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Abstract: RNA stem-loop structures play an important role in almost every step of the viral replication
cycle. In this contribution, a mathematical analysis is performed on a large dataset of RNA secondary
structure elements in the coding regions of viruses by using topological indices that capture the
Laplacian eigenvalues of the associated RNA graph representations and thereby enable structural
classification, supplemented by folding energy and mutational robustness. The application of such
an analysis for viral RNA structural motifs is described, being able to extract structural categories
such as stem-loop structures of different sizes according to the tree-graph representation of the RNA
structure, in our attempt to find novel functional motifs. While the analysis is carried on a large
dataset of viral RNA structures, it can be applied more generally to other data that involve RNA
secondary structures in biological agents.

Keywords: RNA graph representation; Laplacian eigenvalues; topological indices; folding energy;
mutational robustness

1. Introduction

RNA secondary structures perform vital functions during the viral life cycle and are
therefore a topic of intense interest [1,2]. Over the years specific functional RNA structure
motifs have been identified in many viruses (e.g., in the hepatitis C virus (HCV) [3–5]) by a
combination of computational and experimental approaches. More recently, the advent
of high-throughput structure-probing techniques has opened up exciting possibilities in
elucidating the RNA structure repertoire of viruses at large scale [6]. The majority of viral
RNA motifs tend to have linear secondary structures such as the ones depicted in [7],
which are often stem-loop structures that are designated by SL and their identification.
Stem-loop structures can be found in the aforementioned references on HCV and also in
other viruses [7,8] in both coding and non-coding regions [9].

A significant issue in modelling and analyzing RNAs is in how to represent their
secondary structure in a simplified and yet useful manner. Several approaches have been
formulated, among which three major pioneering ones are the full graph representation in
which each nucleotide is a node [10], a coarse grain tree-graph representation in which each
motif is a node [11], and a full tree forming a homomorphically irreducible tree [12]. All of
these representations have been implemented in the Vienna RNA package [13]. The full
graph representation in which each nucleotide is a node is equivalent to the dot-bracket rep-
resentation in the Vienna RNA package [13–15] and the ct file in mfold/UNAFold [16–18].
In the context of RNA secondary structure analysis, coarse grain tree graphs have found a
variety of uses [11,19–23]. It is also possible to generalize the coarse grain representations
to abstract shapes [24]. In [11,19], a coarse grain representation of the RNA secondary
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structure was proposed, which was later named Shapiro’s representation in the Vienna
RNA package. In [20], topological indices were first suggested to be used for analyzing
coarse grain tree graphs. In [21,22], it was found that the second smallest eigenvalue of
the Laplacian matrix is able to provide a similarity measure for differentiating between
various RNA tree-graph topologies. The smallest eigenvalue of the Laplacian matrix is
identically zero and then the second smallest eigenvalue, which is called algebraic connec-
tivity, provides a measure of how much the tree graph is linear (a path) or compact (a star),
as illustrated in Figure 2 in [21]. This concept can be applied when filtering candidates
in the process of RNA deleterious mutation prediction, which was used in the relevant
prediction software RNAmute and its extension [23,25,26]. On the same topic, the RDMAS
webserver [27] was developed by describing some topological indices for estimating the
amount of mutational deleteriousness. Subsequently, in [28], a detailed study of some topo-
logical indices was presented where the graphs from which the topological indices were
extracted were so-called element-contact graphs. Reverting to [21,22], theorems by Fiedler
and Merris [29,30] were shown to be applicable for the examination of how the coarse
grain tree graph, showing how the secondary structure of an RNA, is shaped. However,
the coarse grain tree graphs are not sufficiently informative when applied to small RNAs.
For those, and also in general for RNA graphs, it was suggested by Merris in a personal
communication to Barash to examine and apply the Wiener topological index [31] that
considers more of the spectrum of the Laplacian matrix and not only its second smallest
eigenvalue. Interestingly, Merris has shown [32,33] that the Wiener topological index can be
computed by the complete spectrum of the Laplacian matrix. This idea was implemented
for small RNA graphs in [34] and herein, viral RNA structures are analyzed at large scale in
this manner. The Wiener number, by its seminal definition in [31], does not deal with cyclic
graphs like a full RNA graph representation in which each node represents a nucleotide.
Only later was it redefined for any kind of graph [35]. A topological index called the Szeged
index [36], being closely related to the definition of the Wiener index in [31] and able to be
applied to cyclic graphs, was proposed in [34] instead for analyzing small RNAs.

Herein, we apply the Szeged index to analyze a large dataset of conserved RNA struc-
tures in the coding regions of viruses available in the RNASIV database [37]. We calculate
the Szeged number for small RNAs in our large dataset and along with the algebraic
connectivity of their coarse-grain tree graph representations, we extract knowledge on the
RNA structures available in the dataset. The knowledge we extract relates to the shapes of
the structures and their distribution within the dataset. We also examine the mutational
robustness and thermodynamic stability of these sequences/structures. We demonstrate
that these sequences are mutationally robust and thermodynamically stable in comparison
to their corresponding shuffled sequences and their predicted structures.

2. Materials and Methods

The mathematical analysis that is carried out on viral RNA structures relies on topo-
logical indices and additionally, on mutational robustness and thermodynamic stability.
Section 2.1 presents an overview of how the Laplacian eigenvalues and in particular the sec-
ond smallest eigenvalue of the Laplacian matrix which is associated with the coarse-grain
tree-graph representation, the algebraic connectivity, can assist in the topological analysis
of RNA secondary structures in viruses. Section 2.2 reverts to the full graph representation
of RNA secondary structure and describes how the Wiener and the associated Szeged
indices can contribute to the analysis of viral RNA motifs. Section 2.3 supplements the
topological analysis by defining the mutational robustness and thermodynamic stability
measures being used.

2.1. The Definitions of the Laplacian Matrix of a Tree Graph and the Algebraic Connectivity

The coarse-grain tree-graph representation of an RNA secondary structure, also known
as the Shapiro representation, enables an initial analysis of the RNA structures based on
their constituent motifs and their compactness. Let T = (V,E) be a tree with vertex set
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V = {v1, v2 . . . , vn} and edge set E. Let us denote by d(v) the degree of v, where v ∈ V is a
vertex of T. Then the Laplacian matrix of T is L(T) = (lij), where

lij =


d(vi), i f i = j,
−1, i f vi, vj ∈ E

0, otherwise.
(1)

L(T) is a symmetric, positive semidefinite and a singular matrix. The lowest eigenvalue
of L(T) is always zero, because all rows and columns sum up to zero. Let us denote by
λ1 ≥ λ2 ≥ . . . ≥ λn = 0 the eigenvalues of L(T). Then the second smallest eigenvalue of
the Laplacian matrix, λn−1 is called the algebraic connectivity [29] of T and labeled as a(T).
Some of the properties of a(T) that concern the application presented here are mentioned
in Appendix A, in addition to the illustrative calculation of a(T) for the RNA secondary
structure example shown in Figure 1.
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Figure 1. Three possible tree-graph topologies and their Laplacian second smallest eigenvalue
(algebraic connectivity). (a) A case of six nodes with an algebraic connectivity of 0.381966. (b) A case
of three nodes with an algebraic connectivity of 1.0. (c) A case of two nodes with an algebraic
connectivity of 2.0.

2.2. An Illustrative Example for the Algebraic Connectivity of an RNA Structure Coarse Grain
Tree Graph Represented by a Laplacian Matrix

The eigenvalues of the Laplacian are independent of the choice of labeling for the
nodes in the tree graph T, which only amounts to interchanges of the rows and columns.
For the orderly labeling of the linear tree graph example illustrated in Figure 1 and contain-
ing three nodes as explained in the continuation, the Laplacian matrix L(T) becomes:

L =

 1 −1 0
−1 2 −1
0 −1 1

 (2)

which is analogous, by the above definition of the matrix elements lij, to the Laplacian
operator. Let us examine its eigenvalues λ and corresponding eigenvectors ũ:

Lu = λu (3)

Recalling that the small eigenvalue λn is zero, the second smallest eigenvalue of the
Laplacian matrix in (2), λn−1 = a(T) = 1.0, is the algebraic connectivity that corresponds
to the tree T of the wild-type structure as illustrated in Figure 1. It is the lower bound
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(neglecting zero) for the case of three vertices since the tree is linear, hence it can also be
calculated by:

a(T) = 2(1− cos(π/n)) (4)

where n = 3 is the number of vertices, as outlined in Appendix A for a path on n vertices.
Note that by convention of the choice of tree-graph representation, those loops with

single isolated nucleotides are not accounted for as nodes, but the 5′–3′ ends are counted
as a node. In the case of a star of four vertices, for example, a(T) = 1.0, which is the
upper bound for the algebraic connectivity. A star applies for a tree graph possessing
three vertices or more (n ≥ 3) and the algebraic connectivity of a star is always unity [30].
The algebraic connectivity a(T) is characterized by some special properties described in
Appendix A that are advantageous for the RNA secondary structure application that is
presented here.

2.3. The Definitions of the Wiener and Szeged Topological Indices

In molecular graph theory, the Wiener index [31] is a structural descriptor that has
been thoroughly studied. By its introductory definition, it is equal to the summing the
distances between all pairs of vertices of the corresponding molecular graph. Let T = (V,E)
be a tree on n vertices with vertex set V = { v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}.
Then the Wiener index of T is :

W(T) =
n−1

∑
i=1

n

∑
j=i+1

d
(
vi, vj

)
(5)

where d
(
vi, vj

)
is a count of all the edges in the unique path from vertex vi to vj. There are

various ways to express the Wiener index, one of which is as explained in [32]:

W(T) = ∑
eεE

w(e) (6)

where w(e) is the product of the numbers of all vertices in the components of a forest Fe,
where upon choosing eεE the edge subgraph Fe = (V, E\e) is a forest with two components.
In the summation of Equation (6) above, a particular edge e is counted just once for each
pair of the vertices that can be chosen from “opposite sides” of e (from different compo-
nents of the Forest Fe with two components) and therefore edge e is counted exactly w(e)
times. This leads to the interesting finding [32,33] that the Wiener index of a tree T with
n vertices can also be expressed by the means of the sum of reciprocals of the Laplacian
graph eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn−1 > 0 = λn :

W(T) =
n−1

∑
i=1

n
λi

(7)

where in [33] a generalization of this concept for a general graph was also examined.
Thus, the Wiener index can capture the complete spectrum of the Laplacian matrix that
corresponds to the molecular graph. For acyclic molecular graphs (trees), Wiener outlined
a simple method for calculating W [31]. Let e be an edge of the acyclic molecular graph G.
Let n1(e|G ) and n2(e|G ) be the numbers of vertices of G lying on two sides of edge e. Then,

W(G) = ∑
e∈E(G)

n1(e|G )n2(e|G ) (for an acyclic molecular graph G) (8)

where E(G) denotes the set of edges of graph G. In [36], this way of calculating W has
been extended to encompass cyclic graphs by generalizing the interpretation of n1(e|G )
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and n2(e|G ), introducing a new structural descriptor related to the Wiener index called
Szeged (Sz):

Sz(G) = ∑
e∈E(G)

n1(e|G )n2(e|G ) (for a cyclic molecular graph G) (9)

Since then, in various studies it was shown how to calculate this index for a variety of
chemical systems. For example, for benzenoid systems, a method of calculating the Szeged
index has been developed in [38]:

Sz(B) = ∑
C

r(C)n(B′(C))n(B′′(C)) (for a benzenoid molecular graph B) (10)

where C is an elementary cut, which divides a benzenoid system B into two subgraph
components B′(C) and B”(C), and C intersects r(C) distinct edges of B. The summation in
equation (11) goes over the complete set of elementary cuts. The integers n(B′) and n(B”)
are the number of vertices of fragments B′ and B”, respectively, where n(B′) + n(B”) = n(B).
If e is an edge intersected by C, a lemma outlined in [38] stating that n1(e|B ) = n(B′)
and n2(e|B ) = n(B′′) was developed, showing that the above formula provides a straight-
forward way for calculating the Szeged index of benzenoid systems. Recently, a new
topological index intended for benzenoids called convexity deficit was put forth in [39].

2.4. Calculation of the Szeged Index of RNA Secondary Structure Graphs from Elementary Cuts

By using the analogy of benzenoid molecular graphs, one can now describe a simple
method to calculate this index for small RNA full graphs that comprise most of the large-
scale dataset we will analyze. The method relies on laying out an RNA in a secondary
structure drawing in which each node in the graph represents a nucleotide. The edges
represent backbone connectivity and base pair interactions [10]. Because there are many
possible ways to draw an RNA secondary structure, we choose a particular way for
simplicity that adheres to symmetry in the drawing. Our way consists of single- and
double-stranded RNA elements with the following features: single-stranded ends (the 5′

and 3′ ends) appear as horizontal and linear RNA tails; double-stranded areas of the
RNA molecule appear as vertical helices, starting from the bottom and at the level of the
horizontal linear RNA tails as mentioned above; single-stranded areas not at the 5′ or 3′

ends, which are bulges and loops, appear as equiangular shapes.
A simple RNA secondary structure drawn as described above and its graph represen-

tation are shown in Figure 2. An elementary cut, similar to its introduction for benzenoid
hydrocarbons, is defined as follows. Select an edge e of the RNA graph representation,
drawing a straight line through the center of e and orthogonal on e. The line will intersect
the perimeter in two points P1 and P2. The straight-line segment C whose end points are
P1 and P2 is the elementary cut, intersecting the edge e. This line C intersects all edges
that lie between P1 and P2, including the two edges on the perimeter to which P1 and P2
belong. Elementary cuts for an RNA graph are depicted in Figure 2. The interested reader
is referred to [34] for additional information.

The algorithm for calculating the Szeged index of an RNA secondary structure graph
can now be formulated in the following way:

Sz(R) = ∑
C

r(C)n(R′(C))n(R′′(C)) (for an RNA molecular graph R) (11)

where C is an elementary cut, dividing the RNA graph into two components R′(C) and
R”(C). C intersects r(C), the distinct edges of R, and summation goes over the complete set
of elementary cuts.
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Figure 2. RNA secondary structure of a bacteriophage (Virus Orthologuous Group VOG03380,
subVOG 8) and its full graph representation. The elementary cuts that are used in Table 3 for
calculating the Szeged index are drawn for illustration.

As an illustration, Sz(R) is calculated in Section 3 for a simple RNA structure. We can
then carry out the procedure for small RNA graphs that contain stem-loops and bulges,
discarding more complicated secondary structure motifs like multi-branch loops that rarely
appear when analyzing a dataset containing small RNAs, such as the one we will use.
For larger RNAs and multi-branch loops, one is advised to work with coarse-grain tree
graphs as noted in Section 2.2. In the case where a loop has an odd number of nucleotides,
a straight line orthogonal to an edge constituting an elementary cut only corresponds to
that edge. It is counted only once for its edge, regardless of whether this line intersects a
vertex in the furtherance or is continued outside the loop.

2.5. Mutational Robustness and Thermodynamic Stability

For a quantitative measure of mutational robustness, neutrality η is calculated. For an
RNA sequence of length N, the neutrality is defined as:

η = (N-d)/N (12)

where d is the base-pair distance between the secondary structure of the original sequence
and secondary structure of the mutant, averaged over all 3N one-mutant neighbors. The
base-pair distance available in the Vienna RNA package is used to calculate the distance
between two RNA secondary structures. The RNA secondary structures in this study
were predicted by the energy minimization approach [13,16] using RNAfold available
in the Vienna RNA package [13–15], noting that similar predictions can be done with
mfold/UNAFold [16–18].

3. Results
3.1. Eigenvalue Statistics: Algebraic Connectivity Distribution

As a testbed to our proposed methodology, we used a large dataset of RNA secondary
structures in viruses that is available in [37]. We start from the Laplacian second smallest
eigenvalue distribution, where the Laplacian matrix corresponds to the coarse grain tree-
graph representation of the RNA secondary structures [22]. For illustration, Figure 1
depicts three possibilities for tree-graph topologies and their second smallest eigenvalue.
According to Appendix A, this is for the special case of n = 3, a(Tlinear) = 1, as in Figure 1b,
and for the special case of n = 2, a(Tlinear) = 2, as in Figure 1c.

The whole dataset that amounts to 677,501 RNA structures can be divided into two
categories: one-hairpin structures (designated 1H) and two-hairpin structures (designated
2H). In Table 1, each of these two categories is divided into three topologies: Eig = 2.0
corresponds to topologies depicted in Figure 1c, Eig = 1.0 corresponds to topologies
depicted in Figure 1b, Eig < 1.0 corresponds to topologies as illustrated in Figure 1a.
One can notice that the majority of the structures possess Eig = 2.0, which are structures
with only the 5′-3′ end and one hairpin. Next appear structures with Eig = 1.0, which



Mathematics 2021, 9, 585 7 of 13

are either the 5′-3′ end and an internal loop (optionally a bulge) and one hairpin for the
1H category, or the 5′-3′ end and two hairpins for the 2H category. The rest are Eig < 1.0,
but they only comprise a small amount of the dataset.

Table 1. Eigenvalue statistics: distribution of our dataset according to the second smallest Lapla-
cian eigenvalue.

Eigenvalue 1H Structures:
Total = 594,937

2H Structures:
Total = 82,564

2.0 361,043 None
1.0 137,616 41,858

<1.0 96,278 40,706

It is also worthwhile examining the largest of the two categories, that of 1H structures,
separately and by specifying all Eig < 1.0 in it. We obtain Table 2:

Table 2. Eigenvalue statistics: distribution of the one-hairpin structures (1H) structures according to
the second smallest Laplacian eigenvalue.

Eigenvalue 1H Structures:
Total = 594,937

2.0 361,043
1.0 137,616

0.585786 67,504
0.381966 24,744
0.267949 3843
0.198062 186
0.152241 1

This will further be analyzed in Section 4 with respect to the formula a(T) = 2(1− cos(π/n))
in Equation (4) for a linear tree-graph representation of the RNA secondary structure to show
the tendency of viruses to possess stem-loop structures represented by a path on n vertices.

3.2. Wiener/Szeged Topological Index Distribtuion

Having observed that our dataset contains mostly small RNAs (Eig = 2.0 and Eig = 1.0),
at a finer resolution one can use the Szeged topological index (which is intimately related
to the Wiener index as observed in Equations (8) and (9)) to further analyze topologies, as
was outlined in [34]. For illustration, the way to calculate the Szeged index for one of the
structures in the dataset is depicted in Figure 2 and Table 3.

Table 3. Steps taken for calculating the Szeged index Sz(R) for the RNA structure depicted in Figure 2.
The sequence and secondary structure representation in dot-bracket notation appear below the table.

C r nR′(0) nR”(0) r × nR′(0) × nR”(0)

C1 2 3 12 72
C2 2 5 10 100
C3 2 7 8 112
C4 2 9 6 108
C5 2 12 3 72
C6 2 12 3 72
C7 6 7 8 336
C8 1 14 1 14

Sequence: AGAGCCAAUGCUCUG; Structure: ((((( . . . ))))); Sz(R) = 886.

Table 3 lists the elementary cuts and their corresponding terms in the righthand side
of Equation (11). In summing for all elementary cuts, Sz(R) = 72 + 100 + 112 + 108 + 72 +
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72 + 336 + 14 = 886 is obtained. Notice that the largest contribution, 336, appears for the
elementary cut C7 that traverses six edges.

The distribution of the Szeged numbers in our dataset is presented in Figures 3 and 4,
where for each native sequence a shuffled sequence is generated, and for both the Szeged in-
dex is calculated without considering multi-branch loops (multi-branch loops are discarded,
as noted in [34], because such RNA structural motifs are too complicated to be analyzed
by their Szeged index and it is sufficient to analyze them by their algebraic connectivity
to examine their topology). The comparison between native and shuffled sequences will
be discussed in Section 4. Shuffling is simply done without additional constraints such as
maintaining dinucleotides or codons. The separation into the first 50 bins corresponding
to the lowest Szeged numbers (Figure 3) and the last 50 bins corresponding to the highest
Szeged numbers (Figure 4) is purposely done for convenience in the examination of the
distribution that is obtained. The reported p-values in the captions were calculated from a
T-test to check that the average Szeged values of the structures of native sequences were
significantly larger than the Szeged values of the structures of shuffled sequences.
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3.3. Mutational Robustness and Thermodynamic Stability

Finally, to conclude the analysis, it is worthwhile verifying that the native sequences
are more mutationally robust and more thermodynamically stable than their corresponding
shuffled sequences, as expected given that our dataset contains natural RNAs. Equation (12)
is used to calculate the neutrality and in all of the calculations, RNAfold of the ViennaRNA
Package 2.0 [15] is used for RNA structure prediction by energy minimization. Figure 5
depicts the neutrality distribution of native and shuffled sequences for all structures in the
dataset, having used Python’s multiprocessing module (“process” class) to speed up the
calculation. Figures 6 and 7 depict the mean free energy (MFE) distribution for all one-
hairpin (1H) structures and for all two-hairpin (2H) structures, respectively, covering the
entire dataset. The reported p-values in the captions were calculated from a T-test to check
that the average neutrality values of the structures of native sequences were significantly
larger than the average neutrality values of the structures of shuffled sequences and the
average MFE values of the structures of native sequences were significantly smaller than
the average MFE values of the structures of shuffled sequences, respectively.
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4. Discussion and Conclusions

We will now analyze the results of our proposed methodology, which were obtained
on a large-scale dataset of viral RNA structures, and discuss our analysis. Starting from
the eigenvalue analysis performed at the beginning of Section 3, we will first examine
the tables obtained from analyzing the second smallest eigenvalue of the Laplacian ma-
trix corresponding to the coarse grain tree-graph representation of the RNA secondary
structure. We will then examine the Szeged index result that is related to all Laplacian
eigenvalues extracted from the full-graph representation of the RNA secondary structure.
Subsequently, we will analyze the mutational robustness and thermodynamic stability
results and draw conclusions.

Visualization of the tree graphs (Figure 1) in the whole dataset can be most elegantly
done with a single number by examining their Laplacian second smallest eigenvalue.
The eigenvalue statistics shown in Table 1 reveal that most of the RNA structures in our
dataset, comprised of either one-hairpin (1H) structures or two-hairpin (2H) structures,
are small 2-node structures that are represented in Figure 1c. Next come three nodes
structures that are illustrated in Figure 1b, and then only a smaller portion of structures
with more than three nodes. Because the category of one-hairpin (1H) structures constitute
the majority of our dataset, we further analyze this category in Table 2 by specifying all
second smallest Laplacian eigenvalues. Notably, all of the eigenvalues abide by the formula
a(T) = 2(1− cos(π/n)) in Equation (4) where n is the number of nodes, which can also
be derived by analogy to the eigenvalue formula of a tridiagonal Toeplitz matrix [40].
The first row corresponds to n = 2, the second row corresponds to n = 3, and each one
of the rows therein corresponds to a consecutive n, respectively, until the final (seventh)
row corresponds to n = 8 and reports on just one occurrence of a linear structure with
a high number of eight nodes (corresponding to the linear tree graph that was drawn
in Figure 2 in [21] for illustration). These are all stem-loop structures, restricted by the
constraint of one-hairpin (1H) that is imposed on the category examined in Table 2; as
expected from a large-scale dataset of RNA secondary structures in viruses, the stem-loop
structures are highly abundant even though there are two-hairpin (2H) structures in the
dataset as well. The peculiar stem-loops at the bottom of the table with high number of
nodes can now be examined in detail to check their candidacies for possessing a functional
role because of their similarity in concept to Figure 1 in [7], for example. Reverting back
to Table 1, the vast majority of structures in the dataset (1H and 2H combined) are small
RNA structures.

Having noticed that small RNA structures in the dataset are dominant, we performed
a further analysis using the Wiener/Szeged topological index, and the distributions of the
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Szeged numbers over the complete dataset when comparing between native and shuffled
sequences are available in Figures 3 and 4. Shuffled sequences contain randomness, but
they preserve the GC content of the native sequences and are therefore preferable for our
comparison over fully random sequences. For convenience in inspection, Figure 3 displays
the lowest Szeged numbers while Figure 4 reports the highest ones. It can be noticed
that the Szeged numbers of native sequences are spread more evenly from low to high
values when compared to shuffled sequences, which was also seen in Figure 4 of [30] for
a collection of microRNAs. It is even more pronounced in viral structures as compared
to microRNA structures. We speculate that billions of years of evolution produced viral
mutations that enabled native structures to assume a variety of structures rather than being
confined to a more limited set of structures as in the shuffled sequences. The ability of
native sequences to occupy high Szeged numbers with respect to the shuffled sequences,
as shown in Figure 4, is therefore likely a manifestation that our dataset contains natural
RNAs with a biological content.

For completion of the comparison between native and shuffled sequences in our
dataset, it was found in Figure 5 that native sequences are more mutationally robust than
shuffled sequences. Figures 6 and 7 show that native sequences are more thermodynam-
ically stable than shuffled sequences. This is a further verification that indeed the RNA
structures in our dataset have characteristics of natural RNAs. Furthermore, once a new
version of the dataset [37] is available, we could check if the consensus structures have
improved by the following procedure related to mutational robustness. We could evalu-
ate neutrality with both the consensus structures and biological structures in the dataset
and compare their difference for both the current and new versions of the dataset. If
the difference becomes smaller, it signals that consensus structures have improved in the
new version.

To summarize, the search for functional RNA structures in viruses is gradually ad-
vancing using both computational and experimental approaches, as can be viewed in [1–9].
The methodology presented here for the analysis of RNA structures is useful for finding
categories in the dataset, such as stem-loop structures of different sizes, that could turn
out to be functionally important. It can be used to study properties of the dataset based
on topological indices that utilize Laplacian eigenvalues, supplemented by histograms of
mutational robustness and thermodynamic stability. Furthermore, a similar analysis can be
applied more generally to other data that involve RNA secondary structures, although the
structural properties of viral RNA motifs that tend to be linear, i.e., closer in their coarse
grain tree-graph representation to a path on n vertices, make them especially amenable to
an eigenvalue analysis that extracts the algebraic connectivity according to Equation (4)
specifically for a path on n vertices.
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Appendix A. Details of the Algebraic Connectivity

A list of properties and two relevant examples are provided to clarify the geometrical
meaning behind the algebraic connectivity.

Properties (algebraic connectivity): Let T = (V,E) be a tree on n vertices with the
algebraic connectivity denoted by a(T). Then:
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(A). 0 ≤ a(T) ≤ 1 [30].
(B). a(T) = 0 iff T is not connected [30].
(C). a(T) =2(1− cos(π/n)) iff T = Pn is a path on n vertices [29].
(D). a(T) = 1 iff T = K1,n−1 is a star on n vertices [29,30].

Example 1: Because a tree T is a special case of graph G, it follows that a(T) is positive
if T is connected [30]. Thus, in all RNA secondary structure test cases reported herein for
each tree configuration that represents the secondary structure, a(T) is positive because
loops, bulges and hairpins are connected through RNA stems.

Example 2: Let T = K1,n−1 be a star on n vertices, which implies that tree T has n
vertices: one vertex of degree n − 1 along with n − 1 pendant (of degree 1) vertices. Then
the characteristic polynomial p(x) of T becomes: p(x) = x(x − n)(x − 1)n−2. This can be
verified [30] by observing that (1, 1, . . . , 1) is an eigenvector of L(T) corresponding to the
eigenvalue 0; (n − 1, −1, . . . , −1) is an eigenvector that corresponds to the eigenvalue
n and {(0, 1, −1, 0, . . . , 0), (0, 0, 1, −1, 0, . . . , 0) . . . , (0, 0, . . . , 0, 1, −1)} is a set of n − 2
linearly independent eigenvectors that correspond to the eigenvalue 1. An RNA secondary
structure classical example for the case of n = 5 when exhibiting a star shape is in the yeast
phenylalanine tRNA. In this example, for n = 5 the spectrum of L is {0, 1, 1, 1, 5}, resulting
from the characteristic polynomial above. Thus, the second smallest eigenvalue of L(T) is
smallest but positive when the RNA secondary structure has a linear shape, and it becomes
identical to 1.0 when the RNA secondary structure has a star shape.

Example 3: Let Tlinear be a linear tree on n vertices, n > 2, and T′linear be a linear tree on
n− 1 vertices. Then a(T′linear) > a(Tlinear), since a linear tree that is shortened becomes more
compact. Thus, the range of possible algebraic connectivity values for a tree T on n − 1
vertices, between the lowest value a(T′linear) and the highest value of one, is smaller than
the range of algebraic connectivity values for a tree T on n vertices, with the lowest value
a(Tlinear) and the same highest value of the upper bound one. Various virusoid sequences
that are linear in their secondary structure, as in Figure 3 of [22], illustrate this point because
their tree graph is linear but associated with a different number of vertices. Their algebraic
connectivity can be calculated using the formula a(T) = 2(1− cos(π/n)), mentioned in
property (C) above. It is worthwhile noting that for the special case of n = 3, a(Tlinear) = 1
because the tree can only assume a single shape that is a star, and a(Tlinear) = 2 corresponds
to two vertices because of the properties of the Laplacian operator when the grid is reduced
to only two points. In addition, there is a noticeable similarity between property (C) and
the eigenvalues of a tridiagonal Toeplitz matrix (40) because the Laplacian of an open
path is tridiagonal Toeplitz except the first and last row, corresponding to the start and
end vertices.
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