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ABSTRACT
In this paper, we investigate the dynamics of spherical droplets in the presence of a source–sink pair flow field. The dynamics of the droplets
is governed by the Maxey–Riley equation with the Basset–Boussinesq history term neglected. We find that, in the absence of gravity, there are
two distinct behaviors for the droplets: small droplets cannot go further than a specific distance, which we determine analytically, from the
source before getting pulled into the sink. Larger droplets can travel further from the source before getting pulled into the sink by virtue of
their larger inertia, and their maximum traveled distance is determined analytically. We investigate the effects of gravity, and we find that there
are three distinct droplet behaviors categorized by their relative sizes: small, intermediate-sized, and large. Counterintuitively, we find that the
droplets with a minimum horizontal range are neither small nor large, but of intermediate size. Furthermore, we show that in conditions of
regular human respiration, these intermediate-sized droplets range in size from a few μm to a few hundred μm. The result that such droplets
have a very short range could have important implications for the interpretation of existing data on droplet dispersion.
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I. INTRODUCTION

The transport of inertial particles in fluid flows occurs in many
problems arising in engineering and biology, such as the build-up
of microplastics in the ocean1 and respiratory virus transmission
through tract droplets.2–4 The Maxey–Riley equation5 describes the
motion of a finite-sized spherical particle in an ambient fluid flow.
The equation is a representation of Newton’s second law in which
the forces acting on the particle include a Stokesian drag force,
an added mass force, a gravity force, the force due to the undis-
turbed flow, and a Basset–Boussinesq history term. The equation
takes the form of a second-order, implicit integro-differential equa-
tion with a singular kernel and with a forcing term that is singular

at the starting time.6 The equation has been applied to model the
dynamics of aerosol comprising particles of various density ratios,7

the feeding mechanism of jellyfish,8,9 and the dynamics of inertial
particles in vortical flows.10–12 The equation has also been applied to
droplet-laden flows with a phase change at sub-Kolmogorov scales.13

The Basset–Boussinesq term accounts for the drag due to the
production of vorticity as the particle is accelerated from rest. It
is difficult to include this term numerically and is often omitted
on the assumption that particles move in a quasistatic manner.14

This assumption breaks down in bubbly and slurry flows, where the
Basset–Boussinesq term accounts for a quarter of the forces on the
particle14 when the density ratio R = 2ρ′f/(ρ

′
f + 2ρ′p) is greater than

2/3, where ρ′f is the fluid density and ρ′p is the particle density. Recent
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advances15 have shown that the full Maxey–Riley equation can be
represented as a forced, time-dependent Robin boundary condition
of the 1D diffusion equation. Here, the authors found that a parti-
cle settling under gravity relaxes to its terminal velocity according to
t−1/2; however, if the Basset–Boussinesq term is neglected, it relaxes
exponentially quickly.16

In this paper, we examine the transport of inertial particles in
source–sink flows.17 Such a flow could represent the trajectories of
water droplets emitted from coughing, sneezing,2–4 or breathing and
in the presence of extraction, such as an air-conditioning unit or
air current.18 Our simplified mathematical model yields to analytic
treatment in certain limits of large and small droplets. This enables
us to provide important physical insight into this complex problem,
but we remark that the effects such as drag non-linearity19 and tur-
bulent dispersion20 are not taken into account. Since the dynamics
of settling droplets is significantly affected by their size, it is impor-
tant to understand the impact that the emitted droplet size has on
the destination of such a droplet in a source–sink flow. In particular,
since droplets are vectors for infectious diseases such as COVID-
19, it is imperative that we understand the droplet dynamics in such
flows to mitigate the spread of the disease.

This paper is organized as follows: in Sec. II, the mathemat-
ical model is presented and non-dimensionalized. The results are
presented in Sec. III for small (Sec. III A) and intermediate-sized
(Sec. III B) droplets in the absence of gravity. Gravitational effects
are considered for small droplets in Sec. III C and for intermediate-
sized droplets in Sec. III D. In Sec. IV, we present applications of our
results for human breathing without (Sec. IV B) and with (Sec. IV C)
the inclusion of extraction. Finally, we discuss our findings in Sec. V.

II. MATHEMATICAL MODEL
Consider a source producing air of density ρ′air and viscosity

ν′air, with volume flux of Q′1, containing spherical liquid droplets of
density ρ′drop, which are emitted with a characteristic velocity U′. Let
us represent the 3D velocity field u′source(x′) at a position x′ of the
emitted air as a point source of strength Q′1, centered at the origin in
the Cartesian coordinates,17

u′source(x
′
) =

Q′1x′

4π∣x′∣3
. (1)

We include an extraction unit as a point sink of strength Q′2 located
at a position x′0 as follows:

u′sink(x
′
) = −

Q′2(x′ − x′0)
4π∣x′ − x′0∣3

. (2)

The resulting airflow is given by the linear superposition of these two
flows,

u′(x′) =
Q′1x′

4π∣x′∣3
−
Q′2(x′ − x′0)
4π∣x′ − x′0∣3

. (3)

The natural timescale of the problem emerges as T′ = |x′0|/U′. We
non-dimensionalize (3) according to

x = x′/∣x′0∣ u = u′/U′, (4)

which gives the non-dimensionalized expression for the airflow
velocity

u(x) = Λ(
x
∣x∣3
− γ
(x − x0)

∣x − x0∣3
), (5)

with Λ = Q′1/4πU′|x′0|2, γ = Q′2/Q′1, and x0 = x′0/|x′0|.
The velocity of the droplet embedded in this background air-

flow obeys the Maxey–Riley equation5

v̇(t) −
3
2
R

Du
Dt
∣
X(t)
=(1 −

3
2
R)g − A(v(t) − u(X(t), t))

−

√
9

2π
R
√
St
[∫

t

0

v̇(s) − u̇(X(s), s)
√
t − s

ds

+
v(0) − u(X(0), 0)

√
t

], (6)

where X(t) is the position of the droplet at time t, v(t) = Ẋ(t) is its
velocity, the dot indicates the time derivative, and

R =
2ρ′air

ρ′air + 2ρ′drop
, A =

R
St

,

St =
2
9
(
a′

∣x′0∣
)

2

Re, g =
∣x′0∣g′

U′2
,

(7)

with a′ being the droplet radius, g′ being the acceleration due to
gravity vector, Re = U′|x′0|/ν′air is the Reynolds number, and St is the
particle Stokes number. Note here that the Faxén correction terms5

have not been omitted: they are identically zero since Δu = 0.
The approximate ratio of the Basset history drag to Stokes drag

is O(St1/2), which, for the range of St we are interested in, is generally
much less than one. In the remainder of this paper, we neglect the
Basset history term since we anticipate that its magnitude is negligi-
ble compared to the Stokes drag term for the parameters of interest
to us, and the resulting equations are

v̇(t) −
3
2
R

Du
Dt
∣
X(t)
= (1 −

3
2
R)g − A(v(t) − u(X(t), t)), (8)

subject to the initial conditions v(0) = u(X(0), 0), where X(0) lie on a
circle surrounding the origin of radius |X(0)|. In (5), taking the limit

lim
X→0

u(X) ≃
ΛX
∣X∣3

, (9)

hence, we can ensure that the non-dimensional initial velocity has
unit magnitude by requiring ∣X(0)∣ =

√
Λ.

A. Computational considerations
The resulting equations (8) are a set of three coupled second-

order non-linear ordinary differential equations (ODEs) for the
position vector X(t). The algebra involved in computing the material
derivative in (8) is straightforward, but cumbersome, and it is omit-
ted here. This set of equations does not admit analytical solutions, in
general, and so it must be solved numerically.

We solved the equations by expressing them as a system of
six first-order ODEs using the MATLAB® ode15s algorithm, a
variable-step, variable-order solver based on the numerical differ-
entiation formulas.21 This was performed on a laptop equipped with
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an Intel(R) Core(TM) i9-9980HK CPU (2.40 GHz) and 32 GB of
RAM; each trajectory took on average 0.015 s to compute. In each of
our plots, we show the trajectories emanating from 30 evenly spaced
points on a circle centered at the origin (i.e., the source), giving a
total simulation time of approximately 0.45 s. The number of trajec-
tories was selected by balancing the requirements on the detail on
individual trajectories and the global behavior of the droplets. Such
short simulation times allow us to identify the most important com-
binations out of a wide range of variables in a computational time
that is several orders of magnitude faster than models employing
computational fluid dynamics.22

III. THE RESULTS
A. Small droplets in the absence of gravity

In the absence of gravity, Eq. (8) reads (dropping the explicit
time dependence)

v̇ −
3R
2
[u ⋅ ∇u]∣

X
= −

R
St
(v − u∣

X
). (10)

In (10), for small droplets (St ≪ R) emitted from the source, the
balance is between the first term on the left-hand side and the right-
hand side so that the velocity rapidly adjusts to the background flow
v ≈ u∣

X
.

We are interested in whether droplets move away from or
toward the sink. To this end, we look for trajectories for which
v > 0,

v =
dX
dt
> 0 ⇐⇒

X
∣X∣3
> γ
(X − x0)

∣X − x0∣3
. (11)

If we take x0 = [1, 0, 0], then the trajectory that emerges from the
source and travels in the direction of the negative x-axis is the one
that gets the greatest distance away from the sink. Hence, let us con-
sider this inequality in the first component, and along the line y = 0,
z = 0,

dX(t)
dt

> 0 ⇐⇒
X
∣X∣3
> γ
(X − 1)
∣X − 1∣3

. (12)

We are interested in where the flow field changes direction, since this
indicates the maximum distance the droplets emitted at the source
can travel before moving toward the sink. To this end, let us choose
a point x = −λ along y = 0 and z = 0; then, this inequality tells us that

dX(t)
dt

> 0 ⇐⇒ γ > (1 +
1
λ
)

2
. (13)

This inequality can hold only if γ > 1. This makes sense, since the
flow is directed toward the sink only if the sink is stronger than the
source.

Figure 1 shows the trajectories for small droplets (St ≪ R) in
the presence of a source–sink pair: the source is located at the origin
(green disk) and the sink is located at x = 1 along the x-axis (red
disk). For γ = 1 [Fig. 1(a)], we have equal strength and droplets can
take large excursions from the source before returning to the sink.
As γ increases, the trajectories emanating from the source occupy
an increasingly compacted region [Figs. 1(b)–1(d)]. We can use this
inequality above to define a region

∣λ∣ <
√γ + 1
γ − 1

(14)

such that small droplets do not get further than a distance |λ| before
traveling toward the sink. The circle with radius |λ| is shown in Fig. 1
(dashed curve). Observe that, as one gets increasingly close to the
source (λ→ 0), the inequality tends to

dX(t)
dt

> 0 ⇐⇒ γ >
1
λ2 , (15)

meaning that in order to maintain trajectories moving away from
a given test point, the sink strength needs to increase quadratically
with the distance of the test point to the source.

B. Intermediate-sized droplets in the absence of
gravity

For St = O(R) and St≫ R, the droplet is slowed down exponen-
tially according to

v(t) ≈ v(0) exp [−(R/St)t], (16)

which represents a balance between inertia and drag forces. Pro-
vided γ > 1, and in the absence of gravity, in the long-term, the
droplet will always migrate toward the sink. However, in the case
of intermediate-sized droplets, the maximum distance traveled by
the droplet before it moves toward the sink is given by |v(0)|/(R/St).
Since the initial velocity of the droplet is chosen to be the same as
the surrounding fluid, then we can write the maximum distance
as |u(X(0), 0)|/(R/St). As explained above [see (9)], in our non-
dimensionalization, our characteristic velocity U′ was chosen to be
that of the outlet. Hence, in this non-dimensionalization, |u(X(0),
0)| = 1.

Figure 2 shows the trajectories of intermediate-sized droplets
for γ = 5 in the absence of gravity. The striking feature of the plot is
the shift from a regime where the maximal extent of the trajectories
as predicted by (14) is no longer valid and must be replaced with
a circle of radius St/R. In Fig. 2(a), St/R = 0.1 so that the droplets
are slowed down rapidly before following the fluid flow. In Fig. 2(b),
St/R = 1, meaning that the droplets are slowed down over the area
covered by the unit circle, before being brought to the sink as ideal
tracers. Finally, in Fig. 2(c), St/R = 2 so that the droplets travel a
non-dimensional distance of 2 before being slowed down enough to
be pulled into the sink.

Hence, we find that, in the absence of gravity, we can have
two very different behaviors depending on whether we have small
droplets St≪ R or intermediate-sized droplets St ≥ R. Small droplets
cannot get further than a distance (√γ+ 1)/(γ− 1) from the source
before traveling toward the sink, but intermediate-sized droplets
are not restricted by this and can travel further than this, provided
St/R > (√γ + 1)/(γ − 1).

C. The effect of gravity on small droplets
As the droplets move from the source to the sink, gravity

attempts to pull them vertically downwards. Over the timescale of
the problem, i.e., the average time it takes for a droplet to travel
from the source to sink, gravity may or may not have an appreciable
effect. Intuitively, one would imagine that smaller droplets are influ-
enced more by the airflow than gravity: for stronger sinks, the effect
of gravity is comparatively less. Intuitively, one would also expect
that this holds true, provided that the source and sink are not too far
away. The gravitational vector is non-dimensionalized according to
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FIG. 1. The trajectories X(t) in the xy-plane of small droplets St≪ R with a background source–sink pair of various strengths: (a) γ = 1, (b) γ = 2, (c) γ = 5, and (d) γ = 10. In
these plots, R = 0.001, Λ = 0.0001, and |g| = 0. The trajectories do not change for changing R. The dashed circle indicates the predicted maximal distance that a droplet can
travel in this regime, calculated using the inequality (14). The source is indicated by a green filled circle, and the sink is indicated by a red filled circle.

U′2/|x′0| as shown in (7) so it depends on the initial speed and the
distance between the source and sink.

For St ≪ R < 2/3, and in the absence of gravity, there are
three fixed points: the source, the sink, and a saddle point located
at x = −|λ| along the x-axis (Fig. 1). When gravitational effects are
included, the fixed point at x = −|λ| moves clockwise about the ori-
gin as the effect of gravity is increased [see Fig. 3(a)]. A fourth fixed
point (saddle) is created far from the source–sink pair, which grad-
ually moves toward the sink [Figs. 3(b) and 3(c)] as the effect of
gravity is increased. In Fig. 3(d), the separatrices (indicated as the
red dashed-dotted curves) show that there is a wedge of trajectories
that escape the pull of the sink. As might be expected, these trajec-
tories are those that point directly away from the sink. Our results
show that even for small droplets, gravity can be important if either
the sink is far away or if the ejection speed is too low.

D. The effect of gravity on intermediate-sized
droplets

Small droplets are deflected by gravity but generally feel the
pull of the sink. Whether or not they are pulled in is determined by
the interaction of gravity, the angle of their trajectory, and γ. As the
droplets become larger, gravitational effects dominate and the sink
becomes ineffective. In Fig. 4, we show how the droplet trajectories
behave as St is increased. Figure 4(a) shows the familiar situation
where the droplets are so small that gravity does not appreciably
affect their trajectory over the characteristic lengthscale.

As St is increased, Fig. 4(b) shows that there are a range of
trajectories with ejection angles α (defined with respect to the pos-
itive sense of the x-axis) around the source, which are deflected
downwards away from the sink. This is consistent with Sec. III C.

Phys. Fluids 32, 083302 (2020); doi: 10.1063/5.0021427 32, 083302-4

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 2. The trajectories X(t) in the xy-plane of droplets with a background source–
sink pair with strength ratio γ = 5 for various values of St: (a) St = 10−4, (b)
St = 10−3, and (c) St = 2 × 10−3. In these plots, R = 0.001, Λ = 0.0001, and
|g| = 0. The dashed circle indicates the predicted maximal distance that a droplet
can travel in this regime, calculated using the inequality (14). The dashed-dotted
circle indicates the maximal distance predicted by the inertia–drag balance, giving
radius equal to St/R. The source is indicated by a green filled circle and the sink is
indicated by a red filled circle.

However, at a critical St ≈ 2.5 × 10−6, each trajectory is deflected
downwards by gravity [Fig. 4(c)]. In this case, the maximum hori-
zontal distance traveled by the droplets is very small. Interestingly,
this trend is not monotonic. Further increasing St, the trajectories
adopt a ballistic trajectory [Fig. 4(d)]. Such droplets can move in very
close proximity to the sink but are not pulled into it [Fig. 4(d)].

IV. EXAMPLES OF APPLICATION
A. Background on respiratory virus transmission

One of the possible applications of this paper is to under-
pin more sophisticated analytical or numerical models to study the
transmission of respiratory viruses. In medical applications, it is
common practice to categorize the emitted fluid particles as larger
droplets from 5 μm to 1 mm in diameter, which have a ballistic tra-
jectory, and aerosol that remains airborne.23 Droplets smaller than
5 μm and the desiccated droplet nuclei are known as aerosol, which
can remain airborne for several hours.24–26 Respiratory viruses are
transmitted from the virus-laden fluid particles to the recipient
through (1) aerosol inhalation, (2) droplet deposition on the recip-
ient’s mouth, nose, or conjunctiva, or (3) droplet deposition on a
surface and successive transmission through physical contact.27 The
SARS-CoV-2 virus, for example, has a diameter of 70 nm–90 nm,28

and it is carried by droplets and aerosol.26,29

The model proposed in this paper can provide new insights into
the aerosol transmission, i.e., through those particles whose Stokes
number is not sufficiently large to have a ballistic trajectory. The
relative importance of aerosol (1) and droplet [(2) and (3)] virus
transmission is not always known, and it is yet to be established for
SARS-CoV-2.30 Counterintuitively, it has been argued that aerosol
could be more dangerous than larger droplets.31 Smaller droplets
(≤5 μm) suspended in aerosol might carry a higher concentration
of virus than larger droplets (>5 μm).30,32,33 The largest droplets are
less likely to penetrate deeply in the respiratory system and might
be deactivated by the effective first structural and defense barrier of
the mucosa.34 Conversely, aerosolized virus half-life exceeds 1 h26

and can be transported airborne through inhalation deep into the
lungs,35–38 avoiding the defense mechanisms of the upper respiratory
system. Furthermore, aerosol inoculation has been shown to cause
more severe symptoms than droplets administered by intranasal
inoculation, and the dose of influenza required for inoculation by
the aerosol route is 2–3 orders of magnitude lower than the dose
required by intranasal inoculation.2,33,38

To apply our model to aerosol dispersion, we consider the par-
ticles ejected by a person talking. A person ejects about tens of fluid
particles per second with diameters between39 0.1 μm to 1 mm and
with a speed of the order40 of 1 m s−1. Because this is the most fre-
quent source of aerosol, this accounts for most of the aerosol inhaled
by other people.41,42 Coughing leads to the ejection of 100–1000 fluid
particles per second with a speed around 10 m s−1, while sneez-
ing generates 1000–10 000 fluid particles per second with a speed of
up to43 20 m s−1. The values presented in this paragraph should be
taken as indicative because there is a significant variability between
different experimental studies.2,33,36,38,44–55

Some of the physics that is not considered in this work is the
particle–particle interaction and evaporation. In fact, fluid particles
are ejected through a jet that transports particles in the range of
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FIG. 3. The trajectories X(t) in the xy-plane of small droplets St ≪ R with a background source–sink pair with strength ratio γ = 5 and for various strengths of the gravity
parameter: (a) |g| = 5, (b) |g| = 10, (c) |g| = 15, and (d) |g| = 20. In these plots, R = 0.001 and Λ = 0.0001. The trajectories will be different for different choices of R. The
dashed circle indicates the predicted maximal distance that a fluid parcel can travel when ejected from the source. The black crosses indicate the position of saddle fixed
points. The source is indicated by a green filled circle, and the sink is indicated by a red filled circle.

2 μm–150 μm,45,56,57 i.e., the aerosol, while the largest droplets have
a ballistic trajectory independent of the surrounding flow.2,57,58 The
jet can be either laminar or turbulent when breathing and speaking,
while coughing and sneezing always results in a turbulent jet with
a diameter-based Reynolds number higher2 than 104. Once ejected,
the air jet extends along a straight trajectory; its diameter increases
linearly with the traveled distance, while the mean velocity linearly
decreases, and the turbulent statistics remain constant (i.e., the jet
is self similar59). Once the largest particles with a ballistic trajectory
have left the air jet, the jet bends upwards due to the buoyancy force
caused by the temperature and thus density difference.2 Smaller size
particles (≤100 μm) are transported by the jet while they evapo-
rate. Once a droplet exits the jet, it falls at its settling speed. For
a particle with a diameter of 50 μm and 10 μm, the settling speed

is less than 0.06 m s−1 and 0.03 m s−1, respectively. The smallest
of these two droplets is likely to land in the form of a desiccated
nucleus. In fact, while a droplet with a diameter of 50 μm evapo-
rates in about 6 s, a 10 μm droplet evaporates in less than2,60 0.1 s,
although their survivability also depends on the ambient tempera-
ture and relative humidity.20 Once these droplets leave the jet, they
can still be transported by ambient air currents, which have speeds
typically in excess61 of 0.01 m s−1. These currents are modeled by the
sink–source flow field discussed in this paper.

A key issue that is discussed in this study is the extent to which
the cloud of droplets and aerosol are displaced into the neighbor-
ing environment, as this is associated with virus transmission risk.
Previous studies estimated that the overall horizontal range of the
droplets generated while breathing and coughing before they land
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FIG. 4. The trajectories X(t) in the xy-plane with a background source–sink pair with strength ratio γ = 5 and for various Stokes numbers St: (a) St = 10−8, (b) St = 10−6, (c)
St = 10−4, and (d) St = 10−2. In these plots, R = 0.001, Λ = 0.0001, and |g| = 1. The trajectories will be different for different choices of R. The dashed circle indicates the
predicted maximal distance that a fluid parcel can travel when ejected from the source. The source is indicated by a green filled circle, and the sink is indicated by a red filled
circle.

on the ground is around 1 m–2 m.56–58 These studies led to the Cen-
ters for Disease Control and Prevention (CDC)62 and World Health
Organization (WHO)63 social distancing guidelines. Nonetheless,
the complex physics involved, which includes knowledge of the par-
ticle size distribution, their speed of evaporation, the viral charge of
droplets of different size, the diffusivity of the virus-laden particles,
etc., makes it difficult to assess what is the effective dispersion of the
virus-laden fluid particles into the environment once ejected. It was
found that the largest droplets generated by sneezing can reach a dis-
tance as far as 8 m,2,3,57 while aerosol dispersion is highly dependent
on the temperature, humidity, and air currents. For these reasons,
this paper does not aim to provide definitive measures for the aerosol
displacements but contributes to building a body of evidence around
this complex question.

B. Predicted droplet dispersion

Currently, there is a large amount of disagreement in the
reported spectra of droplet sizes in respiratory events.2 The analy-
sis is complicated by various factors including the evaporation of the
droplets as they travel from the source, which, in turn, is influenced
by ambient humidity and temperature. Recent mathematical model-
ing of droplet emission during talking have categorized droplets into
one of the three groups:64 small (<75 μm), intermediate (75 μm–400
μm), and large (>400 μm). Small droplets approximately follow the
air and can travel a great distance by weakly feeling the effects of
gravity. Large droplets can also travel a large distance due to their
inertia. However, the intermediate-sized droplets feel strongly both
gravity and drag, and their trajectory is a complex interaction of
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TABLE I. Physical quantities for dispersion of droplets.

Quantity Description Value Units

U′ Jet velocity (quiet)a 0.55 m s−1

Jet velocity (heavy)a 4.97 m s−1

α Jet angle (direction)a −5.8 deg
β Jet angle (spread)a 29.2 deg
ρ′air Density of air 1.149 kg m−3

ρ′drop Density of droplet 1000 kg m−3

ν′air Viscosity of air 16.36 × 10−6 m2 s−1

Q′1 Volume influx (quiet)a 23.8 l min−1

Volume influx (heavy)a 133 l min−1

Q′2 Volume outflux 0 l min−1

∣x′0∣ Characteristic lengthb 0.5 m

aParameters taken from previous experimental studies.66,67

bTaken from wind tunnel experiments.55

these effects. Similar trends were observed in computational fluid
dynamics simulations of previous authors.65

In this section, we examine the problem from a much simplified
perspective: we ignore evaporation entirely. We model the situation

as a point source emitting droplets of various sizes in the presence
of gravitational forces and compute the maximum horizontal dis-
tance traveled by these droplets. In this case, Q′2 = 0 l min−1, and
other quantities such as jet speed, direction, and spread are taken
from recent experimental studies of the authors:66 these quantities
are summarized in Table I.

We find that for both heavy and quiet breathing, the maxi-
mum distance traveled by droplets L′ (and the corresponding flight
time τ′) depends strongly on the droplet diameter (see Fig. 5). As
expected, small droplets can travel many meters; however, we see
that there is an intermediate range of droplet diameters where the
horizontal distance is minimized. For quiet breathing, this minimum
occurs between 69 μm < d < 77 μm, while for heavy breathing, this
minimum occurs between 50 μm < d < 55 μm. This multi-modal
behavior is reminiscent of that in previous experimental studies that
measured the size distributions of droplets in various respiratory
events such as talking and coughing54,55 and sneezing.43 The multi-
modal behavior observed in experiments is attributed to the different
generation modes: bronchiolar, laryngeal, and oral. In our simplified
model, we do not have any assumption on the biological origin of
the droplet: the existence of the minimum is a characteristic of the
droplets themselves and cannot be used as an indicator of the under-
lying droplet size distribution. The time it takes τ′ decreases mono-
tonically with increasing droplet diameter, as shown in Figs. 5(b)
and 5(c).

FIG. 5. (a) The maximum distance (L′) traveled for droplets of various diameters (d′) with quiet (light gray) and heavy (dark gray) breathing. [(b) and (c)] The total duration of
travel τ′ corresponding to the value of L′ shown in (a) for quiet breathing (b) and heavy breathing (c). The dashed curve corresponds to trajectories with the ejection angle
equal to α + β/2, while the solid curve corresponds to trajectories with the ejection angle equal to α − β/2 in Table I.
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In order to unpick the physics, observe that the drag force scales
with the diameter of the droplet, but the weight of the droplet scales
with the diameter cubed; hence, for large droplets, the drag force is
negligible in comparison with the inertia of the droplet. As shown
before, the droplets are slowed down exponentially in the horizontal
direction and are accelerated in the vertical direction by gravity, giv-
ing the maximum horizontal range of the droplet (when nominally
Y = −1),

X = (St/R)
⎛

⎝
1 − exp

⎡
⎢
⎢
⎢
⎢
⎣

−(R/St)

¿
Á
ÁÀ

2
(1 − 3

2R)∣g∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
. (17)

For large droplets (St≫ R), we can then estimate that the maximum
distance L = L′/|x′0| is

L ≈

¿
Á
ÁÀ

2
(1 − 3

2R)∣g∣
, (18)

meaning that the trajectories are ballistic, and we expect that, for
St ≫ R, the maximum distance becomes independent of St, in
agreement with the observation that large droplets’ trajectories are
independent of the surrounding flow.2,57,58

For small droplets St ≪ R, the drag decreases linearly with
decreasing droplet diameter, but the weight rapidly decreases cubi-
cally with decreasing diameter. Hence, small droplets follow the air-
flow faithfully with little influence from gravity. Such droplets can
get great distances before falling, as shown in the left-hand side of
Fig. 5(a).

In the case of small droplets, the horizontal component of the
droplet’s trajectory follows the airflow like a tracer, and the droplet
falls at its Stokesian settling velocity. Upon inspection, we find that
the maximum horizontal distance L (when nominally Y = −1) tends
to the following asymptote as St → 0:

L =
⎛

⎝

2 AΛ
(1 − 3

2R)∣g∣
⎞

⎠

1/3

. (19)

We can therefore estimate that droplets for which L > 1 or, equiva-
lently,

St <
2RΛ

(1 − 3
2R)∣g∣

(20)

(i.e., the droplets travel farther in the horizontal direction than the
vertical direction) weakly feel gravity.

In between these two extreme cases, the drag force on the
droplet is the same order of magnitude as the gravitational force.
By balancing these two effects, we can approximate the upper bound
of St where the droplets become ballistic,

St <
R

(1 − 3
2R)∣g∣

. (21)

Such droplets are not light enough to get carried any great dis-
tance by the ambient airflow but do not have large enough inertia
to become ballistic.

Hence, we have the following designations:

(I) small droplets with St satisfying St < 2RΛ
(1− 3

2 R)∣g∣
, which act like

fluid tracers;
(II) intermediate-sized droplets with 2RΛ

(1− 3
2 R)∣g∣

< St < R
(1− 3

2 R)∣g∣
;

and
(III) large droplets with St > R

(1− 3
2 R)∣g∣

, which adopt ballistic
trajectories.

This is illustrated in Fig. 6, where the black curves are the numerical
solutions to quiet (a) and heavy (b) breathing at zero direction and
spread angle66 and the red dashed curves indicate the expressions in
(18) for large St and (19) for small St. The black vertical lines indicate
the distinction between small and intermediate-sized [see 20] and
intermediate-sized and large droplets [see 21].

Reverting to dimensional quantities, we have the following
range of intermediate-sized droplets:

¿
Á
ÁÀ

9ν′airQ
′
1ρ′air

πg′∣x′0∣2(ρ′drop − ρ
′
air)
< d′ < 2

¿
Á
ÁÀ

9ν′airρ′airU′

2g′(ρ′drop − ρ
′
air)

. (22)

FIG. 6. The maximum distance (L) traveled for droplets of various St with quiet breathing (a) and heavy breathing (b). The vertical solid lines indicate the distinction between
small and intermediate-sized [from (20)] and from intermediate-sized to large [from (21)]. The red dashed curves indicate the small-St (19) and large-St (18) limits.
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TABLE II. Physical quantities for extraction.

Quantity Description Value Units

U′ Breath jet velocity 1 m s−1

ρ′air Density of air 1.149 kg m−3

ρ′drop Density of droplet 1000 kg m−3

ν′air Viscosity of air 16.36 × 10−6 m2 s−1

Q′1 Volume influx 6.5 l min−1

Q′2 Volume outflux 2832 l min−1

|x′0| Characteristic lengtha 0.2 m

aThe characteristic length is chosen to be the source–sink distance.

Plugging in the numbers from Table I, we have the approximate
range

3 μm < d′ < 138 μm (23)

for quiet breathing and

7 μm < d′ < 414 μm, (24)

for heavy breathing. Our upper bound is in good agreement with
previous categorizations of droplets,64 although our lower bound
seems to be smaller than those found by previous authors.

C. The effectiveness of extraction on droplets
Consider a person breathing air of density ρ′air = 1.149 kg m−3

and kinematic viscosity ν′air = 16.36 × 10−6 m2 s−1 containing water
droplets of density ρ′drop = 1000 kg m−3. In human respiration,39,45

the exhaled droplets have diameters d′ = 2a′ in the range of 0.5 μm–
2000 μm. For a human breathing at rest, their average volume flux
is in the range Q′1 = 5 l min−1–8 l min−1: these values of flow rate
are similar to those in previous studies,68 which reports 13 l min−1

FIG. 7. The trajectories X(t) in the xy-plane with a background source–sink pair with strength ratio γ = 436 and for various Stokes numbers St: (a) St = 10−5, (b) St = 10−4,
(c) St = 10−3, and (d) St = 10−2. In these plots, R = 0.001 15, Λ = 0.000 22, and |g| = 1.96. The dashed-dotted circle indicates the maximal distance predicted by the
inertia–drag balance. The source is indicated by a green filled circle, and the sink is indicated by a red filled circle.
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for breathing, and the typical speed of a jet in normal breathing
conditions is of the order of U′ = 1 m s−1. In violent respiratory
events, such as sneezing or coughing, these values could be signif-
icantly higher.2 Finally, the extraction unit is located a distance of
|x′0| = 0.2 m from the person. These quantities are summarized in
Table II.

Based on these numbers, the non-dimensional parameters
that govern the trajectory of the droplet are determined to be
R = 0.001 15, Re = 12, 225, Λ = 0.000 22, and |g| = 1.96, and the
Stokes number ranges approximately from 10−9 to 10−1. The param-
eter γ relates the flux of the extraction unit to the flux of a human’s
breath, and its effect will be examined. In particular, if we sup-
pose that the envisaged extraction unit has a volume flux approxi-
mately equal to that of a standard vacuum cleaner (2832 l min−1),
then we can approximate that γ ≈ 436. In Fig. 7, we show the effi-
cacy of such extraction for a range of St. Extraction is very effec-
tive at low St; however, for St > 8.5 × 10−5, such extraction is
ineffective. This upper bound of the Stokes number corresponds
to water droplets of diameter 71 μm. Droplets larger than this
will not be collected by extraction. In the droplet classification of
Sec. IV B, the effective range of extraction corresponds to non-
ballistic droplets.

V. DISCUSSION AND CONCLUSION
In this paper, we have presented a simplified mathematical

model for droplet dispersion from a source and in the presence an
aerosol extractor. In the absence of gravity, and for St≪ R, droplets
behave as ideal tracers, and the maximum distance that they can
travel before being extracted is a function of γ only. In this case,
there are two (source, and sink if γ = 1) or three (source, sink, and
saddle if γ > 1) fixed points. The fixed points in this study are col-
inear, and the position of the saddle depends on γ alone, for any
given distance between the source and sink. For moderate St, the
droplets’ inertia carry them far away from the source until they
are slowed down by drag forces and pulled into the sink. In this
case, the maximum distance that the droplets can travel is given
by R/St.

When gravity effects are taken into account, the saddle point
for St ≪ R is no longer colinear but moves on an arc, clockwise
about the source, and a fourth fixed point (saddle) emerges approxi-
mately below the sink fixed point. For fixed γ, this fixed point moves
closer to the source as the magnitude of gravity is increased. In this
case, there is a set of trajectories that are pulled away from the sink
by gravity. For moderate St, gravity plays an increasingly important
role, and there is a critical value of gravity that pulls all trajectories
vertically downwards away from the source. For yet larger St, the tra-
jectories adopt a ballistic trajectory, with even those that travel close
to the sink not being pulled in.

COVID-19 has brought increased awareness of the risks of
aerosol generating procedures (AGPs) across all fields of medicine,
highlighting the need for a deeper understanding of droplet dis-
persion and categorization during respiration and AGPs. Clinicians
recognize that our historical approaches to protection during AGPs
are no longer adequate and that many additional precautions are
necessary. In order to develop the most effective solutions, a critical
first step is understanding the behavior of droplets generated during

AGPs. This paper allows us to predict this behavior and inform our
understanding of “at risk” zones in the vicinity of an AGP. In par-
ticular, we performed simulations relevant to human respiration, as
well as simulations to inform the development of an aerosol extrac-
tor for use in clinical settings. These simulations can help to guide
recommendations on maximum safe distances between the source
and sink.

Additionally, these models provide a better understanding of
the behavior of individual droplets of various sizes, which may be
present in a wide range of aerosols contaminated with viruses or
other pathogens. This may help clinicians to make better informed
decisions regarding safety while performing AGPs and in their
choices of the type of PPE they wear. Finally, these models provide
a basis on which aerosol and droplet contamination from a wide
range of surgical, medical, dental, and veterinary AGPs can be mod-
eled while taking into account airflows in confined clinical spaces.
In this case, we found that, for St ≤ 8.5 × 10−5, all of the aerosol is
extracted and that gravity has a minimal effect; this St corresponds
to droplets with approximate diameter equal to 0.07 mm. Droplets
larger than this are affected by gravity, and for St = 10−2, corre-
sponding to droplets equal to 0.78 mm, none of the droplets are
extracted. Such large droplets would be typically captured by per-
sonal protective equipment (PPE), such as FFP1 masks that have
pore sizes typically smaller than 1 μm.

We determined the maximum range of droplets ejected from
the source in the absence of a sink and found that the range is
minimized for intermediate-sized droplets. We find that, in human
respiration, this pertains to droplets within the observed range of
the ejected droplets. This could have implications for the inter-
pretation for data obained from experiments on biological sub-
jects, in particular, those that attribute observed bi- and tri-modal
droplet dispersion to biological functions. Our studies suggest that
the bi-modal nature of the curve is a function of the droplet’s
Stokes number and not necessarily linked to a specific biological
function.

In our model, we neglected the Basset history term in the
Maxey–Riley equation. The Basset history term is of significant
importance for bubbly flows, where it can account for a quarter
of the instantaneous force on a bubble.14 Generally speaking, for
R≪ 2/3, this term can be safely ignored for small and intermediate-
sized droplets. Recent studies have also shown that neglecting it
in the modeling of raindrop growth leads to a substantial overes-
timate of the growth rate of the droplet. Hence, for the solutions
that become ballistic, we expect that such trajectories would be influ-
enced by the Basset history term that should be included. To do this
efficiently, there is a very promising method developed recently.15

Since this is not the focus of our study (such droplets can be cap-
tured by other forms of PPE), we do not perform such a study
here.

If the aerosol route of transmission is confirmed to be impor-
tant by the World Health Organization,20,69 we will need to recon-
sider guidelines on social distancing, ventilation systems, and shared
spaces. To ensure that we put in place the correct mitigating mea-
sures, for example, face coverings, we need to have a better under-
standing of the different droplet behaviors and their different disper-
sion mechanisms depending on their size. This paper contributes to
this debate by providing a new framework for categorizing droplets
depending on their dispersion mechanism.
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