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SARS-CoV-2 (COVID-19) by the
numbers
Abstract The COVID-19 pandemic is a harsh reminder of the fact that, whether in a single human host

or a wave of infection across continents, viral dynamics is often a story about the numbers. In this

article we provide a one-stop, curated graphical source for the key numbers (based mostly on the

peer-reviewed literature) about the SARS-CoV-2 virus that is responsible for the pandemic. The

discussion is framed around two broad themes: i) the biology of the virus itself; ii) the characteristics

of the infection of a single human host.
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Introduction
The COVID-19 pandemic has made brutally clear

the need for further research into many aspects

of viruses. In this article we compile data about

the basic properties of the SARS-CoV-2 virus,

and about how it interacts with the body (Fig-

ure 1). We also discuss a number of questions

about the virus, and perform ’back-of-the-enve-

lope’ calculations to show the insights that can

be gained from knowing some key numbers and

using quantitative reasoning. It is important to

note that much uncertainty remains, and while

’back-of-the-envelope’ calculations can improve

our intuition through sanity checks, they cannot

replace detailed epidemiological analysis.

Eight questions about SARS-CoV-2

1. How long does it take a single infected
person to yield one million infected
people?

If everybody continued to behave as usual, how

long would it take the pandemic to spread from

one person to a million infected victims? The

basic reproduction number, R0, suggests each

infection directly generates 2–4 more infections

in the absence of countermeasures like physical

distancing. Once a person is infected, it takes a

period of time known as the ’latent period’

before they are able to transmit the virus. The

current best-estimate of the median latent time

is » 3 days followed by »4 days of close to

maximal infectiousness (Li et al., 2020a;

He et al., 2020). The exact durations vary

among people, and some are infectious for

much longer. Using R0 » 4, the number of cases

will quadruple every » 7 days or double every

» 3 days. 1000-fold growth (going from one case

to 103) requires 10 doublings since 210 » 103; 3

days � 10 doublings = 30 days, or about one

month. So we expect » 1000x growth in one

month, a million-fold (106) in two months, and a

billion fold (109) in three months. Even though

this calculation is highly simplified, ignoring the

effects of ’super-spreaders’, herd-immunity and

incomplete testing, it emphasizes the fact that

viruses can spread at a bewildering pace when

no countermeasures are taken. This illustrates

why it is crucial to limit the spread of the virus

by physical distancing measures. For fuller dis-

cussion of the meaning of R0, the latent and

infectious periods, as well as various caveats, see

the section on ’Definitions and measurement

methods’ below.

2.What is the effect of physical distancing?

A highly simplified quantitative example helps

clarify the need for physical distancing. Suppose

that you are infected and you encounter 50 peo-

ple over the course of a day of working, com-

muting, socializing and running errands. To

make the numbers round, let’s further suppose

that you have a 2% chance of transmitting the

virus in each of these encounters, so that you
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Figure 1. SARS-CoV-2 (COVID-19) by the numbers. Graphic showing what we know about the basic properties of the SARS-CoV-2 virus, such as its size

and genome, and about how it interacts with the body. These topics are discussed further in the text, which also includes sources for all the values

listed. This article will be updated as new data become available, and the latest version is available at: bit.ly/2WOeN64. A larger version of this figure

(which was created with Biorender) is available as Supplementary file 1.
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are likely to infect one new person each day. If

you are infectious for 4 days, then you will infect

four others on average, which is on the high end

of the R0 values for SARS-CoV-2 in the absence

of physical distancing. If you instead see five

people each day (preferably fewer) because of

physical distancing, then you will infect 0.1 peo-

ple per day, or 0.4 people before you become

less infectious. The desired effect of physical dis-

tancing is to make each current infection pro-

duce <1 new infections. An effective

reproduction number (Re) smaller than one will

ensure the number of infections eventually dwin-

dles. It is critically important to quickly achieve

Re < 1, which is substantially more achievable

than pushing Re to near zero through public

health measures.

3. Why was the initial quarantine period
twoweeks?

The period of time from infection to symptoms

is termed the incubation period. The median

SARS-CoV-2 incubation period is estimated to

be roughly 5 days (Lauer et al., 2020). Yet there

is much person-to-person variation. Approxi-

mately 99% of those showing symptoms will

show them before day 14, which explains the

two week confinement period. Importantly, this

analysis neglects infected people who never

show symptoms. Since asymptomatic people are

not usually tested, it is still not clear how many

such cases there are or how long asymptomatic

people remain infectious for.

4. How doN95masks block SARS-CoV-2?

N95 masks are designed to remove more than

95% of all particles that are at least 0.3 microns

(mm) in diameter. In fact, measurements of the

particle filtration efficiency of N95 masks show

that they are capable of filtering » 99.8% of par-

ticles with a diameter of »0.1 mm

(Rengasamy et al., 2017). SARS-CoV-2 is an

enveloped virus » 0.1 mm in diameter, so N95

masks are capable of filtering most free virions,

but they do more than that. How so? Viruses are

often transmitted through respiratory droplets

produced by coughing and sneezing. Respira-

tory droplets are usually divided into two size

bins, large droplets (>5 mm in diameter) that fall

rapidly to the ground and are thus transmitted

only over short distances, and small droplets (�5

mm in diameter). Small droplets can evaporate

into ’droplet nuclei’, remain suspended in air for

significant periods of time and could be inhaled.

Some viruses, such as measles, can be

transmitted by droplet nuclei (Tellier et al.,

2019). Larger droplets are also known to trans-

mit viruses, usually by settling onto surfaces that

are touched and transported by hands onto

mucosal membranes such as the eyes, nose and

mouth (CDC, 2020). The characteristic diameter

of large droplets produced by sneezing is ~100

mm (Han et al., 2013), while the diameter of

droplet nuclei produced by coughing is on the

order of ~1 mm (Yang et al., 2007). At present,

it is unclear whether surfaces or air are the domi-

nant mode of SARS-CoV-2 transmission, but

N95 masks should provide some protection

against both (Jefferson et al., 2009;

Leung et al., 2020).

5. How similar is SARS-CoV-2 to the
common cold and flu viruses?

SARS-CoV-2 is a beta-coronavirus whose

genome is a single »30 kb strand of RNA. The

flu is caused by an entirely different family of

RNA viruses called influenza viruses. Flu viruses

have smaller genomes ( » 14 kb) encoded in

eight distinct strands of RNA, and they infect

human cells in a different manner than coronavi-

ruses. The ’common cold’ is caused by a variety

of viruses, including some coronaviruses and rhi-

noviruses. Cold-causing coronaviruses (e.g.

OC43 and 229E strains) are quite similar to

SARS-CoV-2 in genome length (within 10%) and

gene content, but different from SARS-CoV-2 in

sequence ( » 50% nucleotide identity) and infec-

tion severity. One interesting facet of coronavi-

ruses is that they have the largest genomes of

any known RNA viruses (» 30 kb). These large

genomes led researchers to suspect the pres-

ence of a ’proofreading mechanism’ to reduce

the mutation rate and stabilize the genome.

Indeed, coronaviruses have a proofreading exo-

nuclease called ExoN, which explains their low

mutation rates (~10–6 per site per cycle) in com-

parison to influenza ( »3 � 10–5 per site per

cycle; Sanjuán et al., 2010). This relatively low

mutation rate will be of interest for future stud-

ies predicting the speed with which coronavi-

ruses can evade our immunization efforts.

6. Howmuch is known about the SARS-
CoV-2 genome and proteome?

SARS-CoV-2 has a single-stranded positive-sense

RNA genome that codes for 10 genes ultimately

producing 26 proteins according to an NCBI

annotation (NC_045512). How is it that 10 genes

code for >20 proteins? One long gene, orf1ab,

encodes a polyprotein that is cleaved into 16
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Box 1. Glossary

Clinical measures

Incubation period: time between exposure and symptoms.

Seroconversion: time between exposure to virus and detectable antibody response.

Epidemiological inferences

R0: the average number of cases directly generated by an individual infection.

Latent period: time between exposure and becoming infective.

Infectious period: time for which an individual is infective.

Interval of half-maximum infectiousness: the time interval during which the probability of viral transmission is higher than half

of the peak infectiousness. This interval is similar to the infectious period, but applies also in cases where the probability of

infection is not uniform in time.

Viral species

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2. A b-coronavirus causing the present COVID-19 outbreak.

SARS-CoV-1: b-coronavirus that caused the 2002 SARS outbreak in China.

MERS: a b-coronavirus that caused the Middle East Respiratory Syndrome outbreak beginning in Jordan in 2012.

MHV: Murine hepatitis virus, a model b-coronavirus on which much laboratory research has been conducted.

TGEV: Transmissible gastroenteritis virus, a model a-coronavirus that infects pigs.

229E and OC43: two strains of coronavirus (a- and b- respectively) that cause a fraction of common colds.

Viral life-cycle

Eclipse period: time between viral entry and appearance of intracellular virions.

Latent period (cellular level): time between viral entry and appearance of extracellular virions. Not to be confused with the

epidemiological latent period described above.

Burst size: the number of virions produced from infection of a single cell. More appropriately called ’per-cell viral yield’ for

non-lytic viruses like SARS-CoV-2.

Virion: a viral particle.

Polyprotein: a long protein that is proteolytically cleaved into a number of distinct proteins. Distinct from a polypeptide, which

is a linear chain of amino acids making up a protein.

Human biology

Alveolar macrophage: immune cells found in the lung that engulf foreign material like dust and microbes (’professional

phagocytes’).

Pneumocytes: the non-immune cells in the lung.

KD: apparent binding affinity. In this case, gives the concentration of spike protein needed for half-maximum binding of ACE2

receptor. KD is measured using surface chemistry approaches for membrane proteins such as ACE2.

ACE2: Angiotensin-converting enzyme 2, the mammalian cell surface receptor that SARS-CoV-2 binds.

TMPRSS2: Transmembrane protease, serine 2, a mammalian membrane-bound serine protease that cleaves the viral spike tri-

mer after it binds ACE2, revealing a fusion peptide that participates in membrane fusion that enables subsequent injection of

viral RNA into the host cytoplasm.

Nasopharynx: the space above the soft palate at the back of the nose that connects the nose to the mouth.

Notation

Note the difference in notation between the symbol » , which indicates ’approximately’ and connotes accuracy to within a fac-

tor of 2, and the symbol ~, which indicates ’order of magnitude’ or accuracy to within a factor of 10.
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proteins by proteases that are themselves part

of the polyprotein. In addition to proteases, the

polyprotein encodes an RNA polymerase and

associated factors to copy the genome, a proof-

reading exonuclease, and several other non-

structural proteins. The remaining genes pre-

dominantly code for structural components of

the virus: i) the spike protein which binds the

cognate receptor on a human or animal cell; ii) a

nucleoprotein that packages the genome; iii)

two membrane-bound proteins. Though much

current work is centered on understanding the

role of ’accessory’ proteins in the viral life cycle,

we estimate that it is currently possible to

ascribe clear biochemical or structural functions

to only about half of SARS-CoV-2 gene

products.

7. What can we learn from the mutation
rate of the virus?

Studying viral evolution, researchers commonly

use two measures describing the rate of geno-

mic change. The first is the evolutionary rate,

which is defined as the average number of sub-

stitutions that become fixed per year in strains

of the virus, given in units of mutations per site

per year. The second is the mutation rate, which

is the number of substitutions per site per repli-

cation cycle. How can we relate these two val-

ues? Consider a single site at the end of a year.

The only measurement of a mutation rate in a b-

coronavirus suggests that this site will

accumulate ~10–6 mutations in each round of

replication. Each replication cycle takes ~10 hr,

and so there are 103 cycles/year. Multiplying the

mutation rate by the number of replications,

assuming neutrality and neglecting the effects of

evolutionary selection, we arrive at 10–3 muta-

tions per site per year, consistent with the evolu-

tionary rate inferred from sequenced

coronavirus genomes. As our estimate is consis-

tent with the measured rate, we infer that the

virus undergoes near-continuous replication in

the wild, constantly generating new mutations

that accumulate over the course of the year.

Using our knowledge of the mutation rate, we

can also draw inferences about single infections.

For example, since the mutation rate is ~10–6

mutations/site/cycle and an mL of sputum might

contain upwards of 107 viral RNAs, we infer that

every site is mutated more than once in such

samples.

8. How stable and infectious is the virion
on surfaces?

To understand how SARS-CoV-2 can be trans-

mitted, it is vitally important to characterize the

stability of infectious virions on different types of

surfaces like cardboard, plastics, and various

metals. This is a very active area of current

research. However, there are significant caveats

associated with viral stability measurements. The

measured stability depends on the quantity

measured, for example, one can measure either

infectious virions or viral RNA copies. The num-

ber of infectious virions is typically much lower

than inferred from measurements of the viral

genome (Woelfel et al., 2020). SARS-CoV-2

RNA has been detected on various surfaces sev-

eral weeks after they were last touched

(Moriarty et al., 2020), but infectiousness

appears to degrade more quickly than RNA.

When researchers measured the stability of

infectious virions on surfaces, the numbers

depended greatly on the type of surface and the

medium carrying the virus, with the stability on

plastic being much greater than on copper or

steel, for example. Viral stability is also known to

depend strongly on temperature and humidity

(Chin et al., 2020). Therefore calculating the

probability of human infection from exposure to

contaminated surfaces is a complex task for

which sufficient data is not yet available. As

such, caution and protective measures should be

taken. To gain some intuition for the importance

of surface transmission, we consider an undiag-

nosed infectious person who touches surfaces

tens of times during their infectious period. Prior

to lockdown, these public surfaces will subse-

quently be touched by hundreds of other peo-

ple. From the basic reproduction number

R0 » 2–4 we can infer that not everyone touch-

ing those surfaces will be infected. More

detailed bounds on the risk of infection from

touching surfaces urgently awaits study.

Definitions and measurement
methods

What are themeanings of R0, ’latent
period’ and ’infectious period’?

The basic reproduction number, R0, estimates

the average number of new infections directly

generated by a single infectious person. The 0

subscript connotes that this refers to early

stages of an epidemic, when everyone in the

region is susceptible (that is, there is no immu-

nity) and no countermeasures have been taken.
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As geography and culture affect how many peo-

ple we encounter daily, how much we touch

them and share food with them, estimates of R0

can vary between locales. Moreover, because R0

is defined in the absence of countermeasures

and immunity, we are usually only able to assess

the effective R (Re). At the beginning of an epi-

demic, before any countermeasures, Re » R0.

Several days pass before a newly-infected per-

son becomes infectious themselves. This ’latent

period’ is typically followed by several days of

infectivity called the ’infectious period’.

It is important to understand that reported

values for all these parameters are population

averages inferred from epidemiological models

fit to counts of infected, symptomatic, and dying

patients. Because testing is always incomplete

and model fitting is imperfect, and data will vary

between different locations, there is substantial

uncertainty associated with reported values.

Moreover, these median or average best-fit val-

ues do not describe person-to-person variation.

For example, viral RNA was detectable in

patients with moderate symptoms for more than

one week after the onset of symptoms, and

more than two weeks in patients with severe

symptoms (ECDC, 2020). Though detectable

RNA is not the same as active virus, this evi-

dence calls for caution in using uncertain, aver-

age parameters to describe a pandemic. Why

have detailed distributions of these parameters

across people not been published? Direct mea-

surement of latent and infectious periods at the

individual level is extremely challenging, as accu-

rately identifying the precise time of infection is

usually very difficult.

What is the difference between
measurements of viral RNA and infectious
viruses?

Diagnosis and quantification of viruses utilizes

several different methodologies. One common

approach is to quantify the amount of viral RNA

in an environmental (e.g., surface) or clinical (e.

g., sputum) sample via quantitative reverse-tran-

scription polymerase chain reaction (RT-qPCR).

This method measures the number of copies of

viral RNA in a sample. The presence of viral RNA

does not necessarily imply the presence of infec-

tious virions. Virions could be defective (e.g., by

mutation) or might have been deactivated by

environmental conditions. To assess the concen-

tration of infectious viruses, researchers typically

measure the ’50% tissue-culture infectious dose’

(TCID50). Measuring TCID50 involves infecting

replicate cultures of susceptible cells with

dilutions of the virus and noting the dilution at

which half the replicate dishes become infected.

Viral counts reported by TCID50 tend to be

much lower than RT-qPCR measurements, which

could be one reason why studies relying on RNA

measurements (Moriarty et al., 2020) report

the persistence of viral RNA on surfaces for

much longer times than studies relying on

TCID50 (van Doremalen et al., 2020). It is

important to keep this caveat in mind when

interpreting data about viral loads, for example

a report measuring viral RNA in patient stool

samples for several days after recovery

(Wu et al., 2020a). Nevertheless, for many

viruses even a small dose of virions can lead to

infection. For the common cold, for

example, ~0.1 TCID50 are sufficient to infect half

of the people exposed (Couch et al., 1966).

What is the difference between the case
fatality rate and the infection fatality rate?

Global statistics on new infections and fatalities

are pouring in from many countries, providing

somewhat different views on the severity and

progression of the pandemic. Assessing the

severity of the pandemic is critical for policy

making and thus much effort has been put into

quantifying key measures of its progression. The

most common measure for the severity of a dis-

ease is the fatality rate. One commonly reported

measure is the case fatality rate (CFR), which is

the proportion of fatalities out of total diag-

nosed cases. The CFR reported in different

countries varies significantly, from 1% to about

15%. Several key factors affect the CFR. First,

demographic parameters and practices associ-

ated with increased or decreased risk differ

greatly across societies. For example, the preva-

lence of smoking, the average age of the popu-

lation, and the capacity of the healthcare

system. Indeed, the majority of people dying

from SARS-CoV-2 have a preexisting condition

such as cardiovascular disease or smoking

(The Novel Coronavirus Pneumonia Emer-

gency Response Epidemiology Team, 2020).

There is also potential for bias in estimating the

CFR. For example, a tendency to identify more

severe cases (selection bias) will tend to overesti-

mate the CFR. On the other hand, there is usu-

ally a delay between the onset of symptoms and

death, which can lead to an underestimate of

the CFR early in the progression of an epidemic.

We report the uncorrected CFR values, and thus

these caveats should be borne in mind. Even

when correcting for these factors, the CFR does

not give a complete picture as many cases with
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mild or no symptoms are not tested. Thus, the

CFR will tend to overestimate the rate of fatali-

ties per infected person, termed the infection

fatality rate (IFR). Estimating the total number of

infected people is usually accomplished by test-

ing a random sample for anti-viral antibodies,

whose presence indicates that the patient was

previously infected. At the time of writing, such

assays are not widely available, and so research-

ers resort to surrogate datasets generated by

testing of foreign citizens returning home from

infected countries (Verity et al., 2020;

Nishiura et al., 2020), large-scale semi-random

testing in countries such as Iceland, near com-

plete testing of passengers on the Diamond

Princess ship (Russell et al., 2020), or epidemio-

logical models estimating the number of undoc-

umented cases (Li et al., 2020a;

Mizumoto et al., 2020). These methods have

their own caveats and uncertainties associated

with them, and it is not entirely clear how repre-

sentative they are but they do provide a first

glimpse of the true severity of the disease.

What is the burst size and the replication
time of the virus?

Two important characteristics of the viral life

cycle are the time it takes them to produce new

infectious progeny, and the number of progeny

each infected cell produces. The yield of new

virions per infected cell is more clearly defined

in lytic viruses, such as those infecting bacteria

(bacteriophages), as viruses replicate within the

cell and subsequently lyse the cell to release a

’burst’ of progeny. This measure is usually

termed ’burst size’. SARS-CoV-2 does not

release its progeny by lysing the cell, but rather

by continuous budding (Park et al., 2020b).

Even though there is no ’burst’, we can still esti-

mate the average number of virions produced

by a single infected cell. Measuring the time to

complete a replication cycle or the burst size in

vivo is very challenging, and thus researchers

usually resort to measuring these values in tis-

sue-culture. There are various ways to estimate

these quantities, but a common and simple one

is using ’one-step’ growth dynamics. The key

principle of this method is to ensure that only a

single replication cycle occurs. This is typically

achieved by infecting the cells with a large num-

ber of virions, such that every cell gets infected,

thus leaving no opportunity for secondary

infections.

Assuming entry of the virus to the cells is

rapid (we estimate 10 min for SARS-CoV-2), the

time it takes to produce progeny can be

estimated by quantifying the lag between inocu-

lation and the appearance of new intracellular

virions, also known as the ’eclipse period’. This

eclipse period does not account for the time it

takes to release new virions from the cell. The

time from cell entry until the appearance of the

first extracellular viruses, known as the ’latent

period’ (not to be confused with the epidemio-

logical latent period; see glossary in Box 1), esti-

mates the duration of the full replication cycle.

The burst size can be estimated by waiting until

virion production saturates, and then dividing

the total virion yield by the number of cells

infected. While both the time to complete a rep-

lication cycle and the burst size may vary signifi-

cantly in an animal host due to factors including

the type of cell infected or the action of the

immune system, these numbers provide us with

an approximate quantitative view of the viral

life-cycle at the cellular level.

Are people usually diagnosed before or
after they are contagious?

Our personal experience with infectious diseases

leaves us with the intuition that we are conta-

gious when we have symptoms. For the seasonal

flu, for example, most transmissions indeed

occur after a person has developed symptoms

(Ip et al., 2017). For SARS-CoV-2, in contrast, it

is common to be contagious before symptoms.

The SARS-CoV-2 incubation period is about 5

days, while peak infectiousness begins two days

before symptoms reveal themselves. As a result,

a large fraction of infections occur pre-symptom-

atically, that is, without the infectious person

realizing they have the disease (Ferretti et al.,

2020; He et al., 2020). With testing capacity

under strain, diagnosis typically occurs » 5 days

after symptom onset, or » 10 days after infec-

tion. By that time, most people have already

passed peak infectiousness. In order to effec-

tively slow the growth of the pandemic, it is

important to detect infections as early as possi-

ble and quarantine those who test positive. In

the case of SARS-CoV-2 this means detection

before symptoms because there is strong evi-

dence of significant pre-symptomatic transmis-

sion. Finally, the situation is further complicated

by a large fraction of asymptomatic cases, that is

cases in which the infected person never devel-

ops noticeable symptoms. This fraction is more

than half of children and young adults

(Davies et al., 2020). Leading modeling efforts

assume that asymptomatic infections are any-

where between 10–80% as contagious as symp-

tomatic ones (Ferretti et al., 2020;
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Davies et al., 2020). This wide range reflects a

crucial gap in our understanding of SARS-CoV-2

transmission: great uncertainty about the magni-

tude of asymptomatic transmission.

Sources of the numbers in Figure
1
Note that for about 10 out of 45 parameters,

the literature values are from other coronavi-

ruses. We await corresponding measurements

for SARS-CoV-2.

Size and content

Diameter. (Figure 3 in Zhu et al., 2020): "Elec-

tron micrographs of negative-stained 2019-nCoV

particles were generally spherical with some

pleomorphism. Diameter varied from about 60

to 140 nm."

Volume. Using diameter and assuming the

virus is a sphere.

Mass. Using the volume and a density of ~1 g

per mL.

Number of spike trimers. (Neuman et al.,

2011): "Our model predicts ~90 spikes per

particle."

Length of spike trimers. (Zhu et al., 2020):

"Virus particles had quite distinctive spikes,

about 9 to 12 nm, and gave virions the appear-

ance of a solar corona."

Receptor binding affinity (Kd). Walls et al.,

2020 reports Kd of »1 nM for the binding

domain using biolayer interferometry with kon of

» 1.5 � 105 M–1 s–1 and koff of » 1.6 � 10–4 s–1

(Table 1). Wrapp et al., 2020 reports Kd of »15

nM for the spike (Figure 3) and »35 nM for the

binding domain (Figure 4) using surface plasmon

resonance with kon of »1.9 � 105 M–1 s–1 and

koff of »2.8 � 10–3 s–1 for the spike, and kon of

» 1.4 � 105 M–1 s–1 and koff of » 4.7 � 10–3 s–1

for the binding domain. Lan et al., 2020 reports

Kd of » 5 nM for the binding domain (Extended

Data Figure 4) using surface plasmon resonance

with kon of » 1.4 � 106 M–1 s–1 and koff of

» 6.5 � 10–3 s–1. Shang et al., 2020 reports Kd

of »40 nM for the binding domain (Extended

Data Figure 6) using surface plasmon resonance

with kon of » 1.8 � 106 M–1 s–1 and koff of

» 7.8 � 10–3 s–1. The main disagreement

between the studies seems to be on the koff.

Membrane (M; 222 aa). (Neuman et al.,

2011): "Using the M spacing data for each virus

(Figure 6C), this would give ~1100 M2 molecules

per average SARS-CoV, MHV and FCoV

particle."

Envelope (E; 75 aa). (Godet et al., 1992):

"Based on the estimated molar ratio and assum-

ing that coronavirions bear 100 (J Gen Virol 63:

241–245) to 200 spikes, each composed of 3 s

molecules (Virus Research 20:107–120) it can be

inferred that approximately 15–30 copies of

ORF4 protein are incorporated into TGEV virions

(Purdue strain)."

Nucleoprotein (364 aa). (Neuman et al.,

2011): "Estimated ratios of M to N protein in

purified coronaviruses range from about 3M:1N

(Cavanagh, 1983; Escors et al., 2001) to

1M:1N (Hogue and Brian, 1986; Liu and Inglis,

1991), giving 730–2200 N molecules per virion."

Genome

Type. (ViralZone) +ssRNA "Monopartite, linear

ssRNA(+) genome"

Genome length. The initial isolate of SARS-

CoV-2 from Wuhan, China has a 29903 nt » 30

kb ssRNA genome (NCBI MN908947.3), which is

typical of a coronavirus (Smith and Denison,

2012).

(Wu et al., 2020b): "SARS-CoV-2 genome

has 10 open reading frames (Figure 2A)".

(Wu et al., 2020c): "The 2019-nCoV genome

was annotated to possess 14 ORFs encoding 27

proteins". Coronavirus genomes contain several

’accessory proteins’ that are not essential for

replication and are not always expressed. The

’nonstructural proteins’ are expressed as a poly-

protein which is proteolytically cleaved into »10

proteins. As transcription start and protease

cleavage sites are not trivial to identify bioinfor-

matically, there is some uncertainty about the

exact number of transcriptional units and pro-

teins expressed by SARS-CoV-2.

Number of proteins. (Wu et al., 2020b): "By

aligning with the amino acid sequence of SARS

PP1ab and analyzing the characteristics of

restriction cleavage sites recognized by 3CLpro

and PLpro, we speculated 14 specific proteolytic

sites of 3CLpro and PLpro in SARS-CoV-2 PP1ab

(Figure 2B). PLpro cleaves three sites at 181–

182, 818–819, and 2763–2764 at the N-terminus

and 3CLpro cuts at the other 11 sites at the

C-terminus, and forming 15 non-structural

proteins."

Evolution rate. (Koyama et al., 2020):

"Mutation rates estimated for SARS, MERS, and

OC43 show a large range, covering a span of

0.27 to 2.38 substitutions � 10–3/site/ year (see

references 10–16)." Recent unpublished evi-

dence also suggests this rate is of the same

order of magnitude in SARS-CoV-2 ().
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Mutation rate. (Sanjuán et al., 2010):

"Murine hepatitis virus . . . Therefore, the cor-

rected estimate of the mutation rate is ms/n/c =

1.9x10–6 / 0.55 = 3.5 x 10–6."

Genome similarity. For all species except

pangolin, genomes were downloaded from

NCBI and aligned to the SARS-CoV-2 reference

(MN908947) with EMBOSS Stretcher (EMBL-EBI

server). Reported values are percent nucleotide

sequence identity. Genomes used: bat coronavi-

rus RaTG13 (MN996532.1; 96% id); SARS-CoV-1

(NC_004718.3; 80% id); MERS (NC_019843.3;

55% id); human cold coronavirus strains OC43

(NC_006213.1; 53% id) and 229E (NC_002645.1;

50% id). For pangolin: ‘"PangolinCoV is 91.02%

and 90.55% identical to SARS-CoV-2 and Bat-

CoV RaTG13, respectively, at the whole genome

level" (Zhang et al., 2020).

Replication timescales

Virion entry into cell (for SARS-CoV-1).

(Schneider et al., 2012): "Previous experiments

had revealed that virus is internalized within 15

min". (Ng et al., 2003): "Within the first 10 min,

some virus particles were internalized into

vacuoles (arrow) that were just below the plasma

membrane surface (Fig. 2, arrows). [. . .] The

observation at 15 min postinfection (p.i.), did

not differ much from 10 min p.i. (Fig. 4a)".

Eclipse period. (Schneider et al., 2012):

"SARS-CoV replication cycle from adsorption to

release of infectious progeny takes about 7 to 8

hr (data not shown)"; Figure 4 of

Harcourt et al., 2020 shows virions are released

after 12–36 hr but because this is multi-step

growth this represents an upper bound for the

replication cycle.

Burst size. (Hirano et al., 1976): "The aver-

age per-cell yield of active virus was estimated

to be about 6–7 � 102 plaque-forming units."

This data is for MHV, so more research is

needed to verify these values for SARS-CoV-2.

Host cells

Type. (Shieh et al., 2005): "Immunohistochemi-

cal and in situ hybridization assays demonstrated

evidence of SARS-associated coronavirus (SARS-

CoV) infection in various respiratory epithelial

cells, predominantly type II pneumocytes, and in

alveolar macrophages in the lung". (Walls et al.,

2020): "SARS-CoV-2 uses ACE2 to enter target

cells". (Rockx et al., 2020): "In SARS-CoV-2-

infected macaques, virus was excreted from

nose and throat in absence of clinical signs, and

detected in type I and II pneumocytes in foci of

diffuse alveolar damage and mucous glands of

the nasal cavity [. . .] In the upper respiratory

tract, there was focal five or locally extensive

SARS-CoV-2 antigen expression in epithelial cells

of mucous glands in the nasal cavity (septum or

concha) of all four macaques, without any associ-

ated histological lesions (fig. 2I)."

Type I and Type II pneumocyte and alveolar

macrophage cell number. Values taken from

table 4 in Crapo et al., 1982, and table 5 in

Stone et al., 1992.

Epithelial cells in mucous gland cell number

and volume. The value for the surface area of

the nasal cavity is taken from ICRP, 1975; the

value for the mucous gland density is taken from

Tos and Mogensen, 1976; Tos and Morgensen,

1977; the value for the mucous gland volume is

taken from Widdicombe, 2019; and the value

for the mucous cell volume is taken from

Ordoñez et al., 2001 and Mercer et al., 1994.

We divide the mucous gland volume by the

mucous cell volume to arrive at the total number

of mucous cells in a mucous gland. We multiply

the surface density of mucous glands by the sur-

face area of the nasal cavity to arrive at the total

number of mucous glands, and then multiply the

total number of mucous glands by the number

of mucous cells per mucous gland.

Type II pneumocyte volume.

(Fehrenbach et al., 1995): "Morphometry

revealed that although inter-individual variation

due to some oedematous swelling was present,

the cells were in a normal size range as indicated

by an estimated mean volume of 763 ± 64 mm3."

Alveolar macrophage volume. (Crapo et al.,

1982): "Alveolar macrophages were found to be

the largest cell in the populations studied, hav-

ing a mean volume of 2,491 mm3."

Concentration

Nasopharynx, throat, stool, and sputum. We

took the maximal viral load for each patient in

nasopharyngeal swabs, throat swabs, stool or in

sputum (figure 2 in Wölfel et al., 2020; figure 1

in Kim et al., 2020; Pan et al., 2020).

Antibody response – seroconversion

Seroconversion time (time period until a spe-

cific antibody becomes detectable in the

blood). (Zhao et al., 2020): "The seroconversion

sequentially appeared for Ab, IgM and then IgG,

with a median time of 11, 12 and 14 days,

respectively". (To et al., 2020): "For 16 patients

with serum samples available 14 days or longer

after symptom onset, rates of seropositivity

Bar-On et al. eLife 2020;9:e57309. DOI: https://doi.org/10.7554/eLife.57309 9 of 15

Feature Article Science Forum SARS-CoV-2 (COVID-19) by the numbers

https://www.ncbi.nlm.nih.gov/nuccore/MN908947
https://www.ebi.ac.uk/Tools/psa/emboss_stretcher/
https://www.ebi.ac.uk/Tools/psa/emboss_stretcher/
https://www.ncbi.nlm.nih.gov/nuccore/MN996532
https://www.ncbi.nlm.nih.gov/nuccore/30271926
https://www.ncbi.nlm.nih.gov/nuccore/667489388
https://www.ncbi.nlm.nih.gov/nuccore/1578871709
https://www.ncbi.nlm.nih.gov/nuccore/12175745
https://www-sciencedirect-com.ezproxy.weizmann.ac.il/topics/medicine-and-dentistry/in-situ-hybridization
https://www-sciencedirect-com.ezproxy.weizmann.ac.il/topics/medicine-and-dentistry/sars-coronavirus
https://www-sciencedirect-com.ezproxy.weizmann.ac.il/topics/medicine-and-dentistry/alveolar-macrophage
https://doi.org/10.7554/eLife.57309


were 94% for anti-NP IgG (n = 15), 88% for anti-

NP IgM (n = 14), 100% for anti-RBD IgG

(n = 16), and 94% for anti-RBD IgM (n = 15)".

Maintenance of antibody response to virus.

(Wu et al., 2007): "Among 176 patients who

had had severe acute respiratory syndrome

(SARS), SARS-specific antibodies were main-

tained for an average of 2 years, and significant

reduction of immunoglobulin G–positive per-

centage and titers occurred in the third year".

Virus environmental stability

Half-life on surfaces. (van Doremalen et al.,

2020): We use half-live values reported in Sup-

plementary Table 1. Chin et al., 2020: We use

short-term half-lives reported in the Appendix.

Pastorino et al., 2020: We use the slopes of

data poitns from the first two hours can calculate

the short-term half-life from them. More studies

are urgently needed to clarify the implications of

virion stability on the probability of infection

from aerosols or surfaces.

RNA stability on surfaces (Moriarty et al.,

2020): "SARS-CoV-2 RNA was identified on a

variety of surfaces in cabins of both symptomatic

and asymptomatic infected passengers up to 17

days after cabins were vacated on the Diamond

Princess but before disinfection procedures had

been conducted (Takuya Yamagishi, National

Institute of Infectious Diseases, personal commu-

nication, 2020).”

’Characteristic’ infection progression in a
single patient

Basic reproductive number, R0. (Li et al.,

2020a): "Our median estimate of the effective

reproductive number, Re – equivalent to the

basic reproductive number (R0) at the beginning

of the epidemic – is 2.38 (95% CI: 2.04–2.77)".

(Park et al., 2020a): "Our estimated R0 from the

pooled distribution has a median of 2.9 (95% CI:

2.1–4.5)".

Latent period (from infection to being able

to transmit). (Li et al., 2020a): "In addition, the

median estimates for the latent and infectious

periods are approximately 3.69 and 3.48 days,

respectively"; see also table 1 in this paper.

(He et al., 2020): We use the time it takes infec-

tiousness to reach half its peak, which happens

two days before symptom onset based on

Figure 1C. As symptoms arise after five days

(see ’Incubation period’ below), this implies a

three-day latent period.

Incubation period (from infection to symp-

toms). (Lauer et al., 2020): "The median

incubation period was estimated to be 5.1 days

(95% CI, 4.5 to 5.8 days), and 97.5% of those

who develop symptoms will do so within 11.5

days (CI, 8.2 to 15.6 days) of infection. These

estimates imply that, under conservative

assumptions, 101 out of every 10 000 cases

(99th percentile, 482) will develop symptoms

after 14 days of active monitoring or quaran-

tine". (Li et al., 2020b): "The mean incubation

period was 5.2 days (95% confidence interval

[CI], 4.1 to 7.0), with the 95th percentile of the

distribution at 12.5 days".

Infectious period. (Li et al., 2020a): "the

median estimates for the latent and infectious

periods are approximately 3.69 and 3.48 days,

respectively"; see also table 1 in this paper.

(He et al., 2020): We quantify the interval over

which infectiousness is at least half its maximal

value (the interval of half-maximal infectiousness)

from the infectiousness profile in Figure 1C.

Disease duration. (WHO, 2020): "Using

available preliminary data, the median time from

onset to clinical recovery for mild cases is

approximately 2 weeks and is 3–6 weeks for

patients with severe or critical disease".

Time until diagnosis. (Xu et al., 2020): We

used data on cases with known symptom onset

and case confirmation dates and calculated the

median time delay between these two dates.

Case fatality rate. (ECDC, 2020) - We use

data from all countries with more than 50 death

cases and calculate the uncorrected raw Case

Fatality Rate for each country. The range repre-

sents the lowest and highest rates observed

using ECDC data up to 14 April 2020.

Infection fatality rate. We rely on three inde-

pendent approaches that estimate the IFR. The

first relies on data about people who were

extensively tested as a result of being repatri-

ated. (Verity et al., 2020): "We obtain an over-

all IFR estimate for China of 0.66%

(0.39%,1.33%)”. (Ferguson et al., 2020): "The

IFR estimates from Verity et al. have been

adjusted to account for a non-uniform attack

rate giving an overall IFR of 0.9% (95% credible

interval 0.4–1.4%)". (Nishiura et al., 2020): "The

infection fatality risk (IFR) – the actual risk of

death among all infected individuals – is there-

fore 0.3% to 0.6%".

The second approach relies on data gathered

from the Diamond Princess ship, where all pas-

sengers were tested. (Russell et al., 2020): "We

estimated that the all-age cIFR on the Diamond

Princess was 1.3% (95% confidence interval (CI):

0.38–3.6)".
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The third approach relies on epidemiological

modeling of case time-series from China.

(Mizumoto et al., 2020): "We also found that

most recent crude infection fatality ratio (IFR)

and time-delay adjusted IFR is estimated to be

0.04% (95% CrI: 0.03–0.06%) and 0.12% (95%

CrI: 0.08–0.17%)". Combining these three meth-

ods, and taking into account the reliability of

each report, we estimate a crude range of

» 0.3–1.3% for the IFR.
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