets of V as j →∞ (C.17)
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and

∂2φj

∂xk∂x`
→ ∂2φ

∂xk∂x`
uniformly on compact subsets of V \ ∂D as j →∞ .

(C.18)

Moreover,
{

∂φj

∂xk

}∞
j=1

and
{

∂2φj

∂xk∂x`

}∞
j=1

are locally bounded on V , by (D.15),

(D.16) combined with the assumptions (D.2), (D.3).
We conclude that (D.4)–(D.6) hold. tu
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Exercises

2.13. P 0[Bt ∈ Dρ] = 1− e
− ρ2

2t .

2.14. Ex
[ ∞∫

0

XK(Bt)dt
]
=
∞∫
0

P x[Bt ∈ K]dt=
∞∫
0

(2πt)−n/2
( ∫

K

e
− (x−y)2

2t dy
)
dt=0

for all x∈Rn, if K ⊂Rn has n-dimensional Legesgue measure equal
to 0.

2.15. P [B̃t1 ∈ F1, . . . , B̃tk
∈ Fk] = P [Bt1 ∈ U−1F1, . . . , Btk

∈ U−1Fk]
=

∫
U−1F1×···×U−1Fk

p(t1, 0, x1)p(t2−t1, x1, x2) · · · p(tk−tk−1, xk−1, xk)dx1 · · · dxk

=
∫

F1×···×Fk

p(t1, 0, y1)p(t2−t1, y1, y2) · · · p(tk−tk−1, yk−1, yk)dy1 · · · dyk

= P [Bt1 ∈ F1, . . . , Btk
∈ Fk] ,

by (2.2.1), using the substitutions yj = Uxj and the fact that
|Uxj − Uxj−1|2 = |xj − xj−1|2.

2.17. a) E[(Yn(t, ·)− t)2] = E

[( ∑2n−1
k=0 (∆Bk)2 −∑2n−1

k=0 2−nt

)2]

= E

[{ 2n−1∑

k=0

((∆Bk)2 − 2−nt)
}2]

= E

[ 2n−1∑

j,k=0

((∆Bj)2 − 2−nt)((∆Bk)2−2−nt)
]

=
2n−1∑

k=0

E[((∆Bk)2 − 2−nt)2]

=
2n−1∑

k=0

E[(∆Bk)4 − 2 · 2−2nt2 − 2−2nt2]

=
2n−1∑

k=0

2 · 2−2nt2 = 2 · 2−nt2 → 0 as n →∞ .

b) This follows from the following general result: If the quadratic vari-
ation of a real function over an interval is positive, then the total
variation of the function over that interval is infinite.
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3.1. tBt =
∑n−1

j=0 ∆(sjBj) =
∑n−1

j=0 sj∆Bj +
∑n−1

j=0 Bj+1∆sj

→
t∫
0

sdBs +
t∫
0

Bsds as n →∞ .

3.4. The processes in (iii) and (iv) are martingales, but those in (i) and
(ii) are not.

3.9.
T∫
0

Bt ◦ dBt = 1
2B2

T if B0 = 0 .

3.12. (i) a) dXt = (γ + 1
2α2)Xtdt + αXtdBt .

b) dXt = 1
2 sin Xt[cos Xt − t2]dt + (t2 + cos Xt)dBt .

(ii) a) dXt = (r − 1
2α2)Xtdt + αXt ◦ dBt .

b) dXt = (2e
−Xt −X3

t )dt + X2
t ◦ dBt .

4.1. a) dXt = 2BtdBt + dt .
b) dXt = (1 + 1

2eBt)dt + eBtdBt .
c) dXt = 2dt + 2B1dB1(t) + 2B2dB2(t) .

d) dxt =
[

dt
dBt

]
=

[
1
0

]
dt +

[
0
1

]
dBt .

e) dX1(t) = dB1(t) + dB2(t) + dB3(t)
dX2(t) = dt−B3(t)dB1(t) + 2B2(t)dB2(t)−B1(t)dB3(t)
or

dXt =
[

dX1(t)
dX2(t)

]
=

[
0
1

]
dt +

[
1 1 1

−B3(t) 2B2(t) −B1(t)

]


dB1(t)
dB2(t)
dB3(t)


.

4.5. E[B6
t ] = 15t3 if B0 = 0 .

5.3. Xt = X0 · exp
((

r − 1
2

n∑
k=1

α2
k

)
t +

n∑
k=1

αkBk(t)
)

(if B(0) = 0).

5.4. (i) X1(t) = X1(0) + t + B1(t) ,

X2(t) = X2(0) + X1(0)B2(t) +
t∫
0

sdB2(s) +
t∫
0

B1(s)dB2(s), as-

suming (as usual) that B(0) = 0.

(ii) Xt = etX0 +
t∫
0

et−sdBt .

(iii) Xt = e−tX0 + e−tBt (assuming B0 = 0).

5.6. Yt = exp(αBt − 1
2α2t)[Y0 + r

t∫
0

exp(−αBs + 1
2α2s)ds] (B0 = 0).

5.7. a) Xt = m + (X0 −m)e−t + σ
t∫
0

es−tdBs .

b) E[Xt] = m + (X0 −m)e−t.
Var[Xt] = σ2

2 [1− e−2t] .

5.8. X(t) =
[

X1(t)
X2(t)

]
= exp(tJ)X(0)+exp(tJ)

t∫
0

exp(−sJ)MdB(s), where
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J =
[

0 1
−1 0

]
, M =

[
α 0
0 β

]
, dB(s) =

[
dB1(s)
dB2(s)

]

and

exp(tJ) = I + tJ +
t2

2
J2 + · · ·+ tn

n!
Jn + · · · ∈ R2×2 .

Using that J2 = −I this can be rewritten as

X1(t) = X1(0) cos(t) + X2(0) sin(t) +
t∫
0

α cos(t− s)dB1(s)

+
t∫
0

β sin(t− s)dB2(s) ,

X2(t) = −X1(0) sin(t) + X2(0) cos(t)−
t∫
0

α sin(t− s)dB1(s)

+β
t∫
0

cos(t− s)dB2(s) .

5.11. Hint: To prove that lim
t→1

(1 − t)
t∫
0

dBs

1−s = 0 a.s., put Mt =
t∫
0

dBs

1−s for

0 ≤ t < 1 and apply the martingale inequality to prove that

P [sup{(1− t)|Mt|; t ∈ [1− 2−n, 1− 2−n−1]} > ε] ≤ 2ε−2 · 2−n .

Hence by the Borel-Cantelli lemma we obtain that for a.a. ω there
exists n(ω) < ∞ such that

n ≥ n(ω) ⇒ ω /∈ An ,

where

An = {ω; sup{(1− t)|Mt|; t ∈ [1− 2−n, 1− 2−n−1]} > 2
−n

4 } .

5.16. c) Xt = exp(αBt − 1
2α2t)

[
x2 + 2

t∫
0

exp(−2αBs + α2s)ds
]1/2

.

7.1. a) Af(x) = µxf ′(x) + 1
2σ2f ′′(x); f ∈ C2

0 (R).
b) Af(x) = rxf ′(x) + 1

2α2x2f ′′(x); f ∈ C2
0 (R).

c) Af(y) = rf ′(y) + 1
2α2y2f ′′(y); f ∈ C2

0 (R).

d) Af(t, x) = ∂f
∂t + µx∂f

∂x + 1
2σ2 ∂2f

∂x2 ; f ∈ C2
0 (R2).

e) Af(x1, x2) = ∂f
∂x1

+ x2
∂f
∂x2

+ 1
2e2x1 ∂2f

∂x2
2
; f ∈ C2

0 (R2).

f) Af(x1, x2) = ∂f
∂x1

+ 1
2

∂2f
∂x2

1
+ 1

2x2
1

∂2f
∂x2

2
; f ∈ C2

0 (R2).

g) Af(x1, . . . , xn) =
n∑

k=1

rkxk
∂f
∂xk

+ 1
2

n∑
i,j=1

xixj(
n∑

k=1

αikαjk) ∂2f
∂xi∂xj

;

f ∈ C2
0 (Rn).

7.2. a) dXt = dt +
√

2 dBt .
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b) dX(t) =
[

dX1(t)
dX2(t)

]
=

[
1

cX2(t)

]
dt +

[
0

αX2(t)

]
dBt .

c) dX(t) =
[

dX1(t)
dX2(t)

]
=

[
2X2(t)

ln(1+X2
1 (t)+X2

2 (t))

]
dt+

[
X1(t) 1

1 0

][
dB1(t)
dB2(t)

]
.

(Several other diffusion coefficients are possible.)

7.4. a), b). Let τk = inf{t > 0;Bx
t = 0 or Bx

t = k}; k > x > 0 and put

ρk = P x[Bτk
= k] .

Then by Dynkin’s formula applied to f(y) = y2 for 0 ≤ y ≤ k we get

Ex[τk] = k2pk − x2 . (S1)

On the other hand, Dynkin’s formula applied to f(y) = y for 0 ≤ y ≤ k
gives

kpk = x . (S2)

Combining these two identities we get that

Ex[τ ] = lim
k→∞

Ex[τk] = lim
k→∞

x(k − x)) = ∞ . (S3)

Moreover, from (S2) we get

P x[∃t < ∞ with Bt = 0] = lim
k→∞

P x[Bτk
= 0] = lim

k→∞
(1− pk) = 1 ,

(S4)
so τ < ∞ a.s. P x.

7.18. c) p =
exp(− 2bx

σ2 )−exp(− 2ab
σ2 )

exp(− 2b2

σ2 )−exp(− 2ab
σ2 )

.

8.1. a) g(t, x) = Ex[φ(Bt)] .

b) u(x) = Ex[
∞∫
0

e−αtψ(Bt)dt] .

8.12. dQ(ω) = exp(3B1(T )−B2(T )− 5T )dP (ω) .

9.1. a) dXt =
[

α
0

]
dt +

[
0
β

]
dBt .

b) dXt =
[

a
b

]
dt +

[
1 0
0 1

]
dBt .

c) dXt = αXtdt + βdBt .
d) dXt = αdt + βXtdBt .

e) dXt =
[

dX1(t)
dX2(t)

]
=

[
ln(1+X2

1 (t))
X2(t)

]
dt +

√
2

[
X2(t) 0
X1(t) X1(t)

][
dB1(t)
dB2(t)

]
.

9.3. a) u(t, x) = Ex[φ(BT−t)] .
b) u(t, x) = Ex[ψ(Bt)] .
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9.8. a) Let Xt ∈ R2 be uniform motion to the right, as described in Ex-
ample 9.2.1. Then each one-point set {(x1, x2)} is thin (and hence
semipolar) but not polar.

b) With Xt as in a) let Hk = {(ak, 1)}; k = 1, 2, . . . where {ak}∞k=1

is the set of rational numbers. Then each Hk is thin but
Q(x1,1)[TH = 0] = 1 for all x1 ∈ R .

9.10. Let Yt = Y s,x
t = (s + t,Xx

t ) for t ≥ 0, where Xt = Xx
t satisfies

dXt = αXtdt + βXtdBt ; t ≥ 0, X0 = x > 0 .

Then the generator Â of Yt is given by

Âf(s, x) =
∂f

∂s
+ αx

∂f

∂x
+ 1

2β2x2 ∂2f

∂x2
; f ∈ C2

0 (R2) .

Moreover, with D = {(t, x); x > 0 and t < T} we have

τD: = inf[t > 0;Yt /∈ D} = inf{t > 0; s + t > T} = T − s .

Hence
YτD

= (T,XT−s) .

Therefore, by Theorem 9.3.3 the solution is

f(s, x) = E

[
e−ρT φ(Xx

T−s) +

T−s∫

0

e−ρ(s+t)K(Xx
t )dt

]
.

10.1. a) g∗(x) = ∞, τ∗ does not exist.
b) g∗(x) = ∞, τ∗ does not exist.
c) g∗(x) = 1, τ∗ = inf{t > 0; Bt = 0}.
d) If ρ < 1

2 then g∗(s, x) = ∞ and τ∗ does not exist.
If ρ ≥ 1

2 then g∗(s, x) = g(s, x) = e−ρs cosh x and τ∗ = 0 .

10.3. x0 > 0 is given implicitly by the equation

x0 =
√

2
ρ
· e

2
√

2ρ x0 + 1

e
2
√

2ρ x0 − 1
,

and g∗(s, x) = e−ρsx2
0

cosh(
√

2ρ x)

cosh(
√

2ρ x0)
for −x0 ≤ x ≤ x0, where

cosh ξ = 1
2 (eξ + e−ξ) .

10.9. If 0 < ρ ≤ 1 then γ(x) = 1
ρx2 + 1

ρ2 but τ∗ does not exist. If ρ > 1 then

γ(x) =
{

1
ρx2 + 1

ρ2 + C cosh(
√

2ρ x) for |x| ≤ x∗

x2 for |x| > x∗

where C > 0, x∗ > 0 are the unique solutions of the equations
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C cosh(
√

2ρ x∗) =
(

1− 1
ρ

)
(x∗)2 − 1

ρ2

C
√

2ρ sinh(
√

2ρ x∗) = 2
(

1− 1
ρ

)
x∗ .

10.12. If ρ > r then g∗(s, x) = e−ρs(x0 − 1)+( x
x0

)γ and
τ∗= inf{t > 0; Xt ≥ x0}, where

γ = α−2

[
1
2α2 − r +

√
(
1
2
α2 − r)2 + 2α2ρ

]

and
x0 =

γ

γ − 1
(γ > 1 ⇔ ρ > r) .

10.13. If α ≤ ρ then τ∗ = 0 .
If ρ < α < ρ + λ then

G∗(s, p, q) =
{

e−ρspq ; if 0 < pq < y0

e−ρs(C1(pq)γ1 + λ
ρ+λ−α · pq − K

ρ ) ; if pq ≥ y0

where

γ1 = β−2

[
1
2β2 + λ− α−

√
(
1
2
β2 + λ− α)2 + 2ρβ2

]
< 0 ,

y0 =
(−γ1)K(ρ + λ− α)
(1− γ1)ρ(α− ρ)

> 0

and

C1 =
(α− ρ)y

1−γ1

0

(−γ1)(ρ + λ− α)
.

The continuation region is

D = {(s, p, q); pq > y0} .

If ρ + λ ≤ α then G∗ = ∞ .

11.6. u∗ = a1−a2−σ2
2(1−γ)

(σ2
1+σ2

2)(1−γ)
(constant),

Φ(s, x) = e
λ(t−t1)xγ for t < t1, x > 0

where

λ = 1
2γ(1− γ)[σ2

1(u∗)2 + σ2
2(1− u∗)2]− γ[a1u

∗ + a2(1− u∗)] .
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11.11. Additional hints:
For the solution of the unconstrained problem try a function φλ(s, x)
of the form

φλ(s, x) = aλ(s)x2 + bλ(s) ,

for suitable functions aλ(s), bλ(s) with λ ∈ R fixed. By substituting
this into the HJB equation we arrive at the equations

a′λ(s) =
1
θ
a2

λ(s)− 1 for s < t1

aλ(t1) = λ

and

b′λ(s) = −σ2aλ(s) for s < t1

bλ(t1) = 0 ,

with optimal control u∗(s, x) = − 1
θaλ(s)x .

Now substitute this into the equation for Xu∗
t and use the terminal

condition to determine λ0 .
If we put s = 0 for simplicity, then λ = λ0 can be chosen as any
solution of the equation

Aλ3 + Bλ2 + Cλ + D = 0 ,

where

A = m2(et1 − e−t1)2 ,

B = m2(e2t1 + 2− 3e−2t1)− σ2(et1 − e−t1)2 ,

C = m2(−e2t1 + 2 + 3e−2t1)− 4x2 − 2σ2(1− e−2t1)
D = −m2(et1 + e−t1)2 + 4x2 + σ2(e2t1 − e−2t1) .

12.6. a) no arbitrage
b) no arbitrage
c) θ(t) = (0, 1, 1) is an arbitrage
d) no arbitrage
e) arbitrages exist
f) no arbitrage.

12.7. a) complete
b) not complete. For example, the claim

F (ω) =

T∫

0

B3(t)dB3(t) = 1
2B2

3(T )− 1
2T

cannot be hedged.
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c) (arbitrages exist)
d) not complete
e) (arbitrages exist)
f) complete.

12.12. c) EQ[ξ(T )F ] = σ−1x1(1− α
ρ )(1− e−ρT ). The replicating portfolio is

θ(t) = (θ0(t), θ1(t)), where

θ1(t) = σ−1

[
1− α

ρ
(1− eρ(t−T ))

]

and θ0(t) is determined by (12.1.14).
12.15.

Φ(s, x) =
{

e−ρs(a− x) for x ≤ x∗

e−ρs(a− x∗)( x
x∗ )

γ for x > x∗

where

γ = β−2

[
1
2β2 − α−

√(
1
2β2 − α

)2 + 2ρβ2

]
< 0

and
x∗ =

aγ

γ − 1
∈ (0, a) .

Hence it is optimal to stop the first time X(t) ≤ x∗.
If α = ρ this simplifies to

γ = −2ρ

β2
and x∗ =

a2ρ

β2 + 2ρ
.
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318 References

21. Brekke, K.A., Øksendal, B. (1991): The high contact principle as a sufficiency
condition for optimal stopping. To appear in D. Lund and B. Øksendal (editors):
Stochastic Models and Option Values. North-Holland

22. Brown, B.M., Hewitt, J.I. (1975): Asymptotic likelihood theory for diffusion
processes. J. Appl. Prob. 12, 228–238

23. Bucy, R.S., Joseph, P.D. (1968): Filtering for Stochastic Processes with Appli-
cations to Guidance. Interscience

24. Chow, Y.S., Robbins, H., Siegmund, D. (1971): Great Expectations: The The-
ory of Optimal Stopping. Houghton Miffin Co

25. Chung, K.L. (1974): A Course in Probability Theory. Academic Press
26. Chung, K.L. (1982): Lectures from Markov Processes to Brownian Motion.

Springer-Verlag
27. Chung, K.L., Williams, R. (1990): Introduction to Stochastic Integration. Sec-

ond Edition. Birkhäuser
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List of Frequently Used Notation and Symbols

Rn n-dimensional Euclidean space
R+ the non-negative real numbers
Q the rational numbers
Z the integers
Z+ = N the natural numbers
C the complex plane
Rn×m the n×m matrices (real entries)
AT the transposed of the matrix A
|C| the determinant of the n× n matrix C
Rn ' Rn×1 i.e. vectors in Rn are regarded as n× 1-matrices
Cn = C× · · · ×C the n-dimensional complex space

|x|2 = x2
n∑

i=1

x2
i if x = (x1, . . . , xn) ∈ Rn

x · y the dot product
n∑

i=1

xiyi if x = (x1, . . . , xn),

y = (y1, . . . , yn)
x+ max(x, 0) if x ∈ R
x− max(−x, 0) if x ∈ R

sign x

{
1 if x ≥ 0
−1 if x < 0

C(U, V ) the continuous functions from U into V
C(U) the same as C(U,R)
C0(U) the functions in C(U) with compact support
Ck = Ck(U) the functions in C(U,R) with continuous deriva-

tives up to order k
Ck

0 = Ck
0 (U) the functions in Ck(U) with compact support in U

Ck+α the functions in Ck whose k’th derivatives are Lip-
schitz continuous with exponent α

C1,2(R×Rn) the functions f(t, x):R × Rn → R which are C1

w.r.t. t ∈ R and C2 w.r.t. x ∈ Rn

Cb(U) the bounded continuous functions on U
f |K the restriction of the function f to the set K
A = AX the generator of an Itô diffusion X
A = AX the characteristic operator of an Itô diffusion X
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L = LX the second order partial differential operator which
coincides with AX on C2

0 and with AX on C2

Bt (or (Bt,F , Ω, P x)) Brownian motion
DA the domain of definition of the operator A
∇ the gradient: ∇f = ( ∂f

∂x1
, . . . , ∂f

∂xn
)

∆ the Laplace operator: ∆f =
∑
i

∂2f
∂x2

i

L a semielliptic second order partial differential oper-
ator of the form L =

∑
i

bi
∂

∂xi
+

∑
i,j

aij
∂2

∂xi∂xj

Rα the resolvent operator
iff if and only if
a.a., a.e., a.s. almost all, almost everywhere, almost surely
w.r.t. with respect to
s.t. such that
' coincides in law with (see Section 8.5)
E[Y ] = Eµ[Y ] =

∫
Y dµ the expectation of the random variable Y w.r.t. the

measure µ
E[Y |N ] the conditional expectation of Y w.r.t. N
F∞ the σ-algebra generated by

⋃
t>0

Ft

B the Borel σ-algebra
Ft,F (m)

t the σ-algebra generated by {Bs; s ≤ t}, Bs is m-
dimensional

Fτ the σ-algebra generated by {Bs∧τ ; s ≥ 0} (τ is a
stopping time)

⊥ orthogonal to (in a Hilbert space)
Mt the σ-algebra generated by {Xs; s ≤ t} (Xt is an

Itô diffusion)
Mτ the σ-algebra generated by {Xs∧τ ; s ≥ 0} (τ is a

stopping time)
∂G the boundary of the set G
G the closure of the set G
G ⊂⊂ H G is compact and G ⊂ H
d(y,K) the distance from the point y ∈Rn to the set K ⊂

Rn

τG the first exit time from the set G of a process
Xt: τG = inf{t > 0;Xt /∈ G}

V(S, T ),Vn(S, T ) Definition 3.3.1
W,Wn Definition 3.3.2
(H) Hunt’s condition (Chapter 9)
HJB the Hamilton-Jacobi-Bellman equation (Chapter 11)
In the n× n identity matrix
XG the indicator function of the set G XG(x) = 1 if

x ∈ G, XG(x) = 0 if x /∈ G
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P x the probability law of Bt starting at x
P = P 0 the probability law of Bt starting at 0
Qx the probability law of Xt starting at x (X0 = x)
R(s,x) the probability law of Yt = (s + t), Xx

t )t≤0 with
Y0 = (s, x) (Chapter 10)

Qs,x the probability law of Yt = (s + t, Xs,x
s+t)t≥0 with

Y0 = (s, x) (Chapter 11)
P ¿ Q the measure P is absolutely continuous w.r.t. the

measure Q
P ∼ Q P is equivalent to Q, i.e. P ¿ Q and Q ¿ P
Ex, E(s,x), Es,x the expectation operator w.r.t. the measures Qx,

R(s,x) and Qs,x, respectively
EQ the expectation w.r.t. the measure Q
E the expectation w.r.t. a measure which is clear from

the context (usually P 0)
s ∧ t the minimum of s and t (= min(s, t))
s ∨ t the maximum of s and t (= max(s, t))
σT the transposed of the matrix σ
δx the unit point mass at x
δij δij = 1 if i = j, δij = 0 if i 6= j
θt the shift operator: θt(f(Xs)) = f(Xt+s) (Chap-

ter 7)
θ(t) portfolio (see (12.1.3))
V θ(t) = θ(t) ·X(t), the value process (see (12.1.4))

V θ
z (t) = z +

t∫
0

θ(s)dX(s), the value generated at time t by

the self-financing portfolio θ if the initial value is z
(see (12.1.7))

X(t) the normalized price vector (see (12.1.8)–(12.1.11))
ξ(t) the discounting factor (see (12.1.9))
:= equal to by definition
lim , lim the same as lim inf, lim sup
ess inf f sup{M ∈ R ; f ≥ M a.s.}
ess sup f inf{N ∈ R ; f ≤ N a.s.}
tu end of proof

“increasing” is used with the same meaning as “nondecreasing”, “decreas-
ing” with the same meaning as “nonincreasing”. In the strict cases “strictly
increasing/strictly decreasing” are used.
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adapted process 25
admissible portfolio 251
American call option 284, 289
American contingent T -claim 276
American options 275–284
American put option 283–284
American put option, perpetual 289
analytic functions (and Brownian

motion) 76, 150
arbitrage 251
attainable claim 260

Bayes’ rule 152 (8.6.3)
Bellman principle 241
Bessel process 49, 140
bequest function 223
Black and Scholes formula 4, 160, 274,

288
Borel sets, Borel σ-algebra 8
Borel-Cantelli lemma 16
Brownian bridge 75
Brownian motion, in Rn 3, 11–14
Brownian motion, complex 76
Brownian motion, on the ellipse 73
Brownian motion, on the unit circle

65, 121
Brownian motion, on the unit sphere

149
Brownian motion, on a Riemannian

manifold 150
Brownian motion, the graph of 118
Brownian motion, w.r.t. an increasing

family Ht of σ-algebras 70

capacity 163
carrying capacity 77
characteristic function 292
characteristic operator 120
change of time 145
change of variable in an Itô integral

148

Chebychev’s inequality 16
coincide in law 140, 141
combined Dirichlet-Poisson problem

165–167, 182
complete market 260
complete probability space 8
complex Brownian motion 76
conditional expectation 295
conditioned Brownian motion 127
contingent T -claim (American) 276
contingent T -claim (European) 259
continuation region 201
continuous in mean square 40
control, deterministic (open loop) 225
control, feedback (closed loop) 225
control, Markov 225
control, optimal 224
convolution 302
covariance matrix 12, 291
cross-variation processes 152
crowded environment 77

density (of a random variable) 15
diffusion, Itô 107
diffusion, Dynkin 121
diffusion coefficient 107
Dirichlet problem 2, 167
Dirichlet problem (generalized) 174
Dirichlet problem (stochastic version)

170
Dirichlet-Poisson problem 165–167,

182
distribution (of a random variable) 9
distribution (of a process) 10
distribution function (of a random

variable) 15
Doob-Dynkin lemma 8–9
Doob-Meyer decomposition 279
drift coefficient 107
Dudley’s theorem 253
Dynkin’s formula 118

329
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eigenvalues (of the Laplacian) 187
elementary function/process 26
elliptic partial differential operator

165, 176
equivalent martingale measure 254,

264
estimate (linear/measurable) 85

estimation of a parameter 97
estimation, exact asymptotic 101, 102
European call option 4, 265, 288–289
European contingent T -claim 259
European option 265
European put option 266
events 8
excessive function 197
expectation 9
explosion (of a diffusion) 66, 78
exponential martingale 55

Feller-continuity 133
Feynman-Kac formula 135, 190
filtering problem, general 2, 79–81
filtering problem, linear 81–101
filtration 31, 38
finite-dimensional distributions (of a

stochastic process) 10
first exit distribution 130, 192
first exit time 111

Gaussian process 12
generalized (distribution valued)

process 21
generator (of an Itô diffusion) 115,

117
geometric Brownian motion 62
Girsanov’s theorem 60, 153–158
Girsanov transformation 153
Green formula 184
Green function 163, 183, 191
Green function (classical) 183, 185
Green measure 18, 183, 238
Green operator 164
Gronwall inequality 68, 78

Hamilton-Jacobi-Bellman (HJB)
equation 226–230
harmonic extension (w.r.t. an Itô

diffusion) 122
harmonic function (and Brownian

motion) 150
harmonic function (w.r.t. a diffusion)

169

harmonic measure (of Brownian
motion) 124

harmonic measure (of a diffusion)
114, 115, 129

hedging portfolio 260
Hermite polynomials 38
high contact (smooth fit) principle

210, 212, 218
hitting distribution 114, 115
Ht-Brownian motion 70
h-transform (of Brownian motion)

127
Hunt’s condition (H) 175

independent 9
independent increments 13, 22
innovation process 82, 86, 87, 90
integration by parts (stochastic) 46,

55
interpolation (smoothing) 103
irregular point 172, 188
iterated Itô integrals 38
iterated logarithm (law of) 64
Itô diffusion 107
Itô integral 24–37
Itô integral; multidimensional 34, 35
Itô interpretation (of a stochastic

differential equation) 36, 61, 79
Itô isometry 26, 29
Itô process 44, 48
Itô representation theorem 51
Itô’s formula 44, 48

Jensen inequality 296

Kalman-Bucy filter 2, 95, 100
Kazamaki condition 55
kernel function 127
killing (a diffusion) 137
killing rate 138, 164
Kolmogorov’s backward equation 131
Kolmogorov’s continuity theorem 14
Kolmogorov’s extension theorem 11
Kolmogorov’s forward equation 159

Langevin equation 74
Laplace operator ∆ 3, 57
Laplace-Beltrami operator 150
law of iterated logarithm 64
least superharmonic majorant 196
least supermeanvalued majorant 196
Levy’s characterization of Brownian

motion 152
Levy’s theorem 151
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linear regulator problem 231
Lipschitz surface 213, 301
local martingale 126
local time 58, 59, 72
Lyapunov equation 103

Malliavin derivative 53
market 247
market, complete 260
market, normalized 247, 248
Markov control 225
Markov process 110
Markov property 109
martingale 31, 33, 298
martingale, local 126
martingale convergence theorem 298
martingale inequality 31
martingale problem 138
martingale representation theorem

49, 53
maximum likelihood 98
maximum principle 189
mean-reverting Ornstein-Uhlenbeck

process 74
mean square error 92
mean value property, classical 124
mean value property (for a diffusion)

114, 115
measurable function (w.r.t. a σ-algebra)

8
measurable sets (w.r.t. a σ-algebra) 8
measurable space 7
moving average, exponentially weighted

97

noise 1–4, 21–22, 61
normal distribution 12, 291
normalization (of a market process)

248
Novikov condition 55
numeraire 248

observation process 80
optimal control 224
optimal performance 224
optimal portfolio selection 4, 234
optimal stopping 3, 193–215
optimal stopping time 193, 199, 202,

213
optimal stopping existence theorem

199
optimal stopping uniqueness theorem

202
option pricing 4, 265–284

Ornstein-Uhlenbeck equation/process
74

orthogonal increments 82

path (of a stochastic process) 10
performance function 224
Perron-Wiener-Brelot solution 178
Poisson formula 189
Poisson kernel 189
Poisson problem 168
Poisson problem (generalized) 180
Poisson problem (stochastic version)

180
polar set 162, 175
population growth 1, 61, 77
portfolio 4, 236, 248–251
prediction 103
probability measure 7
probability space 8
p’th variation process 19

quadratic variation process 19, 56

random time change 145
random variable 9
recurrent 120
regular point 172–174, 188
replicating portfolio 260
resolvent operator 133
reward function 193
reward rate function 194
Riccati equation 93, 95, 101, 233

scaling (Brownian) 19
self-financing portfolio 248
semi-elliptic partial differential operator

165
semi-polar set 175
separation principle 225, 233
shift operator 113
Snell envelope 279
smoothing (interpolation) 103
stationary process 21, 22
stochastic control 4, 223–240
stochastic differential equation;

definition 61
stochastic differential equation;

existence and uniqueness of solution
66

stochastic differential equation; weak
and strong solution 70

stochastic Dirichlet problem 170
stochastic integral 44
stochastic Poisson problem 180
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stochastic process 9
stopping time 57, 110
Stratonovich integral 24, 35–37, 39, 40
Stratonovich interpretation (of a

stochastic differential equation) 36,
62, 63, 64, 79

strong Feller process 177
strong Markov property 110–113
strong solution (of a stochastic

differential equation) 70
strong uniqueness (of a stochastic

differential equation) 67, 71
submartingale 298
superharmonic function 194
superharmonic majorant 196
supermartingale (126), 196, 253, 266,

279, 298
supermeanvalued function 194
supermeanvalued majorant 196
superreplicate 279
support (of a diffusion) 105

Tanaka’s equation 71
Tanaka’s formula 58, 59, 72
terminal conditions (in stochastic

control) 239–240, 245
thin set 175
time-homogeneous 108
time change formula Itô integrals 148
total variation process 19
transient 120
transition measure 184
transition operator 164
trap 121

uniformly elliptic partial differential
operator 176, 269

uniformly integrable 297–298
utility function 4, 234

value function 224
value process 248
value process, normalized 249
variational inequalities (and optimal

stopping) 3, 212–215
version (of a process) (12), 14, 32
Volterra equation, deterministic 89
Volterra equation, stochastic 75

weak solution (of a stochastic
differential equation) 70

weak uniqueness 71
well posed (martingale problem) 139
white noise 21, 61

Wiener criterion 174

X-harmonic 169

zero-one law 171

σ-algebra 7
σ-algebra, generated by a family of sets

8
σ-algebra, generated by a random

variable 8

View publication statsView publication stats

https://www.researchgate.net/publication/202924343

